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A B S T R A C T

There is an increasing demand for interpretation of model predictions especially in high-risk applications.
Various visualization approaches have been proposed to estimate the part of input which is relevant to a
specific model prediction. However, most approaches require model structure and parameter details in order
to obtain the visualization results, and in general much effort is required to adapt each approach to multiple
types of tasks particularly when model backbone and input format change over tasks. In this study, a simple
yet effective visualization framework called PAMI is proposed based on the observation that deep learning
models often aggregate features from local regions for model predictions. The basic idea is to mask majority
of the input and use the corresponding model output as the relative contribution of the preserved input
part to the original model prediction. For each input, since only a set of model outputs are collected and
aggregated, PAMI does not require any model detail and can be applied to various prediction tasks with
different model backbones and input formats. Extensive experiments on multiple tasks confirm the proposed
method performs better than existing visualization approaches in more precisely finding class-specific input
regions, and when applied to different model backbones and input formats. The source code is available at
https://github.com/fuermowei/PAMI.
1. Introduction

Deep learning models have shown human-level performance in
many machine learning tasks and started to be applied in real scenarios,
such as face identification, medical image analysis, and language trans-
lation. However, current deep learning models often lack interpreta-
tions for their decision making, which hinders the massive deployment
of intelligent systems particularly in high-risk applications like medical
diagnosis and autonomous driving.

To improve interpretation of model predictions, multiple visualiza-
tion approaches [1] have been proposed to localize input regions or
components which are more relevant to the model prediction given any
specific input to the model. For image classification task as an example,
the class activation map (CAM) and its variants utilize the output
(i.e., feature maps) of certain convolutional layer in the convolutional
neural networks (CNNs) and their contribution weights to find the
image regions which are responsible for the specific model prediction
given any input image [2], and the back-propagation approaches prop-
agate the CNN output layer-by-layer to the input image space either
based on gradient information (or its modified versions) at each layer
[3] or based on the relevance between input elements and output
at each layer [4]. While the CAM-like approaches can only roughly
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localize relevant regions due to the lower resolution of feature maps,
the back-propagation approaches often just find sparse and incomplete
object regions relevant to the model prediction. Moreover, both types
of approaches need either part of or the whole model structure and
parameter details, which may be unavailable in some applications
due to privacy or security concerns. When the model details are not
available, the occlusion method may be utilized to roughly localize
image regions relevant to the model prediction by occluding each local
patch and checking the change in model output [5]. However, the
occlusion method often only localizes the most discriminative object
part and misses the other parts which actually also contribute to
the model prediction. LIME [6] is another method without requiring
model details for model interpretation by locally approximating the
model decision surface for any specific input, but it often requires an
optimization process for interpretation of a specific model prediction.
Furthermore, most existing visualization approaches for interpretation
of model predictions are developed for specific type of tasks (e.g., just
for image classification), model backbone (e.g., for CNNs), and input
format (e.g., just for image data). Substantial efforts are often required
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to adapt one visualization approach to various tasks (e.g., image cap-
tion) with different model backbones (e.g., Transformer backbone) or
input formats (e.g., sequence of items).

Different from existing visualization approaches, a simple yet effec-
tive visualization framework for interpretation of model predictions is
proposed in this study. The proposed framework, called PAMI (‘Parti-
tion input and Aggregate outputs for Model Interpretation’), is inspired
by the observation that both humans and popular deep learning models
extract and aggregate features of local regions for image understanding
and decision making. Suppose a well-trained image classifier predicts
an input image as a specific class. To find the relevant image regions
and their contributions to the model prediction, the proposed frame-
work first partitions the input into multiple parts, and then feeds only
one part (with the remaining regions masked) to the model to obtain
the corresponding output probability of the specific class. Aggregating
the output probabilities over all the individual parts would result in
an importance map representing the contribution of each input part
to the original model prediction. In contrast to existing visualization
approaches, the proposed PAMI framework does not require model
structure and parameter details, can more likely find all possible input
parts which are relevant to the model prediction, more precisely local-
ize relevant parts, and work for various model backbones with different
input formats. Such merits of the proposed PAMI framework has been
confirmed by extensive experiments on multiple tasks with different
model backbones and input formats.

