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Abstract

This paper addresses the independent assumption issue

in fusion process. In the last decade, dependency modeling

techniques were developed under a specific distribution of

classifiers. This paper proposes a new framework to mod-

el the dependency between features without any assumption

on feature/classifier distribution. In this paper, we prove

that feature dependency can be modeled by a linear com-

bination of the posterior probabilities under some mild as-

sumptions. Based on the linear combination property, two

methods, namely Linear Classifier Dependency Modeling

(LCDM) and Linear Feature Dependency Modeling (LFD-

M), are derived and developed for dependency modeling

in classifier level and feature level, respectively. The op-

timal models for LCDM and LFDM are learned by maxi-

mizing the margin between the genuine and imposter pos-

terior probabilities. Both synthetic data and real datasets

are used for experiments. Experimental results show that

LFDM outperforms all existing combination methods.

1. Introduction

Many computer vision and pattern recognition applica-

tions face the challenges of complex scenes with clustered

backgrounds, small inter-class variations and large intra-

class variations. To solve this problem, many algorithms

have been developed to extract local or global discrimina-

tive features e.g. SIFT [14], HOG [5], Laplacianfaces [10].

Instead of extracting a high discriminative feature, fusion

has been proposed and the results are encouraging. One

popular approach to make use of all features is to train a

classifier for each of them, and then combine the classifi-

cation scores to draw a conclusion. While many classifi-

er combination techniques [11, 12, 16] have been studied

and developed in the last decade, it is a general assump-

tion that classification scores are conditionally independent

distributed [12, 16]. With this assumption, the joint prob-

ability of all the scores can be expressed as the product of

the marginal probability. the conditionally independent as-

sumption could simplify the problem, but may not be valid

in many practically applications.

In [17, 20], instead of taking the advantage of condition-

ally independent assumption, the classifier fusion methods

are proposed by estimating the joint probability distribu-

tion of multiple classifiers and performance is improved.

However, when the number of classifiers is very large, it

needs numerous data to accurately estimate the joint dis-

tribution estimation [24]. On the other hand, Terrades et

al. [25] proposed to combine classifiers in a non-Bayesian

framework by linear combination. Under dependent normal

assumption (DN), they formulated the classifier combina-

tion problem into a constraint quadratic optimization prob-

lem. Nevertheless, the objective function in DN method

cannot be solved analytically, so the solution may not be

optimal. Moreover, when the number of classifiers is large,

DN method is very computationally expensive. Apart from

these methods, classifier ensemble methods [22] can im-

plicitly model dependency as well. Most of the classifier

ensemble methods aim at determining the correct weight-

ing for linear classifier combination to improve the classi-

fication performance, e.g. LPBoost [6] and its muticlass

generation [8].

All the above-mentioned methods perform the fusion

based on classifier scores and implicitly assume that the

feature dependency can be reflected by the classifier de-

pendency. So feature level dependence modeling should be

performed directly. The key problem is that the dimension

of feature is normally large and it is very hard to estimate

the joint probability distribution. Multiple Kernel Learn-

ing (MKL) [2] can be considered as a feature level fusion

method and finds the optimal combination of features. To

solve the complexity problem, a fast method [21] is pro-

posed. However, the MKL methods do not consider the

feature dependency explicitly as well.

In this paper, we develop a novel framework for depen-

dency modeling, and propose two methods, namely Linear

Classifier Dependency Modeling (LCDM) and Linear Fea-

ture Dependency Modeling (LFDM), at classifier level and

feature level respectively. Inspired by the Bayesian model



with independent assumption, we prove that linear combi-

nation of the posterior probabilities of each classifier can

model the dependency under mild assumptions, which is

LCDM. It is believed that dependency in feature level is

more effective than that in classifier, so we generalize LCD-

M to feature level and propose LFDM. Finally, the optimal

models for LCDM and LFDM are obtained by solving a s-

tandard linear programming problem, which maximizes the

margins between the genuine and imposter posterior proba-

bility. The contributions of this paper is two-fold.

