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Abstract

This paper addresses a new person re-identification
problem without the label information of persons under
non-overlapping target cameras. Given the matched (posi-
tive) and unmatched (negative) image pairs from source do-
main cameras, as well as unmatched (negative) image pairs
which can be easily generated from target domain cameras,
we propose a Domain Transfer Ranked Support Vector Ma-
chines (DTRSVM) method for re-identification under target
domain cameras. To overcome the problems introduced due
to the absence of matched (positive) image pairs in target
domain, we relax the discriminative constraint to a nec-
essary condition only relying on the positive mean in tar-
get domain. By estimating the target positive mean using
source and target domain data, a new discriminative model
with high confidence in target positive mean and low con-
fidence in target negative image pairs is developed. Since
the necessary condition may not truly preserve the discrim-
inability, multi-task support vector ranking is proposed to
incorporate the training data from source domain with label
information. Experimental results show that the proposed
DTRSVM outperforms existing methods without using label
information in target cameras. And the top 30 rank accura-
cy can be improved by the proposed method upto 9.40% on
publicly available person re-identification datasets.

1. Introduction
1.1. Background and Motivation

In recent years, person re-identification across a camera
network comprising multiple cameras with non-overlapping
views has become an active research topic due to its im-
portance in many camera-network-based computer vision
applications. The goal of person re-identification is to re-
identify a person when he/she disappears from the field-
of-view of a camera and appears in another. Matching in-
dividuals over disjoint cameras views can be substantial-

ly challenging when variations in illumination condition,
background, human pose and scale are significant among
those views. Moreover, the temporal transition time be-
tween cameras varies greatly for each individual and such
an uncertainty makes the person re-identification task even
harder.

To address this problem, existing schemes focus on de-
veloping either robust feature representations [2] [3] [4] [5]
[6] [8] [9] [11] [12] [18] [19] [21] [23] or discriminative
learning models [1] [15] [17] [26] [30]. For the discrim-
inative learning methods, it is generally assumed that the
label information of persons is available for training. With
the person labels, matched (positive) and unmatched (neg-
ative) image pairs are generated to train the discriminative
distance model. While these methods could achieve encour-
aging re-identification performance, the assumption that la-
bel information is available for all the cameras, could only
be practically feasible in a small-scale camera network.

Contrarily, in the case of large-scale camera network,
collecting the label information of every training subject
from every camera in the network can be extremely time-
consuming and expensive. Therefore, labels of the train-
ing subjects may not be able to be collected from certain
cameras. This renders existing approaches inapplicable, s-
ince the person labels are not available. Apart from this
reason, significant inter-camera variations as exemplified
in Fig. 1 would also lead to dramatic performance deteri-
oration, when the distance model learnt from other camera
set with label information is directly applied to the cameras
missing person labels.

These setbacks pose a need for a new method to han-
dle the afore-described person re-identification issue in the
large-scale camera network setting.

1.2. Problem Definition

Motivated by domain transfer learning approach
(see [25] for a review), we consider data from the camer-
a set with label information as the source domain; while
data from camera set missing label information as the tar-



(a) PRID (b) VIPeR

Figure 1. Comparison between person images from different
datasets (better viewed in color): matched image pairs in (a) PRID
[16] dataset and (b) VIPeR [14] dataset. There are three major dif-
ferences between these two image sets: 1) different backgrounds;
2) smaller viewpoint changes in PRID than that in VIPeR; 3) dif-
ferent illumination conditions.

get domain. Here, we denote the source and target do-
mains as s and t, respectively. Due to non-trivial inter-
camera variations as indicated in Fig. 1, the source and
target joint distributions of the positive or negative tag y
and feature vector z for an image pair are supposed to be
different, i.e. Prs(y, z) 6= Prt(y, z). In order to over-
come the mismatch problem of the marginal distributions,
a mapping Φ, s.t. Prs(Φ(z)) ≈ Prt(Φ(z)), can be learn-
t via domain adaptation techniques [13] [24]. In gener-
al, existing domain adaptation schemes assume that, af-
ter projection, such Φ also satisfies the equal conditional
probability condition, i.e. Prs(y|Φ(z)) ≈ Prt(y|Φ(z)). S-
ince the conditional probability Prs(y|Φ(z)) or Prt(y|Φ(z))
can be interpreted as classification score, the condition that
Prs(y|Φ(z)) ≈ Prt(y|Φ(z)) implies an equivalence of the
distance models in source and target domains. In this case,
existing person re-identification algorithms, e.g. [1] [15]
[17] [26] [30], can be employed to learn the distance model
in the source domain (consisting of projected data with pos-
itive and negative image pairs generated by the label infor-
mation), which can be applied to the target domain without
significant performance degradation.