In the following, we will first summarize relevant studies on
visualization-based model interpretation (Section 2), and then provide
a detailed description of the proposed framework and comparison
with similar methods (Section 3). After that, extensive qualitative and
quantitative evaluations are performed to demonstrate the superiority
and the effectiveness of our method (Section 4), followed by the
conclusion of this study and possible future work (Section 5).

2. Related work

In computer vision, post-hoc interpretation of deep learning models
focuses on either understanding of model neurons (e.g., convolutional
kernels, output elements) which is independent of input information,
or understanding of a specific model prediction given an input image
[5]. This study belongs to the latter one, i.e., trying to understand what
information in the input causes the specific model prediction.

Multiple approaches have been proposed for understanding of
model predictions, including the activation map approach [7], the
back-propagation approach [4], the perturbation approach [8], the
local approximation approach [6]. The activation map approach often
obtains a class-specific activation map with the weighted sum of
all feature maps often at the last convolutional layer, and considers
the regions with stronger activation relevant to the specific model
output [7]. Since the activation map is often much smaller than the
input image, only approximate image regions corresponding to the
stronger activation regions can be localized for interpretation of the
specific model prediction. Different from the activation approach which
often works at higher layer of the deep learning model, the back-
propagation approach tries to estimate the importance of each input
pixel by propagating the specific model output layer-by-layer back to
the input space. This can be obtained by calculating the gradient of
the specific model output with respect to input elements at each layer
[3], or the relevance between output and each input element at each
layer [4]. The back-propagation approach considers each input pixel
as an independent component and often only a subset of disconnected
pixels in the relevant regions are estimated to be relevant to the model
prediction.

To find local image regions rather than disconnected pixels relevant
to the model prediction, the perturbation approach has been proposed
by perturbing local image regions somehow and checking the change in
model output of the originally predicted class [9]. If certain perturbed
2

local region causes large drop in the output, the local region in the
input image is considered crucial to the original model prediction.
Perturbation can be in the form of simply masking a local region by a
constant pixel intensity, by neighboring image patches, or by blurring
the original region information with a constant value or smoothing
operator. This approach can often find only the most discriminative
part of the relevant regions which are responsible for the model predic-
tion, because perturbing less-discriminative part of the relevant regions
often does not cause much drop in model output. Besides the pertur-
bation approach, the local approximation approach provides another
way to estimate the contribution of each meaningful image region
(e.g., object parts, background region) to the model prediction [6]. This
approach assumes that the model decision surface is locally linear in
the region-based feature space for any specific input, and therefore can
be approximated with a linear model in the feature space. The weight
parameters in the linear model can directly indicate the contribution
of each meaningful image region to the original model output, thus
obtaining image regions most relevant to the model prediction.

While most of these visualization approaches to interpretation of
model predictions were originally developed for image classification
models, they have been extended or modified for other tasks or other
deep learning models. Besides these approaches, prototype-based [10]
and attention-based [11] approaches have also been proposed for
model interpretation. Note that except the local approximation ap-
proach and part of the perturbation approach (e.g., the occlusion
method [8]), most approaches require at least part of the model
structure and parameter details in order to find input parts which are
relevant to the model prediction.

3. Method

In this study, we aim to provide interpretation for model predic-
tion given any specific input to a well-trained and fixed deep learn-
ing model. The interpretation is demonstrated by estimating relative
contribution of each input part to the specific model prediction and
correspondingly localizing input regions or elements which are relevant
to the model prediction. It is worth noting that no model structure
and parameter details are assumed to be known during the model
interpretation process.

3.1. Motivation

Although humans can often instantly recognize objects in images,
certain attention mechanism in human brain is likely involved in the
process of object recognition [12]. In other words, humans often need
to implicitly or explicitly attend to local regions for image under-
standing and object recognition. While the detailed human attention
mechanism is yet to be further explored, initial studies [13] suggest
that most local parts of an object in an image help humans recognize
the object, and appearance of only an individual object part could help
humans recall the corresponding class of the object. Consistent with
the visual attention studies, recent exploration of convolutional neural
networks (CNNs) shows that convolutional kernels even at higher
convolutional layers (i.e., closer to the CNN output) often have smaller
receptive fields than expected. Considering that a global pooling is
performed at the last convolutional layer in most CNN classifier models,
it is widely accepted that CNN models largely depend on the collection
of local image region features for image classification. For the other
type of deep learning model backbone Transformer and its variants
(e.g., ViT [14], Swin Transformer [15]), since most items in the input
sequence at each model layer correspond to components (e.g., words
for a sentence input, image patches for an image input) of the original
input, the final model prediction also largely depends on the collection
of local features of the original input. With the above observation, we
hypothesize that the model output response to each single component
of the original input may directly imply the importance of the single
input component for the specific model prediction.
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Fig. 1. The proposed PAMI framework with the sliding window based (left half) or the pre-segmentation based (right half) input partition strategy. Each time only one local part
of the input is preserved and the remaining parts are masked (blurred here).
3.2. The proposed PAMI framework

