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Abstract

Recent studies on out-of-distribution (OOD) detection focus
on designing models or scoring functions that can effectively
distinguish between unseen OOD data and in-distribution
(ID) data. In this paper, we propose a simple yet novel ap-
proach to OOD detection by leveraging the phenomenon
that the average of feature vector elements from convolu-
tional neural network (CNN) is typically larger for ID data
than for OOD data. Specifically, the average of feature vec-
tor elements is used as part of the scoring function to fur-
ther separate OOD data from ID data. We also provide
mathematical analysis to explain this phenomenon. Experi-
mental evaluations demonstrate that, when combined with a
strong baseline, our method can achieve state-of-the-art per-
formance on several OOD detection benchmarks. Further-
more, our method can be easily integrated into various CNN
architectures and requires less computation. Source code
address: https://github.com/SYSU-MIA-GROUP/statistical
discrepancy ood.

Introduction
Out-of-distribution (OOD) detection is a crucial task in the
field of machine learning, particularly in scenarios where
models are deployed in the real world. In such cases, it is
necessary to ensure that the model is able to recognize inputs
that are outside of the distribution on which it was trained,
as failure to do so could potentially lead to significant conse-
quences. For instance, in autonomous driving (Geiger, Lenz,
and Urtasun 2012), a model that is unable to detect OOD in-
puts may fail to recognize a new type of obstacle on the road,
leading to fatal accidents.

Various techniques have been developed to address OOD
detection, including uncertainty estimation methods (Lak-
shminarayanan, Pritzel, and Blundell 2017; Malinin and
Gales 2018, 2019; Nandy, Hsu, and Lee 2020), confidence-
based methods (DeVries and Taylor 2018; Hein, An-
driushchenko, and Bitterwolf 2019), and density estimation
methods (Jiang, Sun, and Yu 2021; Ren et al. 2019; Serrà
et al. 2020; Zisselman and Tamar 2020). For example, one
of the confidence-based methods called the maximum soft-
max probability (MSP) (Hendrycks and Gimpel 2017) can
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be used as a score for detecting OOD inputs. However, OOD
data often result in high prediction confidence. Density esti-
mation methods based on generative models can also suffer
from the same vulnerability to OOD inputs. Nalisnick (Nal-
isnick et al. 2019) found that using generative models to esti-
mate the data distribution can result in OOD inputs obtaining
higher density estimates than in-distribution data.

The vulnerabilities of existing out-of-distribution de-
tection methods have highlighted the importance for re-
searchers to capture more potential differences between
ID and OOD data from various aspects. To this end, Re-
Act (Sun, Guo, and Li 2021) proposed performing activation
pruning on feature vectors that are output from the penulti-
mate layer of CNN networks, which can reduce more acti-
vations for the OOD feature and increase the gap between
ID and OOD scoring value. LINe (Ahn, Park, and Kim
2023) was proposed to clip feature activation output from the
penultimate layer and consider the difference in the number
of activated units. Similar methods that perform rectification
on feature vectors include BATS (Zhu et al. 2022) and Rank-
Feat (Song, Sebe, and Wang 2022). ViM (Wang et al. 2022)
was proposed to combine multiple sources of information to
improve OOD detection performance. In particular, by dis-
carding some information from the feature vector and using
the discarded information to generate an extra logit, ViM can
capture differences between ID and OOD data from both the
feature space and the logit space. The aforementioned stud-
ies either enlarge the differences between ID and OOD data
by post-hoc operations or enhance the OOD detection per-
formance by fusing differences from multiple sources.

This paper further exploits potential difference in features
between ID and OOD data and introduces a novel approach
to OOD detection based on the discrepancy between the sta-
tistical information of feature vectors. Specifically, we ob-
serve that the average of feature vector elements from the
penultimate layer of a CNN classifier tends to be larger for
ID data than for OOD data. By combining the feature aver-
age information with certain existing strong OOD methods,
we propose a method that outperforms state-of-the-art ap-
proaches on multiple OOD detection benchmarks. The main
contributions are summarized below.

• We propose a simple and effective OOD detection
method by exploiting the statistical discrepancy between
in-distribution and out-of-distribution data. Our method



needs no extra training or auxiliary OOD data, and the
implementation is rather simple.

• Theoretical analysis was provided to help understand the
observed discrepancy between ID and OOD data.

• Extensive evaluations on the widely used benchmarks
(ImageNet and CIFAR) demonstrate the superior per-
formance of the proposed method over strong post-hoc
OOD detection baselines.

Preliminaries
We consider the setting of supervised classification task, de-
note by X = RM the input space with dimension M and
by Y = {1, 2, · · · , C} the label space. The training set
D = {(xi, yi)}ni=1 is drawn i.i.d. from the joint distribu-
tion Pin ×PY , where Pin and PY represent the marginal dis-
tribution of the ID training data and the label, respectively.
Let f ◦ h : X → Y denote a neural network trained on the
training set D for the classification task, where h denotes the
feature extractor which encodes input x ∈ X as the feature
vector h(x) ∈ Rd, where d represents the dimension of the
feature space, and f denotes the classifier head.