However, it is almost impossible to verify the validity of
the assumption that Prs(y|Φ(z)) ≈ Prt(y|Φ(z)) in practice.
As a result, there is no way to guarantee that the distance
model learnt from the projected data in source domain is
equivalent to the target one. Thus, we propose to learn the
target distance model using data from both source and target
domains. In this context, multi-task learning (see [25] for
more details) can be employed to learn the distance model
for the target cameras by discovering the relationship be-
tween the tasks in source and target domains, but the task
in the target domain cannot be defined using existing per-
son re-identification methods directly, due to the absence of
label information under target cameras. Therefore, the key
problem is how to define the learning task in target domain
and incorporate the data from source domain for training.

1.3. Contributions

The contributions of this paper are two-folds.
• We develop a new method to train the target discrim-

inative model based on the negative image pairs generat-
ed from non-overlapping target cameras. Without positive
image pairs generated by the label information of person-
s, we propose to relax the discriminative constraint into a
necessary condition to it, which only relies on the mean of
positive pairs. Since source and target domains must be re-
lated, we estimate the positive mean in the target domain
by assuming that the difference between the positive and
negative means in the source domain is close to that in the
target domain. With the estimated mean of positive pairs in
the target domain, the target learning problem is defined by
maximizing the difference between the estimated mean and
the negative image pairs, similar to RankSVM [26].
• We propose a novel multi-task support vector ranking

method to rank the individuals for person re-identification.
Since the learning task in the target domain depends on
a necessary condition to the discriminative constraint, the
learnt classification model may not be discriminative e-
nough for classifying the detected persons in target cameras.
On the other hand, the performance may deteriorate due to
the estimation error of the positive mean. Therefore, we
propose to incorporate the data in the source domain to learn
the classification model for the target domain. Inspired by
multi-task SVM [10], we propose to learn the optimal mod-
els for the source and target tasks, simultaneously.

1.4. Organization of This Paper

The rest of this paper is organized as follows. We will
first give a brief review on existing person re-identification
methods. Section 3 will report the proposed Domain Trans-
fer Ranked Support Vector Machines (DTRSVM) method.
Experimental results and conclusion are given in Section 4
and Section 5, respectively.

2. Related Work on Person re-identification
In order to ensure that feature representation of the per-

son image is less sensitive to large inter-camera variations,
many existing methods focus on extracting robust features.
Popular ones include SIFT [2] [19], texture [3] [4] [5] [6]
[11], color distribution [21] [23], space-time methods [12]
[18] and pictorial structures [8].

Besides feature extraction, discriminative distance learn-
ing methods are proposed to further improve the re-
identificaiton performance. In [26], person re-identification
was formulated as a ranking problem and the RankSVM
model is learnt by assigning higher confidence to the pos-
itive image pairs and vice versa. Denote xj as the feature
vector for person j, x+ji for i = 1, · · · , n+j as feature vec-
tors of its matched observations, and x−ji for i = 1, · · · , n−j
as feature vectors of its unmatched observations, where n+j
(n−j ) is the number of the matched (unmatched) observa-
tions. And, the absolute difference vector for the positive



(resp. negative) image pair of xj and x+
ji (resp. x−ji) is cal-

culated by z+ji = d(xj − x+ji) (resp. z−ji = d(xj − x−ji)),
where d is an entry-wise function of absolute values, i.e.
d(x) = (|x(1)|, · · · , |x(R)|)T , x(r) is the r-th element of
the input vector x and R is the dimension of x. The weight
vector w in RankSVM is obtained by solving the following
optimization problem,

min
w,ξ

1

2
‖w‖2 + C

∑
j,i+,i−

ξji+i−

s.t. wT (z+ji+ − z−ji−) ≥ 1− ξji+i− ,
ξji+i− ≥ 0, j = 1, · · · , J,
i+ = 1, · · · , n+j , i− = 1, · · · , n−j