The proposed interpretation framework is demonstrated in Fig. 1.
For image classification task as an example, given a well-trained clas-
sifier model 𝑓 (⋅) and any input image 𝐱, denote by 𝑓𝑐 (𝐱) the output
prediction probability of the input image belonging to the 𝑐th class.
Suppose the model predicts the input as the 𝑘th class, i.e., 𝑓𝑘(𝐱) is
the maximum over all the output probabilities. To interpret the classi-
fier’s prediction, the proposed framework first partitions the input into
multiple either overlapped or non-overlapped parts (see the following
subsections), and then with the 𝑗th individual part preserved and all the
remaining image regions masked, the output probability 𝑓𝑘(𝐱𝑗 ) of the
𝑘th class for the majority-masked input 𝐱𝑗 is used to estimate the rela-
tive contribution of the preserved 𝑗th image part to the original model
prediction 𝑓𝑘(𝐱). By collecting and aggregating the output responses
𝑓𝑘(𝐱𝑗 )’s over all the partitioned image parts, an importance map 𝐡𝑘(𝐱)
with the same spatial size as that of the input image 𝐱 can be generated
to represent the contribution of each input element (i.e., pixel here),
i.e.,

𝐡𝑘(𝐱) =
1
𝐍
◦

𝐽
∑

𝑗=1
{𝑓𝑘(𝐱𝑗 ) ⋅𝐦𝑗} , (1)

where 𝐦𝑗 is a binary mask associated with the input 𝐱𝑗 , with value 1
for un-masked pixels and 0 for masked pixels, and 𝐽 is the total number
of majority-masked inputs. The symbol ‘‘◦’’ denotes the Hadamard
product, and 𝐍 is a frequency map with the spatial size of the original
input image 𝐱, and each element in 𝐍 corresponds one image pixel
and represents the number of un-masked regions containing the pixel.
Local image regions with correspondingly higher response values in
the importance map 𝐡𝑘(𝐱) are supposed to contribute more to the
model prediction 𝑓𝑘(𝐱), thus providing visual evidence for the model
prediction. It is worth noting that the interpretation framework can be
applied to different tasks (e.g., image caption and sentiment analysis)
with various input formats.

3.2.1. Input partition strategy I: sliding window
One simple way to partition input is to apply the sliding window

strategy with a pre-defined window size and sliding step size, where
the window is in certain regular shape (e.g., circular or rectangular). In
this way, the original input can be easily partitioned into multiple parts,
and each part can be more or less overlapped by its neighboring parts
determined by window size and sliding step size. For each partitioned
part, all the remaining image regions will be masked somehow (e.g., by
black pixels or blurred version of the original regions; see Fig. 2), and
the output probability of the originally predicted class can be directly
obtained with the majority-masked image as input. Since each input
element (e.g., pixel of an input image) could be covered by multiple
partitioned parts, the contribution of each input element in the final
importance map can be obtained by averaging the output probabilities
3

of the originally predicted class over all the partitioned parts covering
the input element (see Eq. (1)).

Note that the window size would affect the resolution level of the
final importance map. Although smaller window would result in de-
sired higher resolution, an image part with much smaller size (i.e., too
small window) could contain little semantic information such that it
becomes challenging for the framework to estimate the contribution of
the smaller image part to a specific model prediction. In practice, users
can choose one appropriate window size for interpretation of model
prediction, or multiple window sizes for multi-scale interpretation of
the model prediction.

