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Classifier-head Informed Feature Masking and
Prototype-based Logit Smoothing for
Out-of-Distribution Detection

Zhuohao Sun, Yigiao Qiu, Zhijun Tan, Weishi Zheng, Ruixuan Wang

Abstract—Out-of-distribution (OOD) detection is essential
when deploying neural networks in the real world. One main
challenge is that neural networks often make overconfident
predictions on OOD data. In this study, we propose an effective
post-hoc OOD detection method, named HIMPLoS, based on
a new feature masking strategy and a novel logit smoothing
strategy. Feature masking determines the important features at
the penultimate layer for each in-distribution (ID) class based
on the weights of the ID class in the classifier head and masks
the rest features. Logit smoothing computes the cosine similarity
between the feature vector of the test sample and the prototype
of the predicted ID class at the penultimate layer and uses
the similarity as an adaptive temperature factor on the logit to
alleviate the network’s overconfidence prediction for OOD data.
With these strategies, we can reduce feature activation of OOD
data and enlarge the gap in OOD score between ID and OOD
data. Extensive experiments on multiple standard OOD detection
benchmarks demonstrate the effectiveness of our method and its
compatibility with existing methods, with new state-of-the-art
performance achieved from our method. The source code will be
released publicly.

Index Terms—out-of-distribution detection, deep learning, fea-
ture masking, logit smoothing.

I. INTRODUCTION

EEP learning has made extraordinary achievements in

various fields in recent years. However, when deployed
to the real world, deep learning models often encounter sam-
ples of unknown classes that were not seen during training [1]—
[3]. These out-of-distribution (OOD) data may compromise the
stability of the model, with potentially severe consequences
such as in autonomous driving [4]-[6], videos [7], [8], and
medical diagnosis [9]. Therefore, deep learning models are
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Fig. 1. OOD detection performance from different methods on CIFAR-100
and ImageNet benchmarks. FPR95: the false positive rate when the true
positive rate is 95%. Smaller FPR95 values mean better performance.

expected to have the ability to detect whether any new data is
OOD or not.

There have been many explorations of OOD detection [10]—
[15]. One line of work is post-hoc, i.e., the model is pre-trained
and fixed and the focus is on how to design an effective scoring
function [2], [16], [17] to measure the degree of any new input
belonging to one of the learned classes. Any data from any
learned class is called in-distribution (ID). The aim is to assign
higher scores to ID data and lower scores to OOD data. Such
post-hoc methods have practical significance when deploying
models to the real world as it does not require any additional
design of new training modules for OOD detection. However,
recent studies reveal that neural networks have overconfident
predictions for OOD inputs [18], [19], resulting in small
difference in score between ID and OOD data. Therefore, how
to solve the overconfidence problem of neural networks and
make the activation of networks as small as possible for OOD
data is the key to improving OOD detection performance.

In this study, we propose a novel method called classifier-
Head Informed feature Masking and Prototype-based Logit
Smoothing (HIMPLoS) for OOD detection. HIMPLoS pro-
vides two new strategies to reduce the feature activation
of OOD data, while preserving the activation of ID data
largely unchanged, thus improving the separability in detection
score between ID and OOD data. The first strategy, called
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Fig. 2. Distribution of weights (blue curve) in the classifier head associated
with a specific ID class, and distribution of activation over feature channels
at the penultimate layer from ID (red histogram) and OOD data (green
histogram). Activation of each feature is the average over the data of the
same ID class in CIFAR-100 or over the OOD data which are predicted as
the ID class from the OOD dataset SVHN. The feature channels are sorted
in descending order by the weights of the ID class in the classifier head.
Decreasing weights from the left to the right is largely correlated with the
overall decreasing trend of feature activation from ID data, but not from OOD
data.

feature masking, is inspired by the observation that the feature
activation at the penultimate layer is positively correlated with
the associated weights in the classifier head for each class of
ID data, while not for OOD data (Figure 2). This observation
is consistent with the efficacy of widely used model inter-
pretation methods CAM [20] which use the weights in the
classifier head to represent the importance of feature elements
when interpreting the predicted specific class. Based on this
observation, we propose to determine the important features
at the penultimate layer for each ID class according to the
weights in the classifier head associated with the ID class, and
then mask the other features which are less important to the ID
class. In doing so, most of the high activation units that play an
important role in classification can be preserved for ID data,
while those high feature activation appearing in the removed
units from OOD data are removed, thus largely reducing the
feature activation of OOD data. The second strategy, called
logit smoothing, is motivated by the observed difference in
feature vector distribution between ID and OOD data at the
penultimate layer as shown in Figure 3. In particular, ID data is
often close to its class center (‘prototype’) while OOD data is
relatively not close to any ID class center in the feature space.
With such observed difference, the cosine similarity between
new input data and the prototype of the predicted ID class at
the penultimate layer is used to tune the logit vector in the
output layer. Such a combination further enlarges the OOD
score gap between ID and OOD data. In summary, the main
contributions are as follows:

e We propose a new post-hoc OOD detection method that
reduces feature activation of OOD data to enlarge the gap
in OOD score between ID and OOD data.

o We introduce a new class-specific feature masking strat-
egy simply based on weights in the classifier head.

« We propose a novel logit smoothing strategy combining
information at the penultimate layer with logits for better
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Fig. 3. Visualization of the distribution of ID and OOD feature vectors at the
penultimate layer by t-SNE [21]. The model is DenseNet [22] trained on the
CIFAR-10 dataset. The ID dataset is CIFAR-10 and OOD dataset is LSUN.
Overall OOD data are far away from any ID class.

OOD detection.

o We extensively evaluate our method on multiple standard
benchmarks and show the compatibility with existing
methods, with new state-of-the-art performance achieved.