(1)

where ξji+i− is the slack variable, C is a positive param-
eter, and J is the number of detected persons. Similar
to RankSVM, Zheng et al. [30] proposed a Relative Dis-
tance Comparison (RDC) method using a second-order dis-
tance learning model. This method is able to exploit higher-
order correlations among different features, compared with
RankSVM. In order to solve the computational complexity
issues in RankSVM and RDC, a Relaxed Pairwise Metric
Learning (RPML) method [17] was proposed by relaxing
the original hard constraints, which leads to a simpler prob-
lem that can be solved much more efficiently.

Besides the supervised distance learning methods [17]
[26] [30], Kuo et al. [20] proposed an on-line learnt ap-
pearance affinity model to decrease the required number
of labeled samples under some specific assumptions. On
the other hand, an adaptive feature weighting method was
proposed in [22] under the observation that the universal
model may not be good for all individuals. Different from
traditional per-individual identification scheme, Zheng et
al. [29] addressed a watch list (set) based verification prob-
lem and proposed to transfer the information from non-
target person data to mine the discriminative information
for the target people in the watch list.

3. Domain Transfer Support Vector Ranking
As indicated in [30], the absolute difference space shows

some advantages over the common difference space, so we
follow [30] to use the absolute difference vector as the fea-
ture representation method for both positive and negative
image pairs. Similar to the symbol definition as presented
in Section 2, denote zs+jsi and zs−jsi as the difference vectors
of positive and negative image pairs in the source domain,
respectively. For the target domain, the label information
of persons is not available, so positive image pairs cannot
be generated. However, negative image pairs can be easi-
ly generated, because same person cannot be presented at
the same instant under different non-overlapping cameras.
Denote the difference vectors for the negative image pairs

as zt−jti. With zs+jsi and zs−jsi in the source domain and zt−jti in
the target domain, we first propose a new method to learn
the target distance model in Section 3.1. Then, a multi-task
support vector ranking method is presented in Section 3.2.

3.1. Leaning without Positive Image Pairs in Target
Cameras

Since feature entries give different importance in identi-
fying a person, we follow [26] to use the weighted summa-
tion of the absolute difference vector to calculate the con-
fident score for the image pairs in the target domain, i.e.
wTt zt−jti, where wTt denotes the transposition of the weight
vector. If positive image pairs are available, the scores of
positive image pairs must be larger than those of the nega-
tive ones for a discriminative weight vector wt, i.e.

wTt zt+jti > wTt zt−j′ti′ ,∀jt, i, j
′
t, i
′ (2)

However, positive image pairs are not available in the target
domain, so we cannot obtain the absolute difference vec-
tors zt+jti in practice. One way to solve this problem is to
determine the weight vector wt by assigning smaller values
to the difference vectors zt−jti of negative image pairs using
one-class SVM [27]. Nevertheless, it is possible that the
scores of positive image pairs also decrease when minimiz-
ing those of the negative ones. Thus, it cannot be guaranteed
that the learnt weight vector wt satisfies the discriminative
constraint (2). In order to deal with this problem, we pro-
pose to learn the weight vector wt by a necessary condition
to constraint (2).

Taking the summation of constraint (2) over the differ-
ence vectors zt+jti of positive image pairs for all jt and i, it
has

wTt mt+ > wTt zt−j′ti′ ,∀j
′
t, i
′ (3)

where mt+ denote the mean of positive image pairs in the
target domain. Therefore, a necessary condition to con-
straint (2) is given by equation (3) such that the score of
the positive mean is larger than those of the negative image
pairs.