3.2.2. Input partition strategy II: pre-segmentation
Another way to partition input is to pre-segment the input into

multiple parts with certain segmentation strategy (Fig. 3). When the
input is an image, various unsupervised segmentation algorithms can
be adopted for pre-segmentation of the input. In this study, super-pixel
segmentation algorithms are used for input image partition [16–19].
With a particular super-pixel segmentation method, an input image
can be partitioned into multiple non-overlapped parts (i.e., super-
pixels), with each part often having irregular form of region boundary
and likely containing homogeneous visual information. As introduced
above, the contribution of each super-pixel to the model prediction can
be obtained by preserving the single super-pixel and masking the other
super-pixels as the input and collecting the model output response of
the predicted class to the majority-masked input.

In practice, due to the imperfect performance of any single super-
pixel segmentation method, some super-pixels may contain parts of
both object region and background region, resulting in the impor-
tance map where part of background regions also has relatively higher
responses. To alleviate such an issue, multiple super-pixel segmen-
tation methods are employed, and multiple importance maps based
on these segmentation methods are then averaged to estimate the
contribution of each input element (e.g., pixels) to the original model
prediction (Fig. 4). Considering that one segmentation method with
different hyper-parameters often generates different segmentation re-
sults, multiple segmentation results from each segmentation method
with multiple typical hyper-parameter settings method are employed
here. The average importance map may be further improved by running
the above process once more (i.e., second run), in which the super-pixel
segmentation methods are performed on the average importance map
rather than the original input image. In addition, when generating each
majority-masked input, the highly smoothed version of the original
input image is used to fill the corresponding masked regions.

Compared to the sliding window strategy, the partitioned parts
by the pre-segmentation strategy have more precise and reasonable
region boundaries particularly for image data. This in turn often leads
to the final importance map with clear boundaries between object
regions and background regions, thus more precisely locating the image
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Fig. 2. Demonstration of the sliding window based input partition strategy. Upper half: image pixels inside each sliding window remain original, while pixels outside each sliding
window are masked by black pixels; Lower half: pixels outside each sliding window are masked by the blurred version of the corresponding original pixels.
Fig. 3. Demonstration of the pre-segmentation based input partition strategy. The input image is segmented into multiple parts (i.e., super-pixels) using the felzenszwalb segmentation
method. Each part together with the smoothed other parts was used as the input, and the corresponding output represents the importance of the image part to the original classifier
prediction.
Fig. 4. Multiple segmentation methods with various typical hyperparameter settings are employed to respectively generate the importance map by the proposed PAMI method,
and then the multiple importance maps are averaged as the final importance map for the original classifier prediction. The numbers under each method name in pre-segmentation
indicate different hyperparameter settings.
regions which contribute to the model prediction. Note that both input
partition strategies also work when input is a sequence of items. For
example, when input is a sentence as in the sentiment analysis task, any
input can be partitioned into words or phrases with either the sliding
window strategy or appropriate pre-segmentation strategy.

3.3. Comparison with relevant studies

The proposed PAMI framework can provide interpretation of model
prediction without requiring to know model structure and parameter
information. In contrast, most existing interpretation methods requires
4

either part of or the whole model details. For example, CAM and its
variants need the feature maps from certain convolutional layers and
part of model parameters in order to obtain the final class activation
map [20], and the gradient-based methods need all the model details
to calculate gradient information over model layers [3]. One exception
is the occlusion method [21] which does not require model details
as the proposed PAMI framework. PAMI can be considered as an
opposite version of the occlusion method, i.e., only preserving an input
part versus only removing or occluding an input part for estimating
the contribution of the input part to the model prediction. In image
classification, occluding part of the foreground object in the image may
not significantly affect the model prediction because the model can
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Table 1
Comparison in characteristics between representative visualization methods and ours. ‘‘Gradient*’’: methods requiring gradient computations
[22–24]; ‘‘intermediate output’’: model output from intermediate layer(s); ‘‘model parameters’’: model structure and all parameter values at
each layer; ‘‘various backbones’’: different backbones including CNNs and Transformers; ‘‘various tasks’’: different task types including computer
vision and natural language processing tasks; ‘‘various input formats’’: different input types including image and word sequence; ‘‘High-resolution
map’’: final importance map is in high-resolution; ‘‘Interpretation of single region’’: a method estimates importance of a local region during the
interpretation process; ‘‘✓’’: a method has the relevant characteristic; ‘‘✕’’: a method has no relevant characteristic;.