II. RELATED WORK

The key to OOD detection is to find potentially differ-
ent output patterns from the model for ID and OOD data.
Reconstruction-based methods show that an encoder-decoder
framework trained on ID data usually produces different quan-
tities of reconstruction errors for ID and OOD samples [10],
[23], [24]. In particular, a reconstruction model trained only
on ID data cannot recover OOD data well. Distance-based
methods measure the distance between the input sample and
the centroid or prototype of ID class in the feature space to
detect OOD samples [25], [26]. For example, Mahalanobis
score [27] uses the Mahalanobis distance between the feature
vector of input sample and the prototype feature vector of
training data for OOD detection. KNN [28] computes the
k-th nearest neighbor distance between the feature vector
of input sample and the feature vector of the training set.
Besides, confidence enhancement methods attempt to enhance
the confidence of the network via data augmentation [29] or
designing a confidence estimation branch etc. [19], [30], [31].
For example, OpenMix+ [29] mixes ID samples to generate
fake OOD samples and combines regularization methods for
enhancing the confidence of ID samples. LogitNorm [32]
proposes to enforce a constant norm on the logit during
training to alleviate the overconfidence of the neural network.

For better distinguishing between ID and OOD data,
training-based methods aim to perform OOD detection
by training-time regularization [11], [15], [33]-[35]. C-
LMCL [33] introduces a centralized large margin cosine loss
which constrains intra-class feature representations to be more
compact. MoEP-AE [36] proposes to use multiple mixtures
of exponential power distributions to encode the features
of ID classes and learn discriminative representations of ID
classes. Besides, D-pedcc [34] uses PEDCC-Loss [37] to train
a network and design a scoring function based on the PEDCC-
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Loss classifier and another work [35] trains a second classifier
based on the PEDCC-Loss classifier for OOD detection.

Differently, our method belongs to another line of work,
post-hoc methods, attempt to perform OOD detection by
designing a scoring function for a pre-trained and fixed model,
assigning an OOD score to each new input [38]-[40]. For
example, MSP [2] provides a simple baseline for OOD detec-
tion by using the maximum probability output of the model.
ODIN [41] introduces two operations based on MSP called
temperature scaling and input perturbation to separate OOD
from ID samples. Energy score [16] uses the energy function
of the logits (i.e., input to the softmax at the output layer) for
OOD detection. To alleviate the overconfidence problem of
the model on OOD data, based on the observation that OOD
data often cause abnormally high activation at the penultimate
layer of the network, ReAct [42] rectifies feature activation
at an upper limit and reduces most of the activation values
caused by OOD data. DICE [43] reduces the variance of the
output distribution by clipping some noise units irrelevant to
ID classes, resulting in improved separability in the OOD score
distribution between ID and OOD data. LINe [44] employs the
Shapley value [45] to measure each neuron’s contribution and
reduces the effect of less important neurons at the last network
layer.

Our method is similar to LINe and DICE, as ours and
the two methods all propose a sparsification strategy for
the model to reduce feature activation of OOD data. While
both LINe and DICE need a complicated process to select
important elements using a training dataset, our method simply
utilizes the classifier head’s weight to select the important
feature elements for each ID class. In addition, our method
uses a novel logit smoothing operator to combine the feature
information at the penultimate layer and the logit information
to further improve OOD detection.

III. PRELIMINARY

Consider a neural network classifier trained with a training
set D = {(x;,9:)},, where x; is the i-th training image
and y; € {1,2,...,C} is the associated class label. When
deploying the neural network classifier in the real world, new
data may be from a certain unknown distribution which is
different from the distribution of the training data. Such data
are out-of-distribution (OOD) and should not be predicted as
any of the in-distribution (ID) classes learned during classifier
training. The task of OOD detection is to identify whether any
new data is ID or OOD.

OOD detection can be considered as a binary classification
problem. In particular, a scoring function S(x;f) can be
designed to estimate the degree of any new data x belonging
to any of the ID classes, where the function f denotes the
overall feature extraction process whose output is used as
the input to the scoring function. With the scoring function,
OOD detection can be simply formulated as a binary classifier
g(x; f) as below,

if S(x;f) <7’ M

0

where data with higher scores S(x; f) are classified as ID
(with label 1) and lower scores are classified as OOD (with
label 0), and ~ is the threshold hyper-parameter.

IV. METHOD

An overview of the proposed post-hoc OOD detection
framework is illustrated in Figure 4. Given a pre-trained neural
network (Figure 4, components in gray) in this framework,
the feature elements at the penultimate layer which are more
relevant to each ID class can be identified based on the weight
parameters of the classifier head, and then feature masking is
performed by masking the less important feature elements.
Meanwhile, motivated by the observed differences between
OOD and ID samples in the feature space, logit smoothing is
applied by combining information from the penultimate layer’s
features and the output layer’s logit before estimating the OOD
score. In addition, as in the state-of-the-art method LINe [44],
the clipping of feature activation at the penultimate layer called
ReAct [42] is also applied here.