Denote the mean calculated by the difference vectors of
all the image pairs in the target domain as mt and the mean
of negative image pairs estimated by the available data zt−jti
of unmatched pairs as m̃t−. Then, the mean of positive im-
age pairs can be estimated by the following equation,

m̃t+ = (Ntmt −Nt−m̃t−)/Nt+ (4)

where Nt, Nt+ and Nt− denote the number of the overall,
positive and negative image pairs, respectively. However,
Nt+ and Nt− are difficult to be computed, if target positive
samples are not available. On the other hand, the estima-
tion error for the positive mean with equation (4) can be



very large, since the number of negative pairs is much larg-
er than that of positive pairs, i.e. Nt− � Nt+. Denote
the genuine means of the positive and negative image pairs
as mt+ and mt−, respectively. The estimation error for the
positive mean with equation (4) is given by the following
equation,

‖mt+ − m̃t+‖ =
Nt−
Nt+
‖mt− − m̃t−‖ (5)

Since Nt− � Nt+, the division value of Nt−/Nt+ is very
large. Therefore, according to equation (5), the estimation
error for the positive mean is very large, even though the
error for the negative mean is small.

In order to solve this problem, we propose to incorporate
the data with label information of persons in the source do-
main. With the label information, the true means of positive
and negative image pairs in the source domain can be cal-
culated and denoted as ms+ and ms−, respectively. Since
the source and target domains are related, the positive and
negative distributions in the source domain must be related
to those in the target domain. We suppose the relationship
can be modeled in a way that the difference between the
positive and negative means in the source domain is close
to that in the target domain, i.e.

mt+ −mt− ≈ ms+ −ms− (6)

With equation (6), the positive mean in the target domain
can be estimated by the following equation,

m̃t+ = m̃t− + ms+ −ms− (7)

And the upper bound of the estimation error is given by

‖mt+ − m̃t+‖ ≤ ‖mt− − m̃t−‖
+ ‖(mt+ −mt−)− (ms+ −ms−)‖

(8)

Since lots of negative image pairs can be obtained from the
non-overlapping target cameras, the estimated mean of neg-
ative pairs is close to the true one. Under the assumption
given by equation (6), the upper bound of the estimation
error for the positive mean in the target domain is small.
From the results in the experiment section, we can see that
the estimation error of the positive mean using equation (7)
is much smaller than that using equation (4).

With the estimated positive mean m̃t+ in the target do-
main and the necessary condition given by equation (3) to
the discriminative constraint, we define the learning task in
the target domain similar to the optimization problem (1) in
RankSVM [26] as the following equation,

min
wt

1

2
‖wt‖2 + C

∑
jt,i

ξjti

s.t. wTt (m̃t+ − zt−jti) ≥ 1− ξjti,
ξjti ≥ 0, jt = 1, · · · , Jt, i = 1, · · · , n−jt

(9)

where n−jt denotes the number of negative image pairs for
person jt and Jt is the number of detected persons in the
target domain.

3.2. Multi-Task Support Vector Ranking

Since equation (3) is not a sufficient condition to the dis-
criminative constraint (2), the weight vector wt learnt by the
derived optimization problem (9) may not be discriminative
enough for classifying the detected persons in target cam-
eras. On the other hand, the performance may deteriorate
by directly using the weight vector learnt from optimization
problem (9), since the assumption on the relation between
the source and target domains introduces the estimation er-
ror to some extent. Therefore, we employ the concept of
multi-task learning to incorporate the source domain data
with label information of persons for the determination of
the weight vector wt. Following multi-task SVM [10], the
weight vectors ws for the source domain and wt for the tar-
get domain are related in a way that they are closed to a
common model w0 and can be written as

ws = w0 + vs,wt = w0 + vt (10)

where vs and vt are vectors measuring the differences be-
tween the specific models and the common one. The learn-
ing task in the source domain is defined by employing the
learning problem (1) in RankSVM [26]. Combining the
source task similar to (1) and target task (9), all the vectors
w0, vs and vt can be estimated simultaneously by solving
the following optimization problem,

min
w0,vs,vt

1

2
‖w0‖2 +

µ

2
(‖vs‖2 + ‖vt‖2)

+ C(
∑

js,is+,is−

ξjtis+is− +
∑
jt,it

ξjtit)

s.t. (w0 + vs)T (zs+jsis+ − zs−jsis−) ≥ 1− ξjsis+is− ,
ξjsis+is− ≥ 0, js = 1, · · · , Js,
is+ = 1, · · · , n+js , is− = 1, · · · , n−js ,
(w0 + vt)T (m̃t+ − zt−jtit) ≥ 1− ξjtit ,
ξjtit ≥ 0, jt = 1, · · · , Jt, it = 1, · · · , n−jt

(11)

where n+js (n−js ) denotes the number of positive (negative)
image pairs for person js and Js is the number of detected
persons in the source domain. In optimization problem (11),
the positive regularization parameter µ controls the differ-
ence between the weight vector ws (wt) in the source (tar-
get) domain and the common model w0. Intuitively, for a
fixed value of C, if µ → ∞, vs and vt tend to zero, which
means that the source and target models become the same.
On the other hand, if µ → 0, vs and vt can be very large
compared with w0. In this case, the common model w0



takes little effect on the source and target models, which
implies that the source task and target task are unrelated.