Characteristics Gradient* LRP [25] Occlusion [21] GradCAM [2] ScoreCAM [20] RISE [5] Ours

Not need intermediate output ✓ ✕ ✓ ✕ ✕ ✓ ✓

Not need model parameters ✕ ✕ ✓ ✕ ✓ ✓ ✓

For various backbones ✓ ✕ ✓ ✕ ✕ ✓ ✓

For various tasks ✓ ✓ ✓ ✓ ✓ ✓ ✓

With various input formats ✓ ✓ ✓ ✓ ✓ ✓ ✓

High-resolution map ✓ ✓ ✕ ✕ ✕ ✕ ✓

Interpretation of single region ✕ ✕ ✓ ✕ ✕ ✕ ✓
use the other object parts in the image for confident prediction. As
a result, occlusion method may neglect contribution of certain object
parts to the original model prediction, and often performs worse than
the proposed PAMI.

Because the proposed PAMI framework can consider the well-
trained model as a black-box, it can potentially work for various model
backbone structures (e.g., both CNN and Transformer backbones). In
contrast, the majority of interpretation methods were proposed for the
CNN backbone, and specific modifications are often required when
applying existing interpretation methods (e.g., CAM or Grad-CAM) to
other backbones like Transformer and graph neural networks. Another
merit of the proposed PAMI framework is its potential usage in multiple
tasks with different input formats. While this study mainly use the
image classification task for evaluation of the PAMI framework, PAMI
in principle can be applied to various model prediction tasks, such as
sentiment analysis and image caption, where the input data can be in
the format of sentence or image. In contrast, most existing interpreta-
tion methods do not work across tasks without further modifications or
extensions.

The most relevant interpretation methods are RISE [5] and Score-
CAM [20] which also estimate the importance map based on linear
combination of input masks with weights from model outputs. How-
ever, RISE is based on a large set of randomly generated masks and
ScoreCAM is based on the feature maps at last convolutional layer
of the (CNN) model, both leading to low-resolution and often inap-
propriate importance maps. It is also worth noting that RISE is an
occlusion method and therefore is opposite to the proposed PARMI
framework, and ScoreCAM requires part of the model feature maps and
therefore cannot be applied to black-box models. Extensive empirical
comparisons show that the proposed PAMI framework clearly outper-
forms RISE and ScoreCAM (also see Figs. 5, 8, 12 and Table 4). More
detailed comparisons between the proposed PAMI and representative
interpretation methods are summarized in Table 1.

4. Experiments

4.1. Experimental setup

In this study, three image classification datasets, ImageNet-2012
[26], Pascal VOC 2007 [27], and COCO 2014 [28], were mainly used
for evaluation of the proposed PAMI method. In addition, an image cap-
tion dataset COCO [28] and sentiment analysis dataset Sentiment140
[29] were also employed to show the wide applications of the proposed
method. All the models were from the publicly released resources and
evaluated on the corresponding validation or test set (see Table 2 for
more details).

By default, for the sliding window strategy of the proposed PAMI,
circular window with radius 40 pixels and step size 6 pixels was
used to generate local image regions. Under this setting, windows
are large enough to include regions with discriminative features of
objects for most images, and the relatively small stride helps generate
5

importance maps with sufficient resolution. For the pre-segmentation
Table 2
Models and datasets used in experiments.

Task Model source Dataset

Classification
VGG19bn from
PyTorch [30]

50 000 images of ImageNet-2012
[26]
validation set with 1000 classes

VGG16 from
TorchRay [31]

First 1000 images of Pascal VOC
2007 [27]
test set with 20 classes

VGG16 from
TorchRay [31]

First 1000 images of COCO 2014
[28]
instances validation set with 80
classes

Image caption ClipCap [32] COCO 2014 [28]

Sentiment analysis Transformers library
[33]

Sentiment140 [29]

Table 3
Hyper-parameter configuration for each segmentation algorithm.