Out-of-Distribution Detection
Out-of-distribution (OOD) detection is the task of identify-
ing samples that do not come from the distribution of ID
data, which can be viewed as a binary classification prob-
lem. At test time, the goal of OOD detection is to decide
whether a test sample x ∈ X is from the distribution Pin or
from out-of-distribution Pout. The decision can be made via
a decision function

G(x) =

{
1 if x ∼ Pin

0 if x ∼ Pout
. (1)

The difficulty of OOD detection depends on the separation
between Pin and Pout.

Energy-Based OOD Detection
For a sample point (x, y), let fk ◦h(x) denote the kth output
of the last layer, and let E(x) denote the energy of x which
can be defined as (Grathwohl et al. 2020; Liu et al. 2020)

E(x) = − log

C∑
k=1

exp(fk ◦ h(x)) . (2)

Liu et al. (Liu et al. 2020) proposed to use the opposite of the
energy E(x) as a scoring function to detect OOD samples,
with a higher energy score indicating higher ID-ness of the
test example.

Method
In this section, we start by revealing an observation that the
element-mean of feature vector obtained from the penulti-
mate layer of CNN model is larger for ID than for OOD.
On the basis of this observation, we propose to combine
element-mean of feature vector with existing OOD score
(energy score) to further improve the separability between
ID and OOD data. Furthermore, we provide mathematical
analysis to explain why the discrepancy exists between ID
and OOD data.

Figure 1: Distributions of the element-mean of feature vec-
tor output from the penultimate layer for ID dataset (blue)
and each of the four OOD datasets (green). The model is
ResNet50 (He et al. 2016) pre-trained on the ID dataset Im-
ageNet1K (Deng et al. 2009).

Element-Mean Discrepancy
For classifiers trained on the ID dataset, there exist many
potential differences between ID and OOD data around the
output layer of the classifier, which has been partly explored
in recent studies (Song, Sebe, and Wang 2022; Sun and Li
2022; Wang et al. 2022). Here, we observed another sta-
tistical difference in the output of the penultimate layer of
CNN classifier between ID and OOD data, i.e., the average
of feature output elements (’element-mean’ in short) is often
different between ID and OOD data (Figure 1). Denote by
h(x) = (z1, z2, · · · , zd) the feature vector from the penul-
timate layer. The element-mean of feature vector is defined
as

Z(x) =
1

d

d∑
i=1

zi . (3)

As demonstrated in Figure 1, the element-mean of ID data’s
feature vector is statistically larger than that of each OOD
dataset (iNaturalist, SUN, Places, and Textures).

We leverage this element-mean discrepancy to further im-
prove OOD detection performance by combining element-
mean of feature vector with the existing energy score, re-
sulting in the new scoring function

D(x) = (1 + Z(x)) · log
C∑

k=1

exp(fk ◦ h(x)) . (4)

ID data are expected to result in a higher score D(x), while
OOD data would result in a lower score. The inclusion of the
element-mean discrepancy would enlarge the original dif-
ference in the energy score between ID and OOD data. The
multiplication rather than the addition operator is adopted to
fuse the element-mean discrepancy and energy score such
that additional coefficient can be avoided to adjust the dif-
ference in scale between the two terms.



Figure 2: Empirical distributions (at randomly selected di-
mension) of vi’s (first row) and zi’s (second row) on the
ID dataset ImageNet1K (first column) and the OOD dataset
iNaturalist (second column). Model is ResNet50 pre-trained
on ImageNet1K.

Theoretical Analysis
Here mathematical insight is provided to better understand
the discrepancy in element-mean of feature vector between
ID and OOD data. Without loss of generality, suppose the
ReLU activation function g(·) is part of the penultimate
layer of the classifier, and zi in Equation 3 is from the out-
put of the ReLU activation, i.e., zi = g(vi), where vi is the
corresponding input to ReLU for each zi. Figure 2 plots the
empirical distribution of vi’s on the ID dataset ImageNet1K
and the OOD dataset iNaturalist (first row) at a randomly
selected dimension. As we can see, on both ID and OOD
datasets, distributions of vi’s exhibit certain degrees of right
skewness, i.e., the right tail has a higher density than the
left tail. Such right-skewed distribution can be modeled as
epsilon-skew-norm (ESN) distribution (Mudholkar and Hut-
son 2000) which has the following probability density func-
tion

q(vi) =

{
1
σi
ϕ( vi−µi

σi(1+ϵi)
) if vi < µi

1
σi
ϕ( vi−µi

σi(1−ϵi)
) if vi ≥ µi

, (5)

where ϕ(·) represents the probability distribution function of
standard normal distribution, µi and σi denote the mode pa-
rameter and standard deviation parameter respectively, and
the hyper-parameter ϵi ∈ (−1, 1) controls the skewness.
q(vi) will become the well-known half-normal distribution
when ϵi → ±1, and will be reduced to the normal distri-
bution when ϵi = 0. In particular, positively skewed ESN
distribution has the property ϵi < 0.