• We prove that feature dependency can be modeled by

a linear combination of the posterior probabilities of each

feature/classifier under mild assumptions. This conclusion

is obtained by adding small dependency terms to the naive

Bayesian probability, expanding the product probability and

neglecting the terms of order two and higher.

• We propose two novel LCDM and LFDM algorithm-

s for modeling the dependency in classifier level and fea-

ture level, respectively. LCDM is developed based on lin-

ear classifier combination property, and LFDM is derived

by generalizing LCDM to feature level. The optimization

problems of LCDM and LFDM are formulated as a stan-

dard linear programming problem, which therefore, has an

analytical solution. Moreover, LCDM and LFDM are de-

rived without any assumption on classifier and feature dis-

tribution.

This paper is organized as follows. We will first give

a review on the classifier combination model under inde-

pendent assumption in Section 2. Section 3 will report our

proposed method. Experimental results and conclusion are

given in Sections 4 and 5 respectively.

2. Review of Classifier Combination Model un-

der Independent Assumption

In [12], a theoretical framework was developed for com-

bining classifiers. According to Bayesian theory, under the

assumption that classifier scores are distributed indepen-

dently, the posteriori probability is given by [12]

Pr(ωl|~x1, · · · , ~xM ) =
Pr(ωl)

∏M
m=1 Pr(~xm|ωl)

Pr(~x1, · · · , ~xM )

=
P0

Pr(ωl)M−1

M∏

m=1

Pr(ωl|~xm)

(1)

where P0 =
∏M

m=1
Pr(~xm)

Pr(~x1,··· ,~xM ) . Product rule was then derived

by (1). Moreover, taking additional assumption that poste-

riori probability of each classifier will not deviate dramati-

cally from the prior probability, i.e.

Pr(ωl|~xm) = Pr(ωl)(1 + δlm) (2)

where δlm is a small term, Sum rule was induced [12]. Based

on Product rule and Sum rule, Kittler et al. [12] justified

that the commonly used classifier combination rules, i.e.

Max, Min, Median and Majority Vote, can be derived. It

was shown that Sum rule outperforms other classifier com-

bination schemes in their experiments.

3. Linear Dependency Modeling

With conditionally independent assumption, the posteri-

ori probability can be computed as in (1). However, as the

discussed in Section 1, this assumption may not be true in

many practical applications. Thus, in this paper, we remove

this independent assumption and study dependent cases. In

this section, we propose a new linear dependency modeling

method to model the dependency. We first derive the model

in classifier level and then proceed to feature level. Finally,

we present a learning method to learn the optimal model.

3.1. Linear Dependency Modeling in Classifier Lev­
el

Let us consider the case that there exists m′, s.t.

Pr(ωl|~xm′) = 0 and Pr(ωl|~xm) = 1 for 1 ≤ m ≤ M ,

m 6= m′. In this case, there are M − 1 classifiers giving

strong confidences on assigning the class label as ωl, and

one classifier concludes other label. When M ≫ 1, we

can ignore the m′ classifier giving Pr(ωl|~xm′) = 0, and

the posterior probability Pr(ωl|~x1, · · · , ~xM ) is expected to

be large. However, with conditionally independent assump-

tion, from (1), the posterior probability by all classifiers be-

comes zeros. This means, in this case, the posterior prob-

ability only depends on one single classifier which satisfies

Pr(ωl|~xm′) = 0 and the other classifiers will not have any

contribution on it.