Method Hyper-parameter

felzenszwalb [16] scale = 250, 200, 150, 100, 70, 50; sigma = 0.8; min_size =
784

SLIC [17] n_segments = 10, 20, 30, 40, 50, 60, 70, 80; compactness =
20

SEEDS [19] num_superpixels = 10, 20, 30; num_levels = 5; n_iter = 10
Watershed [18] markers = 10, 20, 30; compactness = 0.0001

strategy, four super-pixel segmentation algorithms, i.e., felzenszwalb
[16], SLIC [17], watershed [18] from scikit-image library [34], and
SEEDS [19] from the OpenCV library [35] were utilized respectively for
pre-segmentation of each image into multiple regions. Considering re-
gion of interest (i.e., relevant region to the model prediction) could vary
a lot over images, each segmentation algorithm was run multiple times
with different hyper-parameter settings to generate sets of local regions
at different scales. The hyperparameter settings for these super-pixel
segmentation algorithms were listed in Table 3. The importance maps
over all hyper-parameter settings and all the four pre-segmentation
algorithms were averaged as the estimated importance map. A Gaussian
kernel with size 49 × 49 pixels and standard deviation 100 was used
to generate the smoothed (blurred) image for region masking.

The proposed PAMI was compared with widely used visualization
methods for interpretation of model predictions, including Gradient
[22], GradCAM [2], ScoreCAM [20], RISE [5], FullGrad [3], MASK [8],
Occlusion [21], GuidedBP [23], SmoothGrad [24] and LRP [25]. The
default hyper-parameter setting for each method was adopted. Besides
qualitative evaluation, quantitative evaluation was also performed us-
ing the pointing game [36] and the insertion metric [5]. In the pointing
game, it measures whether the pixel with the highest activation in the
importance map is successfully within the image region of the object
corresponding to the interpreted class, with ‘hit’ for success and ‘miss’
for failure. The average hit rate over all classes is used to measure
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Fig. 5. Qualitative evaluation of the proposed PAMI method on the ImageNet-2012 dataset. The first column lists the input images to the classifier. The last two columns are the
importance maps from the proposed PAMI method with the two strategies respectively, and all the other columns are from the representative strong baseline methods. In each
importance map or heatmap, higher activation is in yellow and lower activation is in blue. For clear display of relatively different importance at different image regions, we have
normalized each importance map such that the min and max importance values are respectively 0 and 1 in each importance map. Therefore, the intensity bar shows the relative
importance within each image.
performance of each method. For the insertion metric, it gradually
restores the original pixels in the blurred version of the original image,
with pixels having higher activation in the importance map restored
earlier. Higher insertion score would indicate a better performance of
interpretation.

4.2. Qualitative evaluation

The efficacy of the proposed PAMI method was extensively evalu-
ated on the ImageNet-2012 data. Fig. 5 demonstrates the visualization
results on multiple representative images with the VGG19bn model.
The visualization results were generated with respect to the model
output of the ground-truth class for each image. It can be observed
that, the proposed PAMI with the pre-segmentation strategy for input
partition (last column) can often precisely and largely completely lo-
calize the object regions which are actually relevant to the specific
model prediction, while existing methods roughly localize either object
regions at low resolution, sparse part of object regions, disconnected
pixels within object regions, or even irrelevant background regions.
Multiple colors within relevant region in the importance map from the
proposed PAMI method suggests that different object regions may have
different degrees of contributions to the model prediction. On the other
hand, the proposed PAMI simply with the sliding window strategy can
often obtain similar performance as GradCAM but without requiring
model structure and parameter details.

Another observation is that the proposed PAMI method can work
more stably than existing methods under challenging conditions. In
particular, the PAMI method can well localize small-scale objects (rows
3 & 4) and relatively large-scale objects (row 7) in images, and also
can precisely localize the regions of multiple object instances of the
same class (rows 1 & 2). In comparison, most existing methods often
perform worse under at least some of these challenging conditions.
more results from PAMI on the ImageNet dataset are shown in Fig. 6,
further verifying the effectiveness of the proposed method. Similar
observations were also obtained on the PASCAL-VOC dataset and the
COCO dataset (see Fig. 7), consistently supporting that the proposed
PAMI method is effective in providing visual evidence for interpretation
of model predictions.
6