Since zi is the ReLU activation output with the corre-
sponding vi as input, the distribution of each zi can be mod-
eled as a rectified ESN distribution (Mudholkar and Hutson
2000). The second row of Figure 2 plots the correspond-
ing empirical distribution of each zi, with each distribution
equivalent to the ReLU-rectified version of the correspond-
ing distribution of vi (first row).

For a rectified ESN distribution of zi which is derived
from ESN distribution of vi with mode µi, standard devia-
tion σi, and skewness ϵi, the expectation of zi is (Mudholkar
and Hutson 2000; Sun, Guo, and Li 2021)

E[zi] = µi − (1 + ϵi)Φ(
−µi

(1 + ϵi)σi
) · µi

+ (1 + ϵi)
2ϕ(

−µi

(1 + ϵi)σi
) · σi −

4ϵi√
2π

· σi ,
(6)

where Φ(·) denotes the cumulative distribution function of
the standard normal distribution. Considering that the ID
training set contains enough samples (e.g., around 1.28 mil-
lion images in ImageNet1K), the average of activation zi
over all training samples is an unbiased estimation of E[zi]
for ID dataset.

However, for each OOD dataset, the number of samples
is not large enough, and therefore the hyperparameters in
Equation 6 need to be estimated appropriately. For ESN dis-
tribution, ϵi with value closer to −1 indicates stronger right-
skewness of the distribution. Currently, there is no analyt-
ical method to calculate the value of ϵi. Here ϵi was set
to −0.4 by referring to the reference graph in the litera-
ture (Mudholkar and Hutson 2000). The ESN distribution
with ϵi = −0.4 exhibits stronger right-skewness than the
distributions in Figure 2 and therefore would give us an up-
per bound estimate of E[zi]. Given the estimated skewness
parameter ϵi, each standard deviation parameter σi can be
estimated by (Mudholkar and Hutson 2000)

σi =

√
π

(3π − 8)ϵ2i + π
· Var[vi] , (7)

where the empirical variance Var[vi] of the ReLU input vi
can be directly computed on all the real OOD data of a spe-
cific OOD set. Additionally, considering that zi is the out-
put of ReLU activation layer with vi as input, the sample
mode of vi can be directly used as the mode µi of zi. Con-
sequently, the expectation of each zi on any specific OOD
set can be roughly estimated with Equation 6 based on the
approximate estimate of the hyperparameters µi, ϵi and σi.
Table 2 summarizes the summation of expected zi over all
feature elements, which shows that the summation is clearly
larger for ID than for OOD data, supporting the obersation
of element-mean discrepancy.

In summary, our analysis suggests that the discrepancy
in element-mean of feature vector between ID and OOD
datasets can be attributed to the larger sum of activation
expectations in ID data. It is supported in Figure 2 that a
considerable portion of ID activations exceed the maximum
value of OOD activations.

Experiments
Experimental Setting
Dataset. Our method was extensively evaluated on three
OOD detection benchmarks, including the large-scale image
benchmark ImageNet1K and the small-scale image bench-
marks CIFAR. For the ImageNet1K benchmark, we use the
ImageNet1K (Deng et al. 2009) as ID set and use four



ID Dataset
Model Method

OOD Datasets
iNaturalist SUN Places Textures Average
F↓ A↑ F↓ A↑ F↓ A↑ F↓ A F↓ A↑

ImageNet1K
ResNet50

MSP 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41

Mahalanobis 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17

ViM 68.86 87.13 79.62 81.67 83.81 77.80 14.95 96.74 61.81 85.83
BATS 42.26 92.75 44.70 90.22 55.85 86.48 33.24 93.33 44.01 90.69
DICE 26.66 94.49 36.08 90.98 47.63 87.73 32.46 90.46 35.71 90.92
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95

FeatureNorm 22.01 95.76 42.93 90.21 56.80 84.99 20.07 95.39 35.45 91.59
DICE+ReAct 20.08 96.11 26.50 93.83 38.34 90.61 29.36 92.65 28.57 93.30

LINe 12.26 97.56 19.48 95.26 28.52 92.85 22.54 94.44 20.70 95.03
Ours 12.40 97.74 17.68 95.86 26.88 93.47 19.72 95.87 19.17 95.73

ImageNet1K
MobileNet

MSP 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 58.54 87.51 57.00 85.83 59.87 84.77 52.07 85.04 56.87 85.79

Mahalanobis 62.11 81.00 47.82 83.66 52.09 83.63 92.38 33.06 63.60 71.01
Energy 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91

ViM 91.83 77.47 94.34 70.24 93.97 68.26 37.62 92.65 79.44 77.15
BATS 49.57 91.50 57.81 85.96 64.48 82.83 39.77 91.17 52.91 87.87
DICE 43.28 90.79 38.86 90.41 53.48 85.67 33.14 91.26 42.19 89.53
ReAct 43.07 92.72 52.47 87.26 59.91 84.07 40.20 90.96 48.91 88.75

FeatureNorm 33.10 92.71 42.41 88.60 58.46 81.79 8.60 98.26 35.64 90.34
DICE+ReAct 41.75 89.84 39.07 90.39 54.41 84.03 19.98 95.86 38.80 90.03

LINe 24.95 95.53 33.19 92.94 47.95 88.98 12.30 97.05 29.60 93.62
Ours 22.39 95.88 26.08 94.56 40.88 90.66 12.55 97.08 25.48 94.55

Table 1: Comparison between different methods in OOD detection on the ImageNet1K Benchmark with two different model
backbones. ↑ indicates that larger values are better and ↓ indicates that smaller values are better. All values are percentages.