In order to avoid the posterior probability to be zero

and dominated only by one classifier, we add a term to

Pr(ωl|~xm′). This action also affect the posterior probability

of some classifiers. So, for all classifiers, we add a term to

model the dependency between them. Moreover, the clas-

sifier scores with dependency terms cannot deviate much

from the original scores. Otherwise the original decision by

each single classifier will take little effect on the final deci-

sion. Therefore, the values of the dependency terms must

be small. In addition, it is believed that δlm, m = 1, · · · ,M
from (2) should be small values [12]. Suppose small de-

pendency terms are defined by αl
mPr(ωl)δ

l
m, where αl

m are

the weights to model the dependency between classifier-

s. αl
m = 0 means that classifier m is independent with

the other classifiers. And αl
m 6= 0 suggests that classifier

m is dependent with the other classifiers except those with

αl
m′ = 0. Moreover, we restrict that |αl

m| ≤ 1, so that

|αl
mPr(ωl)δ

l
m| ≤ |Pr(ωl)δ

l
m|. By adding αl

mPr(ωl)δ
l
m to



Pr(ωl|~xm) in (1), the posterior probability becomes

Pr(ωl|~x1, · · · , ~xM )

=
P0

Pr(ωl)M−1

M∏

m=1

(Pr(ωl|~xm) + αl
mPr(ωl)δ

l
m)

(3)

With (2) and (3), we get

Pr(ωl|~x1, · · · , ~xM ) = P0 ∗ Pr(ωl)
M∏

m=1

(1 + βl
mδlm) (4)

where βl
m = αl

m+1, 0 ≤ βl
m ≤ 2. If we expand the product

term in the right hand side of (4) and neglect the terms of

second and higher orders, the posterior probability becomes

Pr(ωl|~x1, · · · , ~xM ) = P0 ∗ Pr(ωl)(1 +
M∑

m=1

βl
mδlm) (5)

Substituting δlm by (2) into (5), we obtain

Pr(ωl|~x1, · · · , ~xM )

= P0 ∗ (
M∑

m=1

βl
mPr(ωl|~xm) + Pr(ωl)(1−

M∑

m=1

βl
m))

(6)

At last, the summation of weights
∑M

m=1 β
l
m should be

normalized respect to class label l, so we set
∑M

m=1 β
l
m to

be a constant related to l. When the independent assumption

holds, βl
m = 1 for all m, which results in

∑M
m=1 β

l
m = M .

In turn, the Linear Classifier Dependency Model (LCD-

M) is derived in (6) with the constraints 0 ≤ βl
m ≤ 2,∑M

m=1 β
l
m = M .

3.2. Linear Dependency Modeling in Feature Level

Given the feature vectors ~x1, · · · , ~xM , where ~xm =
(xm1, · · · , xmNm

), Pr(ωl|~xm) can be computed by the joint

probability Pr(xm1, · · · , xmNm
|ωl). Since ~xm are normal-

ly high dimensional vectors, it needs numerous samples to

estimate the joint probability accurately [24]. In general,

the probability is hard to determine accurately.

In classifier combination methods [12, 25], the posteri-

or probabilities Pr(ωl|~xm) are viewed as scores calculated

from certain classifiers, such as support vector machines

(SVM). The scores can be positive or negative. However,

probability distributions, Pr(ωl|~xm) cannot be negative, so

classification scores may not be the best way to infer the

probabilities Pr(ωl|~xm). On the other hand, classifiers are

trained individually for a single feature and optimal clas-

sifiers can be obtained under certain criteria. There is no

guarantee that they are optimal after fusion.

Let us consider the posterior probability by all classifiers

Pr(ωl|~x1, · · · , ~xM ). Given the feature vectors ~x1, · · · , ~xM ,

it can be rewritten as

Pr(ωl|~x1, · · · , ~xM )

= Pr(ωl|x11, · · · , x1N1
, · · · , xM1, · · · , xMNM

)
(7)

With this representation (7), each element in feature vec-

tor can be viewed as a single classifier. Similar to the analy-

sis in Section 3.1, the dependency term for each xmn can be

written as αl
mnPr(ωl)δ

l
mn, where αl

mn satisfies |αl
mn| ≤ 1,

and the posterior probability analogous to (3) is given by

Pr(ωl|x11, · · · , x1N1
, · · · , xM1, · · · , xMNM

)