A. Feature Masking

For a well-trained network, given any test data x, denote by
h(x) € RE the feature vector from the penultimate layer of
the network. The classifier head’s weight matrix W € REx¢
together with the bias vector b transforms the feature vector
h(x) to the output logit vector f(x) as follows,

F(x) = WTh(x) + b. 2)

Inspired by the observation in Figure 2 and the model output
interpretation methods CAM [20], where the weights in the
classifier head are correlated with the importance of feature
channels from the penultimate layer for each class, we propose
selecting the top-k weights for each class based on the k-
largest elements from each column in W. Specifically, denote
by M € REXC the binary feature mask matrix, where 1
is set for the k-largest elements from each column in W
and O for the rest of the column, and suppose the neural
network classifier predicts the new data x as class ¢, then
the modulated feature vector by the feature mask of class ¢
from the penultimate layer becomes

hm (%) = m. ® h(x), 3)

where m, € R” is the c-th column of M representing the
feature mask of class ¢, and © represents the element-wise
multiplication. In the mask-modulated feature vector h,,(x),
those feature elements whose activation is masked (i.e., re-
moved) often have smaller activation values and therefore have
little effect on the prediction of class c. If the input x does
belong to ID class ¢, the modulated feature vector h,,(x)
would be still quite similar to the original feature vector h(x),
and therefore the modulation operator based on the feature
mask m, would not likely change the original prediction for
the input x. In contrast, if the input x is an OOD data, and it
is originally misclassified as ID class ¢, such misclassification
may be partly from relatively stronger activation of the to-be-
masked feature elements. In this case, the modulation based
on the feature mask m, would result in a modulated feature
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Fig. 4. Overview of the proposed framework. Given a well-trained classifier (middle row) and any test data x, the post-hoc feature masking (bottom row)
and logit smoothing (top row) together modulate the original logit vector f(x), and the OOD score based on the modulated logit vector f(x) is computed

(top right) for OOD detection.

vector h,,(x) whose overall activation (i.e., the norm of
feature vector) would be substantially reduced. Considering
that feature activation of ID data is often statistically stronger
than that of OOD data as observed in previous studies [17],
[42], and that scoring functions are often designed by utilizing
such difference in feature activation between ID and OOD
data [14], [16], the potentially substantial reduction in feature
activation for OOD data in the modulated feature vector A, (x)
would further enlarge the gap in feature activation between ID
and OOD data, making OOD detection easier.

In addition, on a similar rationale of further reducing feature
activation of OOD data, following the previous studies [42],
[44], the clipping operator ReAct [42] is applied to the masked
feature h,,(x) to reduce substantially higher feature activation
which often appears only on OOD data, i.e.,

P (x) = ReAct (hy (X); A), “4)

where ReAct(x;\) = min(x, A) is applied element-wise to
h.m(x), and A is a threshold hyper-parameter. Since OOD data
often has the abnormal phenomenon of high unit activation in
the penultimate layer of the network and ID data often has
no such phenomenon [42], by rectifying the activation at an
upper limit ), it can reduce most of the high-activation values
for OOD data and largely preserve the activation for ID data.
Therefore, by deploying ReAct [42], we can further alleviate
the overconfidence of the model on OOD data.

With the mask modulation and the ReAct clipping operators,
the output logit vector becomes

fnL (X) - WTEm (X) + b. (5)

B. Logit Smoothing

For any test data x which is predicted as class ¢, the cosine
similarity between the feature vector h(x) of the test data
and the prototype of class c in the penultimate layer’s feature
space can be utilized to help separate OOD data from ID data.
Denote by v. € R¥ the prototype of class ¢ which can be
estimated in advance by the average of feature vectors over
all the training data belonging to class ¢, i.e.,

(6)

where N, is the number of the training data belonging to class
c. Simultaneously, denote by s(h(x), v.) the cosine similarity
between h(x) and v, i.e.,

_ h(x) - v,
R vell

Then the logit vector f(x) can be modulated by the cosine
similarity s(h(x),v.) as follows,

fs(x) = s(h(x),ve) - f(%) - (8)

If the input x is indeed from ID class c, it is expected that the
cosine similarity s(h(x), v.) between the feature vector of the
input and its class prototype in general is higher. In contrast,
if x is an OOD data, its feature vector h(x) is in general
not within the distribution of class ¢ in the feature space,
and therefore the cosine similarity would be lower. This has
been supported as demonstrated in Figure 5. Such difference
in cosine similarity between ID and OOD data can be utilized

s(h(x),ve) @)
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Fig. 5. Distributions of cosine similarities between the feature of ID data (in red) or OOD data (in green) and the the associated class prototypes on ResNet-50.

ImageNet-1k is the ID dataset, and iNaturalist, SUN, Places, and Textures are

to help design a more effective scoring function for OOD
detection by combining with logit vector (see Equation 11
below).

To illustrate the effect of modulating logit by the cosine
similarity, we consider the softmax function of the modulated
logit. The cosine similarity s(h(x),v.) in the modulated
logit vector fs(x) can be viewed as an input-adaptive tem-
perature T on the logit vector f(x), specifically by setting
T 1/s(h(x),v.). With the temperature-tuned logit, the
output of class c after the softmax operator becomes

exp(fe(x)/7)
c
k; exp(fr(x)/7)

softmax.(f(x);7) = 9

)

where f.(x) is the logit element of the predicted class c in the
logit vectorf(x). Since the cosine similarity s(h(x),v.) is in
general smaller for OOD data than for ID data, 7 would be
larger for OOD data. As a result, the softmax outputs become
smoother (i.e., closer to a discrete uniform distribution) for
OOD data, and correspondingly the confidence of predict-
ing the OOD data as ID class ¢ becomes lower. Since the
modulated logit vector fs(x) can alleviate overconfidence of
predicting OOD data as ID classes, it can be also applied to
softmax-based OOD detection methods such as MSP [2] and
ODIN [41]. Considering the smoothing effect on the softmax
outputs, the modulation of the logit vector by the cosine
similarity is named logit smoothing.

C. Scoring Function

Combining feature masking and logit smoothing, the mod-
ulated final logit vector is

f) s(h(x), ve) - fn(x)
s(h(x),ve) - {WThp,(x) + b} .