Dataset ImageNet1K iNaturalist SUN Places Textures
ϵ - -0.4 -0.4 -0.4 -0.4

E[
∑

zi] 862.31 643.58 722.22 758.63 750.93

Table 2: The sum of expectation activation over all feature
elements respectively on the ID training set ImageNet1K
and the four OOD datasets.

datasets iNaturalist (Van Horn et al. 2018), SUN (Xiao et al.
2010), Places (Zhou et al. 2017), and Textures (Cimpoi et al.
2014) as the OOD sets. The CIFAR benchmarks respectively
use CIFAR10 and CIFAR100 (Krizhevsky and Hinton 2009)
as ID sets, and both use six datasets SVHN (Netzer et al.
2011), LSUN-Crop (Yu et al. 2015), LSUN-Resize (Yu et al.
2015), iSUN (Xu et al. 2015), Textures (Cimpoi et al. 2014),
and Places365 (Zhou et al. 2017) as the OOD sets. There is
no semantic overlap between ID sets and OOD sets. Please
refer to Supplementary Section A for more details of the
datasets.
Baselines. Multiple types of competitive OOD detection
methods were adoped as baselines for comprehensive
evaluation, including the Maximum Softmax Probability
(MSP) (Hendrycks and Gimpel 2017), ODIN (Liang, Li, and
Srikant 2017), Energy (Liu et al. 2020), Mahalanobis (Lee
et al. 2018), ViM (Wang et al. 2022), DICE (Sun and Li

2022), ReAct (Sun, Guo, and Li 2021), BATS (Zhu et al.
2022), FeatureNorm (Yu et al. 2023) and LINe (Ahn, Park,
and Kim 2023). All the above baselines are post-hoc and can
obtain the OOD score based on a pre-trained CNN classifier.
In addition, LogitNorm (Wei et al. 2022) and CIDER (Ming
et al. 2023), which need model retraining, were used on CI-
FAR benchmarks considering that they achieve the state-of-
the-art performance on the CIFAR10 benchmark.
Metrics. For all experiments, FPR95 (abbr. F, i.e., the false
positive rate when the true positive rate of ID samples is
95%) and AUROC (abbr. A, the area under the receiver op-
erating characteristic curve) in OOD detection were used as
metrics, with lower FPR95 values and higher AUROC val-
ues indicating better OOD detection performance.

Consistent with previous studies (Sun, Guo, and Li 2021;
Zhu et al. 2022), we evaluated our method and each base-
line with ResNet50 and the lightweight MobileNet-v2 (San-
dler et al. 2018) as the classifier backbones on the Ima-
geNet1K benchmark. For the CIFAR benchmark, we trained
ResNet18 (He et al. 2016) and WideResNet28-10 (Zhu et al.
2022) as the classifier backbones from scratch on the associ-
ated training ID dataset. To train each classifier, we used the
stochastic gradient descent optimizer with momentum (0.9)
and weight decay (0.0005) for up to 200 epochs on the CI-
FAR datasets, with a batch size of 128. The initial learning
rate was set to 0.1, and it was decayed by a factor of 10 at the



ID Dataset
Model Methods

OOD Datasets
SVHN LSUN-R LSUN-C iSUN Textures Places365 Average

F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

CIFAR10
RN18

MSP 61.22 86.99 41.62 93.84 34.30 95.40 43.14 93.21 53.40 90.19 54.51 88.74 48.03 91.40
Mahalanobis 67.25 89.51 48.37 92.38 91.65 74.55 44.24 92.68 45.92 91.96 66.11 85.79 60.59 87.81

ODIN 53.56 77.48 17.31 94.63 13.64 96.09 19.87 93.55 46.65 80.85 49.72 79.92 33.46 87.09
Energy 41.25 87.69 24.19 95.01 11.37 97.63 26.40 94.16 42.52 89.10 40.04 88.71 30.96 92.05

ViM 53.75 88.67 34.17 94.34 82.31 87.18 31.41 94.25 36.15 92.83 49.64 88.86 47.90 91.02
DICE 36.42 91.46 31.57 93.77 7.10 98.67 36.94 92.05 47.02 88.41 46.74 86.05 34.30 91.73
BATS 41.42 87.84 24.17 95.02 11.35 97.63 26.36 94.16 42.13 89.29 40.04 88.71 30.91 92.11
ReAct 43.19 87.56 24.82 95.12 12.23 97.53 26.90 94.31 41.95 90.02 40.78 89.00 31.65 92.26