=
P ′
0

Pr(ωl)M−1

M∏

m=1

Nm∏

n=1

(Pr(ωl|xmn) + αl
mnPr(ωl)δ

l
mn)

(8)

where P ′
0 =

∏M
m=1

∏Nm
n=1

Pr(xmn)

Pr(~x1,··· ,~xM ) . Following the same

derivation procedures from (3) to (6) in Section 3.1, the pos-

terior probability with dependency modeling in feature level

can be written as

Pr(ωl|x11, · · · , x1N1
, · · · , xM1, · · · , xMNM

)

= P ′
0 ∗ (

M∑

m=1

Nm∑

n=1

γl
mnPr(ωl|xmn) + Pr(ωl)(1−K))

(9)

where K =
∑M

m=1 Nm, and γl
mn = αl

mn + 1 satisfies

0 ≤ γl
mn ≤ 2. This gives the Linear Feature Dependency

Model (LFDM).

Comparing with LCDM, the advantages of LFDM are

three-fold. First, (6) relies on classifier computation. It

needs efforts to choose the best classifiers. Second, depen-

dency modeling in feature level provides more information

than that in classifier level. This is because classification

scores are inferred from features while the inverse may not

be feasible. Third, since Pr(ωl|xmn) is one dimensional

distribution, much less samples are required to estimate the

density accurately [24].

3.3. Learning Optimal Linear Dependency Model

The optimal LCDM and LFDM can be learned by dif-

ferent criteria to optimize the classification performance. In

this section, we consider the marginal criterion, and give de-

tailed derivations on how to learn the optimal LFDM. Sim-

ilar derivations can be applied to LCDM.

Let the training samples and the corresponding labels be

denoted by ~xj = (xj
11, · · · , x

j
1N1

, · · · , xj
M1, · · · , x

j
MNM

)
and yj , j = 1, · · · , J , respectively. If all the

training samples are correctly classified, Pr(yj |x
j) >

maxωl 6=yj
Pr(ωl|x

j). Under this condition, the difference

between the genuine and imposter probabilities Pr(yj |x
j)−

maxωl 6=yj
Pr(ωl|x

j) is large. In turn, the performance will

be good. Considering the marginal criterion, and inspired



by LPBoost [6] and its multiclass generalization [8], the ob-

jective function to learn the best model is defined as

min
γ,a,ξ

− a+
1

νJ

J∑

j=1

∑

ωl 6=yj

ξlj

s.t. i) Pr(yj |x
j)− Pr(ωl|x

j) ≥ a− ξlj , ∀j, ωl 6= yj

ii) Pr(ωl|x
j) ≥ 0, ∀j, ωl, iii) ξlj ≥ 0, ∀j, ωl

(10)

where ν is a constant parameter, ν ∈ (0, 1). Let us de-

note Pr(ωl|x
j
mn) in (9) as pj,lmn. Substituting (9) into (10)

and ignoring P ′
0 as a constant respective to class label, the

optimization problem (10) becomes

min
γ,a,ξ

− a+
1

νJ

J∑

j=1

∑

ωl 6=yj

ξlj

s.t. i)
M∑

m=1

Nm∑

n=1

γyj
mnp

j,yj
mn

−
M∑

m=1

Nm∑

n=1

γl
mnp

j,l
mn ≥ a− ξlj , ∀j, ωl 6= yj

ii)
M∑

m=1

Nm∑

n=1

γl
mnp

j,l
mn ≥

K − 1

L
, ∀j, ωl, iii) ξlj ≥ 0

(11)

where L is the number of classes.