(10)

While various scoring functions can be applied based on f (x),
the energy scoring function [16] is used by default, i.e.,

C
S(x; f) =log > exp(fr(x)), (11)
k=1

where fk(x)Ais the k-th element in the modulated final
logit vector f(x). Since the cosine similarity s(h(x),v.) is
positively correlated with the energy score S(x;f), lower
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cosine similarity from OOD data will lead to smaller energy
score, while higher cosine similarity from ID data will lead
to larger energy score. Similarly for the modulated logit
vector f,,(x) by the mask modulation and the ReAct clipping
operators (Equations 3 and 4). Overall, feature masking and
logit smoothing help enlarge the gap in energy score between
ID and OOD data.

D. Differences from existing methods

Our method is partly inspired by the state-of-the-art method
LINe [44] in masking features based on estimated important
feature elements for the predicted class. However, our method
is significantly different from LINe in multiple aspects. First,
the masking strategy is different and ours is much simpler and
more efficient. LINe employs the Shapley value [45] to mea-
sure each feature’s contribution for each class, and generates
masks based on these values. Notably, LINe needs training
data to calculate the Shapley value. In contrast, our method
simply uses the weight parameters of the classifier head to se-
lect the important features for each class. Second, our method
includes a novel logit smoothing operator which can further
enlarge the difference in the modulated logit vector between ID
and OOD data and also alleviate the overconfidence of OOD
predictions. Third, our method outperforms LINe on standard
benchmarks with different model backbones. Furthermore, our
method is compatible with other OOD detection methods, and
even the performance of LINe can be further improved when
combined with the proposed logit smoothing.

In addition, compared to other existing methods [32], [42],
[43] for alleviating the overconfidence issue of the model
prediction on OOD data, our method offers several compelling
advantages. First, our method can remove at least some highly
activated feature elements for OOD data, without compromis-
ing the prediction accuracy for ID data, by simply utilizing
the classifier head’s weights. Second, our method utilizes
the feature information at the penultimate layer as an input-
adaptive temperature on the logit vector during inference time,
which can further mitigate overconfidence when predicting
OOD data as ID classes. Last but not least, our method can be
efficiently applied to various model architectures and is robust
to the choice of hyper-parameters.
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TABLE I
COMPARISON BETWEEN DIFFERENT METHODS IN OOD DETECTION ON CIFAR-10 AND CIFAR-100 BENCHMARKS WITH DIFFERENT MODEL
BACKBONES. | INDICATES SMALLER VALUES MEAN BETTER PERFORMANCE AND 1 INDICATES LARGER VALUES MEAN BETTER PERFORMANCE. BOLD
NUMBERS ARE SUPERIOR RESULTS AND UNDERLINED NUMBERS ARE THE 2ND BEST RESULTS. ALL VALUES ARE PERCENTAGES.