DICE+ReAct 36.90 91.31 31.59 93.71 7.29 98.64 37.15 92.10 46.76 88.61 46.76 86.12 34.41 91.75
LINe 45.38 87.96 39.25 92.61 9.75 98.19 41.52 91.74 58.37 84.14 53.02 85.70 41.22 90.06
Ours 50.22 87.80 24.83 95.96 16.11 97.21 26.60 95.30 39.56 92.49 41.91 90.54 33.20 93.22

CIFAR10
WRN

MSP 46.92 87.25 33.04 94.62 17.32 97.08 35.15 94.29 44.54 90.61 43.50 90.28 36.74 92.35
Mahalanobis 31.11 92.68 87.47 62.37 91.28 59.06 86.72 62.30 47.15 81.96 83.56 64.65 71.21 70.50

ODIN 61.09 73.64 15.22 96.10 7.07 98.54 16.75 95.33 43.63 82.73 46.49 82.67 31.71 88.17
Energy 41.25 87.69 24.19 95.01 11.37 97.63 26.40 94.16 42.52 89.10 40.04 88.71 30.96 92.05

ViM 10.80 97.95 20.11 95.98 13.85 97.38 19.89 95.97 17.87 95.85 42.78 88.33 20.88 95.24
DICE 46.51 84.57 25.66 93.15 0.25 99.89 29.95 92.10 51.70 81.83 45.70 84.49 33.29 89.34
BATS 38.15 90.97 22.57 96.13 10.60 98.07 24.52 95.83 34.36 92.93 32.71 93.23 27.15 94.53
ReAct 46.05 89.06 26.87 95.40 30.89 93.91 28.99 94.88 41.01 92.01 28.98 93.80 33.80 93.23

DICE+ReAct 45.84 85.39 26.47 93.60 0.39 99.87 30.41 92.62 48.65 85.41 47.49 84.79 33.21 90.28
LINe 40.48 85.92 18.80 96.27 3.37 99.26 19.94 95.93 43.88 87.32 37.87 89.30 27.39 92.33
Ours 39.42 87.82 21.87 96.13 8.37 98.49 23.76 95.72 34.72 92.13 32.90 92.58 26.84 93.81

Table 3: Comparison between different methods in OOD detection on the CIFAR10 Benchmark with two different model
backbones. ↑ indicates that larger values are better and ↓ indicates that smaller values are better. All values are percentages

Dataset Metric iNaturalist SUN Places Textures Avg

ImageNet F↓ 37.08 45.06 56.82 39.75 44.68
A↑ 90.84 87.15 82.12 88.22 87.08

Table 4: OOD detection with only element-mean discrep-
ancy. Model backbone is ResNet50.

100th and 150th epoch on CIFAR. To prepare the images for
training, we padded each training image from 32 × 32 pixels
to 36 × 36 pixels and randomly cropped it to 32 × 32 pixels
on the CIFAR10 and CIFAR100 datasets. We also applied
random horizontal flipping together with random cropping
on each training image. During testing, we used only center
cropping with resizing on the test dataset. All experiments
were run on NVIDIA GeForce RTX 2080ti GPUs.

Quantitative Evaluations
Table 1 summarizes the out-of-distribution detection per-
formance of each method on each OOD set (together with
the ID test set) and the average performance over the four
OOD sets for the ImageNet1K benchmark. Our method,
which builds on the strong baseline ReAct that uses the en-
ergy score for OOD detection, achieves state-of-the-art per-
formance on three of the four OOD sets and outperforms
the best baseline LINe (A 95.73% vs. 95.03%, and FPR95
19.17% vs. 20.70%) on average with the ResNet50 back-
bone. Similar results are obtained with the MobileNet-v2
backbone (Table 1, lower half), with our method achieving

the best AUROC performance on three OOD sets and state-
of-the-art average performance over the four OOD sets. All
the results support the efficacy of the element-mean in im-
proving the OOD detection performance. Table 4 shows that
the AUROC of OOD detection on each OOD set is signifi-
cantly greater than 50% when using only element-mean, fur-
ther demonstrating the feasibility of improving OOD detec-
tion performance by our method. We also perform statistical
tests to validate the significance of our method’s superiority,
please refer to Supplementary Section B for details.

The discrepancy in element of feature vector can also help
achieve competitive or state-of-the-art performance on aver-
age across the six OOD sets for both CNN backbones on the
CIFAR benchmarks, as shown in Table 3 and Table 5. One
exception is on the CIFAR10 benchmark with the WideRes-
Net28 backbone (Table 3, lower half) where the element-
mean discrepancy did not help achieve a new state-of-the-
art performance, although it did outperform the correspond-
ing strong baseline ReAct. One possible reason is that for
the CIFAR10 classification task, due to the smaller num-
ber of ID classes and higher feature dimensionality from
WideResNet28 than from ResNet18, sufficient separability
in feature representations of different ID classes can be rela-
tively easily achieved by simply increasing angular distance
between different classes of feature representations during
classifier training. In this case, it is not necessary to increase
the norm of feature representations for ID classes during
classifier training (Vaze et al. 2022), which in turn leads to
smaller or even indiscernible gap between the feature norms