Inspired by multi-task SVM [10], we solve the optimiza-
tion problem (11) by converting it to the standard RankSVM
formulation as in equation (1). Denote the column concate-
nation of w0,

√
µvs and

√
µvt as w, i.e.

w = (w0;
√
µvs;
√
µvt) (12)

On the other hand, we construct the feature map as

als = (zs+jsis+ − zs−jsis− ;
zs+jsis+ − zs−jsis−√

µ
; 0)

blt = (m̃t+ − zt−jtit ; 0;
m̃t+ − zt−jtit√

µ
)

(13)

where ls and lt denote the indexes of the feature vectors.
With equations (12) and (13), it has the following equations,

‖w‖2 = ‖w0‖2 + µ(‖vs‖2 + ‖vt‖2)

wT als = (w0 + vs)T (zs+jsis+ − zs−jsis−)

wT blt = (w0 + vt)T (m̃t+ − zt−jtit)

(14)

Therefore, the optimization problem (11) is rewritten as

min
w0,vs,vt

1

2
‖w‖2 + C(

∑
ls

ξls +
∑
lt

ξlt)

s.t. wT als ≥ 1− ξls , ξls ≥ 0, ls = 1, · · · , Ls,
wT blt ≥ 1− ξlt , ξlt ≥ 0, lt = 1, · · · , Lt

(15)

where Ls and Lt represent the number of inequality con-
straints in source and target domains, respectively.

In order to solve the optimization problem (15) more ef-
ficiently, we reformulate (15) by the square hinge loss as

min
w

1

2
‖w‖2 + C(

∑
ls

[max(0, 1− wT als)]2

+
∑
lt

[max(0, 1− wT blt)]
2)

(16)

Employing the primal Newton method based efficient algo-
rithm [7] to solve the optimization problem (16), the op-
timal combined weight vector w can be obtained. Then,
the target weight vector wt is calculated by equations (10)
and (12). At last, the algorithmic procedure for training
the proposed Domain Transfer Ranked Support Vector Ma-
chines (DTRSVM) model is presented in Algorithm 1.

4. Experiments
In this section, we first give an introduction to the

datasets and settings used for evaluation of the proposed
method. Then, the comparison results with state-of-the-art
methods are reported in Section 4.2.

Algorithm 1 Training DTRSVM

Input: Difference vectors zs+jsi and zs−jsi in source domain,
zt−jti in target domain, parameters C and µ;

1: Compute the means ms+ by zs+jsi, ms− by zs−jsi, and m̃t−

by zt−jti;
2: Estimate the relevant mean in the target domain m̃t+ by

equation (7);
3: Construct the feature map by equation (13);
4: Solve the optimization problem (16) by the efficient

method [7] and obtain the weight vector w;
5: Calculate the target domain weight vector wt by equa-

tions (10) and (12);
Output: Weight vector wt.

4.1. Datasets and Settings

Three datasets, namely VIPeR [14], PRID [16] and i-
LIDS [28], are used for evaluation of the proposed method.
VIPeR is a re-identification dataset containing 632 person
image pairs captured by two cameras outdoor. PRID dataset
consists of person images from two static surveillance cam-
eras. Total 385 persons were captured by camera A, while
749 persons captured by camera B. The first 200 persons ap-
peared in both cameras, and the remainders only appear in
one camera. In our experiments, the single-shot version is
used, in which at most one image of each person from each
camera is available. The i-LIDS Multiple-Camera Tracking
(MCT) dataset contains a number of video clips captured
by five cameras indoor. In re-identification application, to-
tal 476 person images from 119 persons are used for ex-
periments as in [30]. We follow the procedures as reported
in [15] [26] [30] to extract feature vectors for the detected
person images in these datasets.