Optimization problem (11) is theoretically sound and

purely derived from (10) mathematically. However, in prac-

tice, there may not be any feasible solution to (11). If there

exists j0 and l0 such that pj0,l0mn < 1
L
− 1

KL
, ∀m,n, then

it has
∑M

m=1

∑Nm

n=1 γ
l
mnp

j0,l0
mn < K−1

L
. This means, the

inequality in constraint ii) cannot be satisfied for j0 and

l0, so there is no feasible solution to the optimization prob-

lem (11). Thus, to make sure that feasible solutions exist,

we drop the constraint ii) in (11).

Adding the normalization and range constraints to γl
mn

as mentioned in Section 3.2, the final optimization problem

becomes

min
γ,a,ξ

− a+
1

νJ

J∑

j=1

∑

ωl 6=yj

ξlj

s.t. i)
M∑

m=1

Nm∑

n=1

γyj
mnp

j,yj
mn

−
M∑

m=1

Nm∑

n=1

γl
mnp

j,l
mn ≥ a− ξlj , ∀j, ωl 6= yj

ii) ξlj ≥ 0, ∀j, ωl, iii)
M∑

m=1

Nm∑

n=1

γl
mn = K, ∀l

iv) 0 ≤ γl
mn ≤ 2, ∀l,m, n

(12)

The optimal LFDM is learned by (12). Similarly, the op-

timal LCDM can be obtained by applying (6) into (10), and

follow the same derivation procedures from (10) to (12).

The optimization problems for LCDM and LFDM are s-

tandard linear programming problems. Thus, the solution

can be determined by any off the shelf techniques, e.g. [15].

Since our experiments are performed in the Matlab environ-

ment, a Matlab build-in function is employed.

3.4. Remarks

1. LFDM gives the optimal feature combination by model-

ing dependency between features, so LFDM is an optimal

feature-level combination method.

2. LCDM gives the optimal classifier combination by mod-

eling dependency between classifiers, so LCDM is an op-

timal classifier-level fusion method.

3. Considering the probabilities pj,lmn in (12) as classification

scores, the derived formulation (12) looks like the objec-

tive function of LP-B in [8]. Though the goal and the

starting points of this paper are different from boosting

methods, we come up with a similar optimization prob-

lem with different constraints (0 ≤ γl
mn ≤ 2). Boosting

methods aim at finding the optimal combination of clas-

sifiers, while our objective is to model the feature depen-

dency. Without the constraint 0 ≤ γl
mn ≤ 2, when the

number of classifiers is large (for LCDM) or the fusion is

performed in feature level (for LFDM), γl
mn can increase

to a large value. This makes the derivation from (4) to (5)

be invalid. Thus, the constraint 0 ≤ γl
mn ≤ 2 is very

important for dependency modeling.

4. Experimental Results

In this section, we evaluate the two proposed methods,

namely Linear Classifier Dependency Modeling (LCDM)

and Linear Feature Dependency Modeling (LFDM), with

synthetic data as well as three real image/video databas-

es. The real image/video databases are Oxford Flower-

s [18], Weizmann [9], and KTH [23]. First, we briefly in-

troduce the databases and the experiment settings. Then,

we compare the proposed LCDM with state-of-art classifier

combination methods with synthetic data and the Flower-

s database in Sections 4.2 and 4.3 respectively. Finally, we

compare LFDM with feature-level combination methods on

Weizmann and KTH action databases in Section 4.4.

4.1. Database and Experiment Setting

Synthetic data: Similar to [1, 25], four types of clas-

sifier distributions, namely Independent Normal (IndNor-

mal), Dependent Normal (DepNormal), Independent Non-

Normal (IndNonNor), Dependent Normal (DepNonNor)

are used to evaluate LCDM and other classifier combination

methods. For each distribution, 2000 samples (500 positive

and 500 negative for training and testing) of 40 dimension-



s which simulate 40 classifiers are randomly generated by

Matlab built-in function. In order to avoid the possibility

that the results could be influenced by the random number

generation, we run the experiments 200 times. For multi-

class methods, LP-B and the proposed LCDM method, we

estimate the genuine and imposter posterior probabilities by

each classifier, i.e. Pr(+|sm) and Pr(−|sm), where sm rep-

resent the scores, as in [3].