ID Dataset
Model Methods

OOD Datasets
SVHN LSUN-R LSUN-C iSUN Textures Places365 Average

F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

CIFAR100
RN18

MSP 69.74 84.73 66.89 85.65 77.08 81.83 69.40 84.77 80.08 77.65 78.38 78.81 73.60 82.24
Mahalanobis 92.62 66.80 89.00 68.46 98.83 49.58 88.45 68.44 72.68 74.57 92.87 63.26 89.07 65.18

ODIN 79.74 81.40 37.63 93.21 72.66 85.93 39.59 92.58 73.07 80.42 80.39 77.22 63.85 85.13
Energy 68.90 87.66 59.71 88.58 73.21 84.46 64.03 87.50 79.61 78.22 77.74 79.64 70.53 84.34

ViM 73.70 84.45 61.30 88.05 92.76 69.87 61.92 87.34 57.93 86.31 81.01 76.54 71.43 82.09
DICE 53.60 90.22 79.84 81.17 40.03 92.52 79.79 80.96 78.65 77.46 82.31 76.76 69.04 83.18
BATS 62.05 89.31 50.38 91.21 73.70 84.55 55.97 90.30 72.93 84.50 72.61 82.03 64.61 86.98
ReAct 58.24 90.02 50.82 90.98 70.70 85.75 55.91 90.18 70.85 85.39 71.85 82.25 63.06 87.43

DICE+ReAct 48.20 91.19 84.18 78.79 32.05 93.71 82.23 79.65 66.74 83.96 80.28 77.96 65.61 84.21
LINe 52.02 91.01 65.66 86.87 47.76 91.23 69.27 85.90 71.22 83.37 80.90 77.21 64.47 85.93
Ours 48.92 91.33 51.27 90.44 63.17 88.43 54.58 89.96 58.78 87.98 73.58 81.93 58.38 88.34

CIFAR100
WRN

MSP 70.24 84.42 74.49 83.05 65.60 87.25 75.70 82.57 81.91 77.05 76.87 80.23 74.14 82.43
Mahalanobis 55.26 89.79 46.46 91.17 97.91 64.37 43.56 91.45 25.39 95.08 82.65 76.20 58.54 84.68

ODIN 81.23 80.24 46.57 91.16 55.07 90.76 48.34 90.64 77.62 77.97 79.10 78.41 64.66 84.86
Energy 66.49 87.81 68.04 86.38 45.53 92.65 70.83 85.69 82.89 77.33 80.47 79.88 69.04 84.96

ViM 52.74 89.95 38.90 92.20 69.26 86.06 33.54 93.11 31.84 93.23 78.21 78.31 50.75 88.81
DICE 73.03 80.77 80.46 82.01 10.64 97.96 84.04 80.47 77.50 77.23 80.62 76.99 67.72 82.57
BATS 60.19 90.17 57.22 89.85 58.42 87.66 60.36 89.25 70.43 85.03 76.68 81.74 63.88 87.28
ReAct 64.93 88.75 66.51 87.19 45.54 92.58 69.45 86.60 80.69 81.22 79.59 80.54 67.78 86.15

DICE+ReAct 67.24 86.81 80.23 82.78 8.59 98.22 82.15 82.52 68.19 84.11 78.64 79.14 64.17 85.60
LINe 66.67 87.32 64.59 87.98 68.01 86.73 26.25 95.53 83.67 75.70 81.44 77.20 65.11 85.08
Ours 38.03 92.85 53.05 90.08 26.98 94.12 52.62 90.33 48.78 89.07 76.07 81.76 49.25 89.70

Table 5: Comparison between different methods in OOD detection on the CIFAR100 Benchmark with two different model
backbones. ↑ indicates that larger values are better and ↓ indicates that smaller values are better. All values are percentages.

of ID and OOD classes. Consequently, the observed dis-
crepancy in element-mean of feature vector between ID and
OOD data would become much smaller. This is supported
by the results on the CIFAR100 benchmark, where the num-
ber of ID classes in CIFAR100 is much larger than that in
CIFAR10, and therefore the separability of ID categories
cannot be easily achieved by increasing the angular distance
alone. In this case, enhancing feature norms also becomes
necessary. As a result, on benchmarks with more ID classes,
the effect of element-mean discrepancy is relatively stable.
For instance, on CIFAR100 (Table 5), by integrating the dis-
crepancy, our method can help achieve a new state-of-the-art
performance on both model backbones. Notably, it reduces
FPR95 from 63.06% (ReAct) to 58.38% with ResNet18, and
from 67.78% to 49.25% with WideResNet.

Here we primarily perform comparison with post-hoc
methods. Notably, the state-of-the-art performance on the
CIFAR benchmark is mostly achieved by model re-training
methods. We leave the comparison with the model re-
training method to a later section where we enhance our ap-
proach using the training trick proposed by Vaze (Vaze et al.
2022).