OOD Datasets

IDN?:;Z‘I“‘ Method SVHAN LSUN-C LSUN-R iSUN Textures Places365 Average
FPROS| AUROCT FPR95| AUROCT FPR95S| AUROCT FPR9S| AUROCT FPR9S| AUROCT FPR9S| AUROCT FPR95S| AUROCT
MSP [2] 57.52 92.05 4353 94.05 55.65 91.88 56.10 91.74 61.58 89.60 61.28 88.96 55.94 91.38
ODIN [41] 35.06 94.00 11.37 97.89 25.82 95.58 2753 95.26 4757 89.86 4228 90.66 31.60 93.87
Mahalanobis [27]  26.10 93.74 4722 77133 10.98 90.73 11.80 91.26 37.50 90.38 86.54 64.60 36.69 84.67
Energy [16] 36.14 93.95 11.97 97.80 29.40 94.98 31.26 94.66 48.62 89.72 4233 90.75 33.29 93.64
CIFAR-10 BATS [46] 35.81 93.99 11.87 97.82 2837 95.19 30.13 94.88 47.96 90.24 4223 90.76 32.73 93.81
ResNet-18 DICE [43] 34.04 94.04 3.89 98.43 33.15 94.55 35.57 94.03 5222 88.56 4471 90.30 34.76 9332
ReAct [42] 40.06 93.65 15.02 97.48 28.41 95.22 30.25 94.98 4525 91.36 40.98 91.60 3333 94.05
DICE+ReAct [43]  36.39 93.74 9.86 9827 31.58 9475 34.01 9431 4837 90.43 43.04 91.03 33.87 93.75
LINe [44] 18.63 96.94 8.41 98.46 42,01 9331 45.14 92,61 .77 92.10 62.44 84.67 36.57 93.01
HIMPLoS (Ours) ~ 22.30 96.26 7.17 98.70 31.65 94.79 35.15 94.19 39.04 92.79 50.26 89.17 3092 94.32
MSP [2] 60.03 90.84 32.25 95.83 39.52 94.69 42,58 94.24 63.48 87.94 62.41 88.74 50.04 92.05
ODIN [41] 1452 97.14 298 99.25 3.39 99.02 4.64 98.83 57.85 8118 49.44 89.60 22.14 94.17
Mahalanobis [27] 3528 88.44 18.24 93.18 7.34 97.88 8.72 97.76 30.41 89.53 87.52 64.83 31.25 88.60
Energy [16] 4273 9327 346 99.18 9.44 9821 12.49 97.89 59.20 85.75 4235 91.55 28.28 9431
CIFAR-10 BATS [46] 15.42 97.35 3.16 99.25 8.17 98.38 1022 98.05 45.80 92.03 41.04 91.57 2063 96.10
DenseNet DICE [43] 34.72 93.61 0.39 99.89 548 98.85 6.33 98.75 46.35 87.33 45.65 90.25 23.15 94.78
ReAct [42] 18.94 96.84 433 99.05 10.78 97.99 13.70 97.57 51.52 90.19 41.53 91.60 2347 95.54
DICE+ReAct [43] 498 98.89 0.27 99.90 843 9833 9.19 98.22 2830 94.30 51.50 88.70 17.11 96.39
LINe [44] 6.18 93.78 0.48 99.84 8.87 98.34 10.17 98.20 28.56 94.53 47.44 89.86 16.95 96.59
HIMPLoS (Ours)  4.19 99.12 0.56 99.83 6.71 98.79 7.63 98.62 25.18 95.53 43.42 91.19 14.62 97.18
MSP [2] 83.67 75.41 7236 8331 81.84 7521 83.39 73.90 85.62 7358 82.78 7497 81.61 76.06
ODIN [41] 85.97 80.86 37.97 93.72 65.83 85.35 69.39 83.52 83.85 7553 80.10 7153 70.52 82.75
Mahalanobis [27]  58.59 75.92 84.92 49.51 59.04 61.12 5225 67.38 76.31 471.72 93.68 58.13 70.80 59.96
Energy [16] 84.07 81.97 35.48 94.01 68.88 84.19 7229 82.24 84.66 75.14 80.28 7739 7095 82.49
CIFAR-100 BATS [46] 63.28 88.67 3267 94.00 56.96 88.10 59.45 87.28 55.12 89.16 7791 7833 58.40 87.59
ResNet-18 DICE [43] 64.56 87.52 7.14 98.63 65.24 85.47 66.48 84.41 74.59 76.54 7822 77.93 59.37 85.08
ReAct [42] 7227 87.04 4137 92.15 49.46 89.98 52,04 89.22 5121 89.18 75.53 79.41 56.98 87.83
DICE+ReAct [43]  39.63 93.04 7.99 98.32 74.78 85.52 71.79 86.64 45.64 88.81 82.29 75.44 53.69 87.96
LINe [44] 4326 92.98 1025 98.06 63.80 87.10 63.76 87.21 44.10 90.71 78.48 78.00 50.61 89.01
HIMPLoS (Ours)  28.21 9532 1441 97.29 64.16 85.74 63.54 85.89 3191 9327 77.81 7759 46.67 89.18
MSP [2] 82.03 75.19 60.54 85.60 85.30 69.17 86.05 70.17 85.14 71.21 82.15 74.78 80.20 7435
ODIN [41] 45.14 91.75 9.54 98.20 59.14 86.34 61.46 85.87 81.72 7221 80.38 77.90 56.23 85.38
Mahalanobis [27]  52.30 89.16 86.21 68.78 3047 94.19 30.22 93.81 34.10 89.52 94.79 57.42 54.68 82.15
Energy [16] 88.04 81.30 14.78 97.43 70.72 80.14 74.60 78.95 85.16 70.98 77.93 7825 68.54 8118
CIFAR-100 BATS [46] 91.80 76.53 21.19 95.55 41.56 92.87 44.10 9227 63.17 82.02 79.29 75.65 56.85 85.82
DenseNet DICE [43] 60.07 88.20 0.93 99,74 51.76 89.32 4959 89.51 61.24 77.22 80.20 77.65 50.63 86.94
ReAct [42] 82.70 82.22 19.49 96.33 63.85 85.98 68.11 84.96 7833 79.08 79.76 7621 6537 84.13
DICE+ReAct [43]  55.54 88.03 757 98.61 54.44 89.84 4432 91.45 41.29 86.11 93.75 56.48 49.49 85.09
LINe [44] 3113 91.89 576 98.85 2536 94.54 24.15 94.76 39.18 87.85 88.44 64.17 35.67 88.68
HIMPLoS (Ours)  14.04 96.90 3.27 99.28 29.97 94.89 2525 95.51 25.05 93.90 82.78 72.87 30.06 9223

V. EXPERIMENTS 32 pixels on CIFAR benchmarks, and resized to 256 x 256
and then center-cropped to size of 224 x 224 pixels on the
ImageNet benchmark. All training images are used to compute
class prototypes for each model on both CIFAR and ImageNet
benchmarks.

3) Evaluation metrics: Based on the scoring function
(Equation 11 by default), we measure the performance of OOD
detection using the two most widely used evaluation metrics
FPR95 and AUROC. FPRYS is the false positive rate when
the true positive rate is 95%, with lower FPR95 indicating
better OOD detection performance and vice versa. AUROC is
the area under the receiver operating characteristic curve, with
larger AUROC indicating better performance.

4) Competitive methods for comparison: Our method
is compared with multiple competitive post-hoc OOD de-
tection methods, including MSP [2], ODIN [41], Maha-
lanobis [27], Energy [16], BATS [46], DICE [43], ReAct [42],
DICE+ReAct [43], and LINe [44].

A. Experimental Setup

1) Datasets: Our method is extensively evaluated on the
widely used CIFAR benchmarks [47] and the large-scale
OOD detection benchmark based on ImageNet [1]. For CI-
FAR benchmarks, CIFAR-10 and CIFAR-100 [47] are re-
spectively used as in-distribution datasets, with 50,000 train-
ing images and 10,000 test images per dataset. Six OOD
datasets are used during testing, including SVHN [48], LSUN-
Crop [49], LSUN-Resize [49], iSUN [50], Textures [51],
and Places365 [52]. For the ImageNet benchmark, ImageNet-
1k [53] is used as the in-distribution dataset and four OOD
datasets are used during testing, including Places365 [52],
Textures [51], iNaturalist [54], and SUN [55].