In our experiments, we use VIPeR or PRID as the tar-
get domain. Without the time acquisition information in
the PRID and VIPeR datasets, negative image pairs from
non-overlapping cameras are generated by simulating the
synchronization using label information. Since the i-LIDS
dataset does not provide the camera information, negative
image pairs from non-overlapping cameras cannot be gen-
erated to simulate the real situation. Thus, we do not use
the i-LIDS dataset as the target domain. Fixing the target
domain dataset as VIPeR or PRID, one of the other two
datasets is used as the source domain to train the proposed
DTRSVM. Therefore, experiments of four transfer scenar-
ios with different source or target domain are performed. If
VIPeR is used as the the target dataset, 632 image pairs are
randomly separated into half for training and the other half
for testing. When PRID is used as the the target dataset,
100 out of the 200 image pairs are randomly selected as
the training set, and the others for testing set. For the test-
ing data in VIPeR or PRID, the evaluation is performed by



Estimated by (4) Estimated by (7)
i-LIDS to PRID 71.11 2.95
VIPeR to PRID 71.11 2.22

i-LIDS to VIPeR 1120.24 2.46
PRID to VIPeR 1120.24 2.18

Table 1. Estimation errors of the positive mean introduced by e-
quations (4) and (7)

searching the 316 or 100 persons of one camera view from
another view. Each experiment was repeated ten times and
the mean accuracy is reported.

Three state-of-the-art distance learning methods for per-
son re-identification, namely Rank Support Vector Ma-
chines (RankSVM) [26], Relative Distance Comparison
(RDC) [30], and Relaxed Pairwise Metric Learning (RPM-
L) [17], as well as two commonly used non-learning based
metrics namelyL1 andL2 norms are employed for the com-
parison with the proposed method. Following [30], one
positive and one negative image pair for each person in the
source dataset are used for training, while the training da-
ta in the target domain contains only one negative image
pair for each person. Since the label information of persons
is supposed to be not available in the target dataset, cross-
validation cannot be performed to select the best parame-
ters. Thus, we empirically set the parameters in existing
methods and the proposed DTRSVM. The PCA dimension
in RPML is set as 80. The parameter C in RankSVM and
the proposed method is set as 1, while µ in the proposed
DTRSVM is set as 1 as well.

4.2. Results

Estimation errors of the positive mean: We use L1 nor-
m to calculate the difference between the estimated mean
and the true one. The estimation errors using equations (4)
and (7) are recorded in Table 1. From Table 1, we can see
that the estimation error introduced by equation (4) does not
change with different source domains, since the estimated
mean using equation (4) is only based on the information
in the target domain. On the other hand, equation (7) gives
much smaller estimation errors. This convinces that the as-
sumption given by equation (6) is reasonable for person re-
identification.
Comparing with state-of-the-art re-identification meth-
ods: The CMC curves of the learning based and non-
learning based methods are shown in Fig. 2. We also plot
the CMC curves of the learning based methods training with
the label information in the target domain as the baseline of
the upper bound performance. From Fig. 2, we can see that
all the learning based methods have a dramatic deterioration
of performance, when the classification model is trained
with the data in the source domain. On the other hand,
as shown in Fig. 2(a), when the source domain is i-LIDS