4.3. Quantitative evaluation

Although the non-existence of ground-truth or ideal interpretation
for any specific model prediction makes it challenging to quantitatively
evaluate any interpretation method, the pointing game [36] and the
insertion metric [5] have been proposed to roughly evaluate the per-
formance on correctly localizing regions relevant to model predictions.
With the pointing game, Table 4 (columns 2, 4, and 6) shows that the
proposed PAMI method with the pre-segmentation partition strategy
(last row) has similar hitting rate on the ImageNet and COCO datasets
compared with the best baseline GradCAM and higher hitting rate
than all the baselines on the VOC dataset, suggesting that the local
region which is considered most relevant to the model prediction by
PAMI is often actually part of the object region. Similarly with the
insertion metric ( Table 4, columns 3, 5, and 7), PAMI has the best
performance on ImageNet and VOC datasets, and is close to the best
baseline RISE on COCO dataset, again supporting that PAMI can well
localize image regions belonging to the interpreted class. Note that
although overall competitive quantitative performance was observed
from GradCAM and RISE, the above extensive qualitative evaluations
show that the both methods perform worse than the proposed PAMI
method in precisely and completely localizing object regions of corre-
sponding model prediction. This also indicates that more appropriate
quantitative evaluation metrics should be designed in order to more
accurately compare interpretation methods.

4.4. Generality of the proposed PAMI method

To evaluate the generality of the proposed method, well-trained
deep learning classifiers with multiple different backbones were em-
ployed, including VGG16 [37], ResNet50 [38], SE-ResNet [39], Incep-
tionV3 [40], DenseNet121 [41], RegNet-X-16GF [42], ConvNext-Tiny
[43], ViT-L-16 [14] and SwinT-Tiny [15]. From Fig. 8, we can see
that the proposed PAMI method can robustly and precisely localize
the object regions which are relevant to the model prediction for each
input image, regardless of the classifier backbones. In contrast, for each
representative baseline method, the importance maps often change over
model backbones and even may not work for the Transformer backbone
ViT and SwinT. This confirms that the proposed PAMI method is
more stable and can be applied to interpretation of model predictions
with various model backbones. More results from the proposed PAMI
method with different model backbones were shown in Fig. 9.
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Fig. 6. More qualitative evaluation of the proposed PAMI method on the ImageNet-2012 dataset. For each pair: input image is on the left and the visualization result from the
proposed PAMI is on the right.
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Table 4
Quantitative evaluation of the proposed PAMI method on the three image datasets.
‘Random’: randomly generating a heatmap for each input image. ‘Center’: taking the
fixed image center position as the highest activation point for each input image.

Method ImageNet VOC COCO

Pointing Insertion Pointing Insertion Pointing Insertion

Random 47.89 – 33.39 – 11.27 –
Center 81.96 – 70.79 – 25.97 –
Gradient [22] 83.14 0.1928 72.61 0.3321 34.65 0.1585
GuidedBP [23] 83.95 0.2632 71.14 0.4737 32.83 0.1935
Occlusion [21] 84.53 0.5741 84.49 0.6753 54.83 0.3229
MASK [8] 84.49 0.4867 76.30 0.5616 49.78 0.2664
RISE [5] 91.58 0.5460 82.43 0.6885 56.95 0.3305
SmoothGrad [24] 86.51 0.2494 75.38 0.3824 39.45 0.1753
GradCAM [2] 93.22 0.5154 87.45 0.5720 57.95 0.2660
ScoreCAM [20] 92.01 0.5191 86.51 0.6030 55.01 0.2656
FullGrad [3] 87.01 0.5045 77.58 0.5049 44.52 0.2362
Ours (Strategy I) 89.17 0.5566 74.95 0.6133 48.19 0.2688
Ours (Strategy II) 92.32 0.5965 87.87 0.7213 56.85 0.3291

.5. Sensitivity and ablation study

In the proposed method, masking majority of the input is one
ecessary step to estimate the contribution of each single region or
art of the input. There are multiple choices for the masking operator.
hen input is an image, the to-be-masked region could be replaced

y constant intensity value such as 0 (i.e., becoming black) or 255
7

a

i.e., becoming white), or by the blurred version of the input image.
ig. 10 demonstrates exemplar results with different masking operators,
hich shows that masking by blurred region (‘Blurred’) results in better

mportance maps with clearer boundaries between background and
bject regions and more accurate attention to object regions of interest.
hen the majority of the input is replaced with extreme black or white

ixels, the modified input image becomes further from the original
lass distribution in the feature space compared to the modified image
ith blurred region, which makes the model prediction unstable and

herefore may not faithfully represent the importance of the preserved
ocal region.