Oxford Flower Database: This database contains 17 dif-

ferent types of flowers with 80 images per category [18].

Some example images are shown in Fig. 1 (a). Seven dif-

ferent types of features including shape, color, texture, HSV,

HoG, SIFT internal, and SIFT boundary, are extracted using

the method reported in [18, 19]. Distance matrices of these

features and three predefined splits of the database (17× 40
for training, 17 × 20 for validation, and 17 × 20 for test-

ing) are available on their website1. We follow the exper-

iment settings in [8]. 5-fold cross validation (CV) in the

training set is used to select the best classifier for each fea-

ture. The CV outputs are used to train the weights for clas-

sifier combination. The best parameter ν is selected from

{0.05, 0.1, . . . , 0.95} on the validation set with the Kernel

matrices exp (−λ−1d(x, x′)), where d is the distance and λ

is the mean of pairwise distances.

Weizmann database: Weizmann database contains 93

videos from 9 persons, each performing 10 actions [9]. Ex-

ample images from the videos are shown in Fig. 1 (b). S-

ince the size of the database is small, we use nine-fold CV

to evaluate the proposed method. In each validation, da-

ta from 8 persons are used to train classifiers and the best

combinations, as well as estimate the posterior probability

Pr(ωl|xmn) in LFDM by [3]. The average recognition rate

is recorded.

KTH database: There are 25 subjects performing 6 actions

under 4 scenarios [23] in KTH database. Example images

from the videos are shown in Fig. 1 (c). We follow the com-

mon setting [23] to separate the video set into training (8

persons), validation (8 persons), and testing (9 persons) set-

s. Each classifier and combining classifiers are trained using

the training set, and selected by the validation. The range of

ν is 0.1 to 0.9 with 0.1 incremental step. And the posterior

probability in LFDM is estimated on training and validation

sets by [3].

Classifiers: For classifier combination methods, we use the

Support Vector Machine (SVM) Toolbox provided by [4]

to train classifiers for each feature. The parameter intro-

duced in the soft margin SVM is selected from the range

C ∈ {0.01, 0.1, 1, 10, 100, 1000} for all the combination

methods.

1http://www.robots.ox.ac.uk/ vgg/data/flowers/17/index.html

Figure 1. (a) Example images from Flower database [18]. Images

from the same columns are from the same classes, (b) Example

images from videos representing all the 10 actions in Weizman-

n [9], (c) Example images from videos in KTH [23]. All 6 actions

and 4 scenarios are presented.

Feature Extraction: For Weizmann and KTH databases,

we adopt the bag-of-features approach and extract 8 types

of features for the videos. First, space-time interest points

are detected by [7] from each video. For each interest point,

8 local descriptors, namely 1) intensity, 2) intensity differ-

ence, 3) histograms of optical flow (HoF) without grid, 4)

histograms of gradient (HoG) without grid, 5) HoF with 2D

grid, 6) HoG with 2D grid, 7) HoF with 3D grid and 8)

HoG with 3D grid, are generated based on 9× 9× 5 cuboid

centered by the interest point. For the first descriptor, pix-

el intensities of the local cuboids are considered as feature

vectors, whose dimension is 9×9×5 = 405. For the second

descriptor, pixel intensities of the current spatial blocks in

the local cuboids are subtracted by those of the following s-

patial blocks over time. So the dimension is 9×9×4 = 324.