Method Source r=1 r=10 r=20 r=30

DTRSVM
i-LIDS 3.95 18.85 26.60 33.20
VIPeR 4.60 17.25 22.90 28.10

RankSVM [26]
i-LIDS 2.95 11.40 19.65 23.80
VIPeR 1.05 9.70 16.20 23.35

RDC [30]
i-LIDS 2.35 8.35 13.40 18.00
VIPeR 1.95 8.05 12.90 17.05

RPML [17]
i-LIDS 0.90 6.80 12.65 15.85
VIPeR 1.10 11.85 17.40 21.00

L1 — 3.65 14.25 17.90 23.15
L2 — 1.35 9.55 14.00 17.25

Table 2. Top r ranked matching accuracy (%) on PRID dataset

Method Source r=1 r=10 r=20 r=30

DTRSVM
i-LIDS 8.26 31.39 44.83 53.88
PRID 10.90 28.20 37.69 44.87

RankSVM [26]
i-LIDS 8.94 29.11 40.60 50.44
PRID 10.00 27.37 35.71 42.33

RDC [30]
i-LIDS 7.23 24.53 35.41 44.22
PRID 9.70 26.46 35.63 42.85

RPML [17]
i-LIDS 7.14 25.17 37.71 46.46
PRID 5.65 21.34 30.09 36.33

L1 — 8.86 23.80 33.84 41.55
L2 — 9.53 25.60 34.38 41.17

Table 3. Top r ranked matching accuracy (%) on VIPeR dataset

and the target domain is PRID, the proposed DTRSVM
achieves convincing performance closed to that of the up-
per bound using the label information in the target domain
for training. For the transfer scenario from VIPeR to PRID,
DTRSVM also clearly outperforms the other methods with-
out using the label information in the target domain as indi-
cated in Fig. 2(b). Although the performance of DTRSVM
for VIPeR as target domain is close to RankSVM, RDC, and
the non-learning based methods when using PRID as the
source domain, DTRSVM achieves obvious improvemen-
t when using i-LIDS as the source domain. This implies
that the selection of source data is one of the factors with
influence on the performance of the proposed DTRSVM.

In order to further compare the performance without la-
bel information of persons in the target domain, we summa-
rize the top r ranked matching accuracies (%) of different
methods and different source domains for PRID in Table 2
and VIPeR in Table 3. From these two tables, we can see
that the best rank one accuracies in these two datasets are
obtained by the proposed method using VIPeR for PRID
and PRID for VIPeR as source domain, while the DTRSVM
from i-LIDS improves the top 30 ranked accuracy by 9.40%
for PRID and 3.44% for VIPeR dataset. This convinces that
the unmatched image pairs generated from non-overlapping
cameras help to improve the re-identification performance,
when the label information is not available.



(a) i-LIDS to PRID (b) VIPeR to PRID

(c) i-LIDS to VIPeR (d) PRID to VIPeR

Figure 2. CMC curves of all the four source and target domain combinations (better viewed in color)

Performance influence of parameter µ: As mentioned in
Section 3.2, the regularization parameter µmeasures the de-
gree of relevance of the source and target domains. The
mean values from rank one to top 30 ranked accuracies with
different µ of 10−2, · · · , 102 are presented in Fig. 3(a) for
PRID and Fig. 3(b) for VIPeR dataset. As shown in these
two figures, the best performance is achieved by different
values of µ under different transfer learning scenarios. This
implies that the degree of relevance differs with different
source or target domain. Therefore, if the degree of rel-
evance between source and target domains can be discov-
ered, the parameter µ in the proposed method can be de-
termined more accurately to further improve the proposed
re-identification performance.

5. Conclusions

In this paper, we propose a novel Domain Transfer
Ranked Support Vector Machines (DTRSVM) method to
deal with the problem that label information of persons is
not available under target cameras. Without positive im-
age pairs generated by the label information, the learning

task in the target domain is defined by a necessary condi-
tion to the discriminative constraint, which only relies on
the mean of positive pairs. In order to estimate the positive
mean in the target domain, we assume that the difference
between the positive and negative means in source domain
is close to the one in the target domain. After defining the
learning problem in the target domain, a multi-task support
vector ranking method is developed to incorporate the data
in source domain with label information to train the classi-
fication model for the target domain.

Experimental results show that the estimation error of the
positive mean is small, which indicates that the proposed as-
sumption is suitable in person re-identification applications.
Comparing state-of-the-art discriminative learning methods
using the source and target domain data for training, respec-
tively, it is shown that the performance deteriorates dramat-
ically when using the learnt model trained on source do-
main to target domain. With the help of the negative image
pairs generated from non-overlapping target cameras, the
proposed DTRSVM outperforms existing methods without
using the label information in the target domain for training.
Since the experiments also indicate that different source do-



(a) Results on PRID

(b) Results on VIPeR

Figure 3. Mean accuracy with different values of parameter µ in
the DTRSVM

mains have an effect on the performance of the proposed
DTRSVM, we will further investigate how to select or com-
bine different source domains to train the DTRSVM in the
future.
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