Discussion and Further Analysis
Element-Mean Discrepancy From Shallow Blocks
Every CNN backbone consists of four convolutional blocks.
Here we further investigate the effects of element-mean dis-
crepancy from the first three blocks for OOD detection.

Specifically, we integrate these discrepancies from the first
three blocks into the employed OOD score, i.e.,

DB(x) =
B

Π
b=0

(1+Z4−b(x)) · log
C∑

k=1

exp (fk ◦ h(x)) , (8)

where the subscript B represents the number of blocks, with
Z4−b representing the mean of feature map activations from
the (4− b)-th block (b ∈ {0, 1, 2, 3}).

From Table 6, we can see that integrating the element-
mean of feature map activations from blocks 1-3 into OOD
score does not always improve the average OOD detection
performance. On individual OOD data set, for example on
iNaturalist, incorporating blocks 1-3 leads to better AUROC
score than using only block 4 alone, indicating a positive
contribution of early layer features. On the other hand, for
Textures, adding blocks 1-3 results in a lower AUROC score
than using block 4 alone, suggesting that blocks 1-3 are not
helpful for distinguishing Textures from ID samples (see
Figure 3).

One possible reason for this inconsistency is that features
from earlier layers may capture different types of visual pat-
terns than later layer, and their effect on OOD detection de-
pends on the nature of the ID and OOD data sets. In gen-
eral, blocks 1-3 encode more basic or generic features that
are shared across object categories and ID/OOD domains,
while block 4 often represents more specialized or discrimi-
native features that are specific to ID categories. Therefore,
when OOD samples are dissimilar to ID samples in terms of
basic or generic features, early layer information may help



ID Dataset
Model Method

OOD Datasets
iNaturalist SUN Places Textures Average
F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

ImageNet1K
ResNet50

Block4 12.40 97.74 17.68 95.86 26.88 93.47 19.72 95.87 19.17 95.73
Block4+3 11.79 97.84 17.37 95.93 26.53 93.61 21.68 95.52 19.34 95.72

Block4+3+2 12.83 97.66 16.95 96.05 25.89 93.79 22.55 95.28 19.56 95.69
Block4+3+2+1 12.01 97.81 16.32 96.26 25.03 94.04 23.28 95.05 19.16 95.79

Table 6: Discrepancy from additional shallow blocks for OOD detection. It can be seen that including activation mean of shallow
blocks can slightly further improve the final average OOD detection performance on three out of the four OOD datasets.

Figure 3: The discrepancy of element-mean from blocks 1-3
is less obvious than from block 4. The low-level features of
the OOD set Textures encode abundant information that is
shared with ID dataset.

improve the detection, whereas when OOD samples are sim-
ilar to ID samples in terms of specialized or discriminative
features, early layer information may hurt the detection.

Better Feature Representation Leads to Larger
Difference in Feature Element
Our observation that the element-mean of feature vector is
larger for ID than for OOD data is consistent with the find-
ing by Vaze et al. (Vaze et al. 2022) that feature norms are
often larger for ID than for OOD data. Since there are no
negative elements in feature vector due to the ReLU op-
erator, the size of feature norm is positively correlated to
each unit activation. According to Vaze’s finding, over the
training progresses, the norm of ID data features is con-
tinuously increased, which pulls ID features away from the
range of OOD features in the feature space. Therefore, if fur-
ther optimization is performed to obtain better feature rep-
resentations, e.g., larger norm of ID features, the difference
in feature element between ID and OOD features will be
also likely increased, leading to better OOD detection per-
formance.

To verify the inference above, relevant experiments were
performed by following the training strategy as in the re-
lated study (Vaze et al. 2022). Specifically, each model

was trained up to 600 epochs and RandAugment strategy
was adopted for data augmentation. As shown in Table 7,
model training with more epochs and stronger data aug-
mentation techniques (resulting in the stronger version of
our method ‘Ours+’) can improve the classification perfor-
mance that is comparable with those re-training methods.
For example, with ResNet18 model on CIFAR10 bench-
mark, our method plus stronger traning trick can achieve
average AUROC up to 96.76% which is already similar to
the model re-training method LogitNorm. On CIFAR100,
stronger training tricks can further improve the AUROC per-
formance of our method from 88.34% to 89.72%. Notably,
with WideResNet28-10 architecture on CIFAR100 bench-
mark, stronger training tricks can significantly improve the
average AUROC from 89.70% to 91.30%, outperforming all
existing post-hoc and re-training methods.

Related Work
OOD detection has been an active research area in machine
learning and deep learning, and the objective of OOD de-
tection study is to identify OOD data with distinct char-
acteristics from ID data. Numerous research efforts have
been dedicated to developing effective methods for distin-
guishing OOD samples from ID samples. Confidence-based
approaches accomplish this by quantifying OOD scores
using various scoring functions. For example, Hendrycks
et al. (Hendrycks and Gimpel 2017) proposed the maxi-
mum softmax probability (MSP) of the model as a basic
confidence-based OOD scoring function. ODIN (Liang, Li,
and Srikant 2017) utilizes input perturbations and tempera-
ture scaling on the softmax layer to increase the difference
between ID and OOD samples. Recently, Liu et al. (Liu et al.
2020) introduces an energy-based score with a theoretical
interpretation from a likelihood perspective to enhance the
effectiveness of confidence-based scores.