2) Implementation details: Following the common ex-
perimental setting [1], [42], [43], ResNet-18 [56] and
DenseNet [22] are used as the backbones on CIFAR bench-
marks. During model training, each CIFAR image is randomly
cropped to 32 x 32 pixels and then randomly flipped hori-

zontally. The models are trained with batch size 128 for 100 B. Evaluation on CIFAR Benchmarks

epochs, weight decay 0.0001, and momentum 0.9. The initial
learning rate is 0.1 and decays by a factor of 10 at epochs
50, 75, and 90. On the ImageNet benchmark, the pre-trained
ResNet-50 [56] and MobileNetV2 [57] provided by Pytorch
are adopted. During testing, all images are resized to 32 x

Table I summarizes the comparisons between our method
and competitive post-hoc OOD detection methods on CIFAR-
10 and CIFAR-100 benchmarks. Our method achieves state-
of-the-art performance with both ResNet-18 and DenseNet
backbones. For example, on the CIFAR-10 benchmark, our
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TABLE II
PERFORMANCE COMPARISON ON THE IMAGENET BENCHMARK WITH RESNET-50 AND MOBILENET BACKBONES.

OOD Datasets

Model Method iNaturalist SUN Places Textures Average
FPROS| AUROCT FPR95| AUROCT FPR9S| AUROCT FPR9S| AUROCT FPR9S| AUROCH
MSP [2] 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN [41] 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Mabhalanobis [27] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy [16] 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ResNet-50 BATS [46] 12.57 97.67 22.62 95.33 34.34 91.83 38.90 92.27 27.11 94.28
DICE [43] 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77
ReAct [42] 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
DICE + ReAct [43] 18.64 96.24 25.45 93.94 36.86 90.67 28.07 92.74 27.25 93.40
LINe [44] 12.26 97.56 19.48 95.26 28.52 92.85 22.54 94.44 20.70 95.03
HIMPLoS (Ours) 8.91 98.18 23.08 94.78 32.50 92.17 13.99 96.97 19.62 95.53
MSP [2] 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN [41] 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Mabhalanobis [27] 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
Energy [16] 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
MobileNet BATS [46] 31.56 94.33 41.68 90.21 52.43 86.26 38.69 90.76 41.09 90.39
DICE [43] 43.09 90.83 38.69 90.46 53.11 85.81 32.80 91.30 41.92 89.60
ReAct [42] 42.40 91.53 47.69 88.16 51.56 86.64 38.42 91.53 45.02 89.47
DICE + ReAct [43] 32.30 93.57 31.22 92.86 46.78 88.02 16.28 96.25 31.64 92.68
LINe [44] 24.95 95.53 33.19 92.94 47.95 88.98 12.30 97.05 29.60 93.62
HIMPLoS (Ours) 20.43 96.41 33.51 93.32 45.64 89.97 15.28 96.94 28.72 94.16
method with DenseNet outperforms the strongest baseline TABLE III

by 2.33% in FPR95. On the CIFAR-100 benchmark, our
method with DenseNet outperforms the competitive method
ReAct [42] by 35.31% in FPR9S5 and 8.1% in AUROC. Com-
pared to the state-of-the-art method LINe [44], our method
reduces FPR95 by 5.61% and improves AUROC by 3.55%
on DenseNet while reducing FPR95 by 3.94% on ResNet-
18. These results consistently support the effectiveness of our
method on different model backbones for OOD detection.
However, to further support the superiority of our method
compared to the best baseline (LINe [44]) in AUROC, we
train 10 models by standard CE-loss under 10 different random
seeds and perform paired t-test on both CIFAR-10 and CIFAR-
100 benchmarks. The p-value obtained is less than 0.005 for
both CIFAR-10 and CIFAR-100 benchmarks with ResNet-
18 and DenseNet, indicating that our method demonstrates
significantly higher AUROC performance compared to LINe.

C. Evaluation on ImageNet Benchmark

Table II shows the OOD detection performance of our
method and competitive baselines with ResNet-50 and Mo-
bileNetV2 backbones on the ImageNet benchmark. The de-
tailed performance on four OOD datasets and the average
over the four datasets are reported. It shows that our method
achieves state-of-the-art performance on average with both
backbones. For example, with ResNet-50, our method out-
performs Energy [16] by 38.79% in FPR95 and 9.36% in
AUROC. Our method reduces FPR95 by 11.81% compared to
ReAct [42], which confirms the importance of feature masking
and logit smoothing for OOD detection. Also, our method
outperforms DICE+ReAct [43] and LINe [44] on ResNet-
50 by 7.63% and 1.08% in FPROS, respectively. This further
confirms the superiority of our method particularly considering
that the two methods and ours all use ReAct to improve
performance. Note that our method does not achieve the best

ABLATION STUDY OF DIFFERENT COMPONENTS IN OUR METHOD.
DENSENET IS USED ON THE CIFAR-100 BENCHMARK, AND RESNET-50
ON THE IMAGENET BENCHMARK. "FM’ AND LS’ DENOTE FEATURE
MASKING AND LOGIT SMOOTHING RESPECTIVELY. ALL PERCENTAGE
VALUES ARE AVERAGED OVER MULTIPLE OOD DATASETS.

CIFAR-100 ImageNet
ReAct  FM LS | ppros|/ AUROCT  FPR9S) / AUROCT

68.54 / 81.18 58.41 / 86.17
v 65.37 1 84.13 31.43 /92,95
v v 36.74 1 90.01 2633 /9338
v v 48.42 1 8877 23.10 / 95.09
VY 40.34 / 89.89 3251/ 92.36
VA 30.06 / 92.23 19.62 / 95.53

performance on some individual OOD datasets like SUN and
Places with the ResNet-50 backbone, probably because (OOD)
images in SUN and Places are similar to those (ID) images
in ImageNet in the feature space (also see Figure 5) such that
logit smoothing is hard to further improves OOD detection
performance. Particularly, some studies [58], [59] have found
that Places have some overlap with ImageNet-1K resulting
in the worst performance over all the methods. Besides, we
split test data (both test ID and OOD data) into 10 folds
without intersection to perform paired t-test and the p-value
is 2.17e7 10 for ResNet-50 and 1.4e~!! for MobileNet which
shows the superiority of our method with different models
compared to LINe [44] in AUROC.