For the third and forth features, histogram features based on

gradient and optical flow orientation are computed on each

spatial blocks in local cuboids like [5], then HoGs and HoFs

are concatenated together over time dimension respectively

in the local cuboids. 8 orientations are used to compute

the histogram, so the dimension of these two features is

8 × 5 = 40. For the fifth and sixth features, in the spirit

to the SIFT descriptor [14], spatial blocks in local cuboids

over time are divided into 2 × 2 arrays, and histograms of



P
P
P

P
P
P
PP

Method

Test
Sum [12] LPBoost [6] LP-B [8] IN [25] DN [25] LCDM

IndNormal 4.66±0.71 3.19±0.48 2.49±0.48 2.33±0.40 2.44±0.42 2.34±0.46

DepNormal 13.56±1.16 4.71±0.85 6.83±1.30 7.48±0.98 4.36±0.89 6.12±0.93

IndNonNor 25.33±1.50 9.90±1.61 11.00±0.08 15.20±1.65 8.59±1.38 7.00±0.07

DepNonNor 36.67±0.89 31.05±1.30 30.63±1.90 34.54±0.92 30.16±1.35 27.86±1.52

Table 1. Mean error rate (%) and standard deviation on synthetic data.

8 orientations are computed on each sub-block individual-

ly. Thus, the dimension for them is 2 × 2 × 8 × 5 = 160.

The last two features proposed in [13] which is similar to

the previous two, divide the local cuboids into 2 × 2 × 2
3D arrays, so the dimension is 2 × 2 × 2 × 8 = 64. After

different kinds of features have been generated, we follow

the general bag-of-features representation [13] to form the

feature vectors for classifier combination and feature fusion.

Training data in Weizmann, and training and validation data

in KTH are used to construct the vocabulary. The number

of clusters for Weizmann and KTH databases is set as 100

and 600 respectively.

4.2. Results on Synthetic Data

Since it is impossible to know the intrinsic distribution-

s in practical applications, we have generated data with

different distributions to evaluate and compare the LCD-

M method with 5 existing classifier combination methods,

namely Sum rule [12], two rules derived under independent

and dependent normal (IN and DN) assumption [25], LP-

Boost [6], and LP-B [8].

Table 1 shows the mean error rates and standard devi-

ations of the six combination methods with different data

distributions. From Table 1, we can observe that the pro-

posed LCDM outperforms Sum rule and LP-B under all da-

ta distributions. On the other hand, IN and DN achieve the

best performance with independent and dependent normal

distribution respectively, while the performance of LCDM

is comparable with IN and DN. This is reasonable because

they are derived under these specific assumptions. For the

non-normal distribution, the proposed LCDM outperforms

all other methods.

4.3. Results on Oxford Flowers Database

This section evaluates classifier combination methods on

the real image Flower database. Table 2 shows the mean

accuracy and standard deviation for each feature in the left

column and for combination methods in the right column.

From Table 2, we can see that the proposed LCDM outper-

forms all existing methods. Moreover, the recognition ac-

curacies of the combination methods are much higher than

that of a single feature. For example, the Sum rule can have

the accuracy of 85.4%. This implies the classifiers are rela-

Single feature Classifier Combination

feature accuracy method accuracy

Color 61.1±1.8 Sum [12] 85.4±3.1

Shape 70.2±1.3 IN [25] 85.5±1.7

Texture 62.9±2.4 DN [25] 84.2±1.9

HSV 61.4±0.5 LPBoost [6] 82.7±0.8

HoG 58.9±4.1 LP-β [8] 85.5±3.0

SIFTint 70.4±1.4 LP-B [8] 85.5±2.4

SIFTbdy 59.4±3.4 LCDM 86.3±2.4

Table 2. Mean accuracy (%) and standard deviation on Oxford

Flowers database.
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Figure 2. Mean recognition rate of LPBoost, LP-B, and LCDM

with different parameters.

tively independent to each other, which is due to the reason

that the features are extract by different properties of the in-

stances, e.g. shape and color. While the features are not

very dependent in this case, it is impossible to obtain to-

tally independent features. Therefore, the proposed LCDM

can further improve the performance by modeling the de-

pendency between the classifiers.