Different from confidence-based approaches, distance-
based approaches measure the distance between input sam-
ples and typical ID samples or their centroids (Lee et al.
2018; Ming et al. 2023; Sun et al. 2022). These methods rely
on the simple observation that OOD samples often result in
larger distance compared to ID samples. Similarly, density-
based methods (Kobyzev, Prince, and Brubaker 2020; Ma-
linin and Gales 2019; Nandy, Hsu, and Lee 2020) identify
OOD samples based on the distribution of the training sam-
ples and use density (or likelihood) as a metric.

Another line of studies focuses on OOD detection using
post-hoc approaches. Unlike confidence-based and distance-



ID Dataset
Model Method

OOD Datasets
SVHN LSUN-R LSUN-C iSUN Textures Places365 Average

F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

CIFAR10
RN18

LogitNorm 12.68 97.75 15.29 97.45 0.53 99.82 15.36 97.43 31.56 94.09 32.31 93.92 17.96 96.75
FeatureNorm 7.13 98.65 27.08 95.25 0.07 99.96 26.02 95.38 31.18 92.31 62.54 84.62 25.67 94.36

CIDER 1.61 99.68 21.06 96.57 3.09 99.36 19.63 96.80 10.35 98.29 25.13 95.16 13.48 97.64
Ours + 6.81 98.37 8.30 98.29 6.61 98.65 9.59 98.16 29.79 93.29 30.05 93.77 15.19 96.76

CIFAR10
WRN

LogitNorm 10.48 97.81 12.76 97.64 0.50 99.78 12.90 97.71 34.98 92.06 25.91 94.06 16.25 96.51
FeatureNorm 3.83 99.18 8.13 98.32 0.32 99.81 5.98 98.71 14.23 97.06 48.69 90.91 13.53 97.33

CIDER 2.42 99.54 9.82 98.30 0.71 99.79 9.09 98.40 6.28 98.95 18.03 96.42 7.73 98.57
Ours + 3.36 99.20 10.32 97.76 3.41 99.15 10.02 97.85 22.22 95.10 25.06 93.64 12.40 97.12

CIFAR100
RN18

LogitNorm 51.34 91.79 88.80 78.67 6.82 98.70 90.16 75.55 77.02 77.52 77.79 79.56 65.32 83.63
CIDER 31.36 93.47 80.39 81.54 43.68 89.45 78.23 81.33 35.51 91.70 82.80 72.71 58.66 85.03
Ours + 41.45 92.87 57.37 89.26 23.24 95.38 54.80 89.94 49.15 89.82 73.19 81.04 49.87 89.72

CIFAR100
WRN

LogitNorm 47.31 92.79 78.92 81.05 6.08 98.93 78.58 80.85 64.57 81.92 75.04 81.84 58.42 86.23
CIDER 18.66 96.24 69.22 85.78 35.95 89.68 64.86 85.91 27.22 93.79 81.68 73.71 49.60 87.52
Ours + 17.83 96.73 56.81 90.75 23.50 95.47 53.34 91.25 37.75 92.71 77.09 80.89 44.39 91.30

Table 7: With stronger training strategy (indicated by symbol +), which leads to a better feature representation, our method can
be comparable with state-of-the-art re-training methods.

based approaches that solely rely on the model’s output to
define OOD scores, post-hoc methods introduce modifica-
tions on model’s output in order to amplify the differences
between in-distribution and out-of-distribution data. Post-
hoc methods offer notable advantages in real-world applica-
tions as they eliminate the need for model re-training which
can potentially degrade the model’s performance and in-
crease training costs. Significant advancements have been
made with post-hoc methods. For instance, ReAct (Sun,
Guo, and Li 2021) has shown that OOD data can display
remarkable excessive values in the penultimate layer acti-
vations. By truncating such overhigh activations, ReAct ef-
fectively enhances OOD detection performance. For another
example, DICE (Sun and Li 2022) applies a weight selection
method for selecting important weights of the overparame-
terized network, which further separates the energy score be-
tween ID and OOD. Our method also belongs to the category
of post-hoc methods, and therefore our method was com-
pared mainly with other post-hoc approaches in this study.

Conclusion

In this study, we propose a new method for OOD detection
by leveraging the observation that the element-mean of fea-
ture vector obtained from CNN models is typically larger
for in-distribution data than for out-of-distribution data. The
proposed method is simple, efficient, and does not require
additional training or computational resources. We provided
mathematical analysis to help understand this discrepancy
and evaluated our method on several benchmark datasets.
The results demonstrate that our method can often improve
OOD detection performance. Our method is also model-
agnostic and can be easily integrated into various CNN ar-
chitectures. Future work includes its generalization to vari-
ous image processing and natural language processing tasks,
and its combinations with more existing OOD techniques.
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