D. Ablation and Sensitivity Studies

1) Ablation of different components in our method: Our
method includes feature masking FM’) and logit smoothing
(CLS’) as well as the ReAct clipping [42] to improve OOD
detection performance. Table III shows an ablation study of
each component in our method. Compared to ReAct [42]
only (second row), ReAct+FM (third row) reduces FPR95 by
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Fig. 6. Sensitivity study of masking percentile p on the CIFAR-10, CIFAR-100, and ImageNet benchmarks. DenseNet is used on CIFAR benchmarks, and
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Fig. 7. Sensitivity study of rectification thresholds A on the ImageNet

benchmark with ResNet-50. All values are percentages and averaged over
multiple OOD datasets.

28.63% on the CIFAR-100 benchmark and reduces FPR95 by
5.1% on the ImageNet benchmark, which supports the effect
of feature masking on performance improvement. ReAct+LS
(fourth row) outperforms ReAct by 16.95% and 8.33% in
FPR95 on the CIFAR-100 benchmark and the ImageNet
benchmark respectively, supporting the effectiveness of logit
smoothing for OOD detection. Besides, when we remove
ReAct in our method (fifth row), the FPR95 increases by
10.28% and 12.89% compared to our method (last row) on the
CIFAR-100 benchmark and the ImageNet benchmark respec-
tively, suggesting that ReAct is also important for performance
improvement. The inclusion of all these three components
(last row) achieves the best OOD detection performance on
both benchmarks, supporting that the three components are
complementary to each other and all play important roles in
our method for performance improvement.

2) Sensitivity of rectification threshold: As ReAct is one
of the important components in our method, we perform a
sensitivity study to show the effect of rectification threshold
A and compare the performance between our method and
LINe [44] which also uses ReAct. As shown in Figure 7,
when the threshold )\ is too large (e.g., 2.0), both methods
perform relatively worse because ReAct plays little role in
clipping large feature activation. As the threshold A decreases,

TABLE IV
RESULTS OF APPLYING HIMPLOS AND REACT TO DIFFERENT OOD
DETECTION METHODS. DENSENET IS USED ON CIFAR BENCHMARKS,
AND RESNET-50 ON THE IMAGENET BENCHMARK. ALL VALUES ARE
AVERAGED OVER MULTIPLE OOD DATASETS.

Method CIFAR-10 CIFAR-100 ImageNet
FPR95| AUROCT FPR95| AUROCT FPR95|  AUROCT
MSP 50.04 92.05 80.20 74.35 66.95 81.99
MSP+ReAct 50.07 92.32 80.19 74.71 58.28 87.06
MSP+HIMPLoS 18.99 96.62 43.49 89.25 22.49 94.66
Energy 28.28 94.31 68.54 81.18 58.41 86.17
Energy+ReAct 23.47 95.95 65.37 84.13 31.43 92.95
Energy+HIMPLoS 14.62 97.18 30.06 92.23 19.62 95.53
ODIN 22.14 94.17 56.23 85.38 56.48 85.41
ODIN+ReAct 22.08 95.63 49.18 88.85 44.10 90.70
ODIN+HIMPLoS 14.60 97.10 28.42 92.15 21.16 95.05
LINe 16.95 96.59 35.67 88.68 20.70 95.03
LINe+HIMPLoS 16.35 96.71 33.37 89.43 17.84 95.97
TABLE V

COMPARISON OF LOGIT SMOOTHING (HIMPLOS) WITH LOGIT
ENHANCING IN DIFFERENT WEIGHT COEFFICIENT co. DENSENET IS USED
ON THE CIFAR-100 BENCHMARK, AND RESNET-50 ON THE IMAGENET

BENCHMARK. BOLD NUMBERS ARE SUPERIOR RESULTS. ALL
PERCENTAGE VALUES ARE AVERAGED OVER MULTIPLE OOD DATASETS.

. . CIFAR-100 ImageNet
Method Weight coefficient FPRO5S|, AUROC FPR9S, AUROCT

a=1 35.77 90.28 24.63 93.99

a=5 33.93 90.89 21.52 94.83

locit enhancing a=10 32.05 91.43 21.25 9531
ogit enhancing =20 30.64 92.13 20.72 95.39
=50 31.61 92,01 27.44 94.25

=100 34.59 91.68 3236 9277

HIMPLoS (Ours) 30.06 92.23 19.62 95.53

the performance improves and our method always outperforms
the state-of-the-art method LINe for the same rectification
threshold A. Our method performs stably well in the range
[0.5,1.5], suggesting that our method is robust to the choice
of the hyper-parameter \. The performance of both methods
drops when A approaches 0, because most of the feature
activation values are rectified to a small threshold which in
turn leads to poorer logit separability between test ID and
OOD images.

3) Sensitivity of masking percentile: Since feature masking
is an important part of our method, we also perform a
sensitivity study of masking percentile p = LT_’“ - 100%,
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TABLE VI
PERFORMANCE COMPARISON ON THE IMAGENET BENCHMARK WITH VIT-B/16 MODEL.