In LPBoost, LP-B and the proposed LCDM, parameter ν

needs to be determined. We also evaluate the sensitivity of

these three methods on choosing parameters. The mean ac-

curacies with the best SVMs are shown in Fig. 2. It can be

seen that the proposed method is not sensitive to parameter-

s while LPBoost is very sensitive to choosing parameters.



This is another advantage of the proposed model.

4.4. Results on Action Databases

In this section, we evaluate and compare the proposed

LFDM for feature dependency modeling with other clas-

sifier combination methods and Multiple Kernel Learning

method, simpleMKL (simMKL) [21] on Weizmann and K-

TH Databases. The four classifier combination algorithms

are extended to feature level fusion, and denoted as Sum-F,

IN-F, LPBoost-F, and LP-B-F. Since DN requires to solve

a constraint quadratic problem numerically which has high

dimensionality problem in feature level, we do not extend

DN to feature level. In addition, it is important to point

out that the main objective of this experiment is to evaluate

the performance of different classifier level and feature lev-

el combination methods given a set of action features, but

not state-of-art human action recognition algorithms.

The accuracy of each method on two databases is pre-

sented in Table 3 and 4. The proposed LFDM obtains the

highest accuracy of 86.67% and 87.96% on Weizmann and

KTH databases respectively. These results convince that

LFDM can model the dependency in feature level very well.

And if dependency of features can be well modeled, the fu-

sion process performed in feature level may outperform that

in classifier level.

In another experiment, we evaluate the sensitivity of pa-

rameter ν in LP-B-F and the proposed LFDM. Fig. 3 shows

that the recognition accuracy of LP-B-F and the proposed

LFDM with different values of ν. It can be observed that

the proposed LFDM is insensitive to parameter ν.

We also perform additional experiments for verification

on KTH database with different feature-level combination

methods. The ROC curves are recorded and plotted in

Fig. 4. Same conclusion is drawn that the proposed LFDM

method outperforms all existing feature-level combination

methods. Finally, we would like to compare the perfor-

mance of the proposed LFDM and the classifier combina-

tion methods with different number of training data. From

Fig. 5, we can see that the recognition accuracy of the pro-

posed LFDM is higher than that of other classifier combi-

nation methods for different number of subjects selected as

the training set on KTH.

5. Conclusions

In this paper, we have designed and proposed a new

framework for dependency modeling between features by

linear combination for the tasks of recognition. Two meth-

ods, namely Linear Classifier Dependency Modeling (LCD-

M) and Linear Feature Dependency Modeling (LFDM) are

developed based on the proposed framework. LCDM and

LFDM are learned by solving the linear programming prob-

lems, which maximize the margins between the genuine and

imposter posterior probabilities. LCDM and LFDM are de-

Classifier Level Fusion Feature Level Fusion

method accuracy method accuracy

Sum [12] 57.78 Sum-F [12] 75.56

IN [25] 85.56 IN-F [25] 68.89

DN [25] 84.44 LPBoost-F [6] 24.44

LPBoost [6] 85.56 LP-B-F [8] 70.00

LP-B [8] 84.44 simMKL [21] 58.89

LCDM 85.56 LFDM 86.67

Table 3. Recognition accuracy (%) on Weizmann database.

Classifier Level Fusion Feature Level Fusion

method accuracy method accuracy

Sum [12] 84.72 Sum-F [12] 78.70

IN [25] 84.26 IN-F [25] 69.91

DN [25] 83.80 LPBoost-F [6] 24.54

LPBoost [6] 83.33 LP-B-F [8] 75.93

LP-B [8] 85.19 simMKL [21] 76.56

LCDM 85.19 LFDM 87.96

Table 4. Recognition accuracy (%) on KTH database.
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Figure 3. Recognition accuracy of LP-B-F and LFDM with differ-

ent ν.

signed for classifier and feature combination without any

assumption on the data distribution. Experimental results

demonstrate LFDM outperforms the existing classifier-level

and feature-level fusion methods. This also indicates that

feature-level fusion should be performed. We will further

study the fusion process along this direction in future.
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