In addition, the average of multiple importance maps from multiple
re-segmentation algorithms often results in better visualization than
hat of using a single pre-segmentation algorithm, as demonstrated
n Fig. 11 (columns 2–5 vs. column 6). Fig. 11 also shows that the
econd run (last column) can often refine the importance map from
he first run (column 6). This is probably because sometimes the
dopted pre-segmentation algorithms cannot well separate background
egions from object regions at the first run, but the initially estimated
mportance map from the first run provides alternative information
or pre-segmentation algorithms to well separate background regions
rom object regions. Note that the proposed PAMI is independent of
he adopted pre-segmentation algorithms, and better pre-segmentation
lgorithms can be adopted to replace the current ones in the future.
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Fig. 7. Qualitative evaluation of the proposed PAMI method on the PASCAL-VOC dataset and the COCO dataset. For each pair: input image is on the left and the visualization
result from the proposed PAMI is on the right.

Fig. 8. Representative visualization results from the proposed method and representative baselines with different model backbones. Cross sign means the relevant baseline is not
working on the corresponding model backbone.
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Fig. 9. Representative visualization results from the proposed method with different model backbones.
4.6. Extensive applications of the proposed PAMI

The proposed PAMI method is expected to work for multiple types
of prediction tasks. For example, based on a well-trained image caption
model [32], the PAMI method can well localize the image regions
relevant to the predicted words (e.g., ‘dog’, ‘laying’, ‘sidewalk’, ‘bicy-
cle’) which refer to certain object or behavior in the image (Fig. 12,
rows 1, 3), while the representative baseline method RISE often cannot
precisely localize relevant regions (Fig. 12, rows 2, 4). More results
from the proposed PAMI method for the image caption task were shown
in Fig. 13. Another example is for the sentiment analysis task, where
the model tries to evaluate whether the viewpoint in an input sentence
is positive or negative. With an input partition strategy similar to the
pre-segmentation for images, the proposed PAMI method can directly
and correctly estimate the contribution of each word to the final model
9

prediction (Fig. 14). These results confirm that the proposed PAMI
method can work for various tasks with different input modalities.

5. Conclusion

In this study, we propose a novel visualization method called PAMI
for interpretation of model predictions. PAMI does not requires any
model parameter details and works stably across model backbones and
input formats. Compared to existing visualization approaches, PAMI
can more likely and precisely find the possible local input regions
which contribute to the specific model prediction to some degree. It
can be used as a plug-in component and applied to multiple types of
prediction tasks, which has been partly confirmed by image classifica-
tion, image caption, and sentiment analysis tasks. It is worth noting
that the efficacy of PAMI is partly affected by the input partition
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Fig. 10. Importance map of an representative input based on different masking operators. ‘Black/White/Blurred’: masking types. Red boxes in images: object regions relevant to
model predictions.
Fig. 11. Effect of applying multiple pre-segmentation algorithms. From left to right: input, importance maps from four individual pre-segmentation algorithms, and average
importance maps at the first and the second run respectively.
strategy. When input is an image, the pre-segmentation based strategy
often performs better than the sliding window based strategy. However,
10
occasionally object regions may not be clearly pre-segmented from
some background regions especially when they are visually similar.
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Fig. 12. Two exemplar visualization results from the proposed method and the strong baseline RISE for the image caption task.
Fig. 13. More visualization results from the proposed method for the image caption task.
Multiple pre-segmentation methods are used together in this study
to alleviate this issue of imperfect pre-segmentation. More advanced
pre-segmentation methods like SAM (Segment Anything Model) [44]
may be employed to obtain better pre-segmented local regions. In
addition, the scale range of local regions often needs to be empirically
pre-determined in order for PAMI to perform optimally. Automated
selection of region scale could be investigated to reduce such manual
effort. Alternatively, it may investigate multi-scale strategy to consider
11
multi-scale information at each local region during estimating the
contribution of the local region to the original model prediction. The
proposed PAMI is only evaluated on three tasks in this study. Its utility
is clearly not limited to such tasks. For example, the high-resolution
importance map particularly with precise boundaries of object regions
can provide much better initial estimate of object location and region,
and such better initial estimate should more effectively help solve the
weakly supervised (with image-level labels) object detection and region
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Fig. 14. Exemplar visualization results from the proposed method for the sentiment analysis task. The left column shows the contribution of each word to a negative emotion
prediction, and the right column for a positive emotion prediction.
segmentation. More applications of PAMI to various computer vision
and natural language processing tasks will be investigated in future
work.
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