OOD Datasets

Method iNaturalist SUN Places Textures Average
FPR95] AUROCT FPR95| AUROCT FPR95| AUROCtT FPR95] AUROCtT FPR95] AUROCYT

MSP [2] 19.15 96.13 57.00 86.13 59.97 85.09 51.49 85.10 46.90 88.11
ODIN [41] 6.53 98.57 38.99 91.50 46.66 89.24 33.99 91.29 31.54 92.65
Mabhalanobis [27] 2.13 99.54 51.26 89.14 59.87 86.24 28.32 92.60 35.39 91.88
Energy [16] 6.04 98.66 37.11 91.75 45.30 89.30 31.90 91.70 30.09 92.85
BATS [46] 6.23 98.59 41.51 90.41 49.62 87.85 33.16 91.23 32.63 92.02
DICE [43] 91.86 65.22 88.70 64.47 93.85 61.53 74.27 74.95 87.17 66.54
ReAct [42] 4.19 99.01 39.06 91.54 47.38 89.11 32.27 91.54 30.72 92.80
DICE + ReAct [43] 96.13 55.25 89.42 63.32 95.03 59.73 78.21 71.03 89.70 62.33
LINe [44] 4.36 98.93 33.79 92.19 45.09 89.59 47.46 90.73 32.68 92.86
HIMPLoS (Ours) 3.00 99.12 37.56 92.25 46.70 90.63 28.30 93.15 28.89 93.54

where L is the total number of elements in the feature vector
at the penultimate layer and k is the number of feature
elements selected for un-masking. Figure 6 demonstrates the
performance of our method (red curves) on the CIFAR-10 and
CIFAR-100 benchmarks with DenseNet and on the ImageNet
benchmark with ResNet-50 when varying the masking per-
centile p. The performance from the state-of-the-art method
LINe [44] (dashed blue lines) is also included for comparison.
Note that p 0 corresponds to the case of using the
original feature vector (i..e, no feature masking). Significant
performance improvement is observed when varying p from
0% to 10%, clearly supporting the importance of feature
masking for OOD detection. The performance of our method
remains stably well between the large range [10%,80%)] and
is consistently better than that of the strong baseline LINe on
both benchmarks, confirming that our method is insensitive to
the choice of hyper-parameter in feature masking. When p gets
extremely large (e.g., 90%), the performance drops rapidly on
the ImageNet benchmark as expected, because multiple feature
elements which are crucial to ID classes have been masked at
such high masking percentile.

E. Compatibility with other methods

We have shown the effectiveness of applying our method
to Energy score [16]. Actually, our method is also compatible
with other existing methods. In Table IV, we compare the re-
sults of applying our method and ReAct [42] to different OOD
detection methods, including MSP [2], ODIN [41], LINe [44],
and Energy [16]. Note that MSP, ODIN, and Energy are associ-
ated with different scoring functions, therefore our method and
ReAct can simply be applied to these methods. As for LINe,
we only apply logit smoothing to it, since it already masks
features and applies ReAct. As we can see, our method can
improve the performance of all these methods and outperform
all the methods with ReAct, which confirms the flexibility
and effectiveness of our method. Notably, when applying logit
smoothing to LINe, the best performance is achieved on the
ImageNet benchmark with ResNet-50, further confirming the
importance of logit smoothing in OOD detection.

F. Comparison with other combination strategies

We have shown that logit smoothing significantly improves
the OOD detection performance by combining feature in-
formation with logit information. However, considering the
alternative strategy (i.e., addition) to combine the feature
information with the logit information, we add the cosine
similarity to logit as follows and named it logit enhancing,

f(X) = fm(x) +a- S(h(X),VC),

where « is the weight coefficient, and it is applied element-
wise to the logit vector f,(x).

In Table V, we compare the performance of logit smoothing
(HIMPLoS) with logit enhancing in different weight coef-
ficient . When « gets too extreme, we can’t balance the
effects of logit and feature information for OOD detection.
When « is properly chosen (e.g., 20), the performance of logit
enhancing gets better. However, our method (logit smoothing)
outperforms logit enhancing for all values of o which shows
the effectiveness and convenience of logit smoothing.

(12)

G. Evaluation on Transformer-based ViT models

Following the general experimental setting, we have shown
the effectiveness of our method on various CNN-based models.
To further explore the generalizability of our method to more
model architectures, we provide a comprehensive evaluation
on the ImageNet benchmark with the transformer-based ViT
model [60]. ViT [60] is a transformer-based image classifica-
tion model which treats each image as a sequence of image
patches. We use the ViT-B/16 model [60] which is pre-trained
on ImageNet-21K and fine-tuned on ImageNet-1K.

Table VI summarizes the performance of OOD detec-
tion from various post-hoc detection methods. Note that
transformer-based models are quite different from CNN-based
models, and the observations on CNN-based models might not
always apply to ViT models. For example, the performance of
DICE [43] and ReAct [42] drop compared to Energy [16].
However, it shows that our method achieves the best perfor-
mance on average with ViT backbone, which demonstrates the
effectiveness and generalizability of our method with the ViT
backbone.
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VI. CONCLUSION

In this study, a new post-hoc OOD detection method is
proposed based on feature masking and logit smoothing.
Feature masking is expected to remove those high activation
features caused by OOD samples, while preserving most of
the high activation features caused by ID samples. Logit
smoothing can further enlarge the difference in OOD score
between ID and OOD samples, therefore helping improve
OOD detection performance. Extensive experiments confirm
that our method establishes new state-of-the-art performance
on multiple benchmarks with different model and is robust
to the choice of hyper-parameters. Moreover, the flexible
combination of our method with existing OOD detection
methods suggests the high extensibility of our method. We
expect the combination of the information in the feature space
with the logit information in our method can help motivate
new research on solving the overconfidence issue in OOD
detection.
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