
 

 

Abstract 
 

It is well known that the effect of illumination is mainly 
on the large-scale features (low-frequency components) of 
a face image. In solving the illumination problem for face 
recognition, most (if not all) existing methods either only 
use extracted small-scale features while discard 
large-scale features, or perform normalization on the 
whole image. In the latter case, small-scale features may be 
distorted when the large-scale features are modified. In this 
paper, we argue that large-scale features of face image are 
important and contain useful information for face 
recognition as well as visual quality of normalized image. 
Moreover, this paper suggests that illumination 
normalization should mainly perform on large-scale 
features of face image rather than the whole face image. 
Along this line, a novel framework for face illumination 
normalization is proposed. In this framework, a single face 
image is first decomposed into large- and small- scale 
feature images using logarithmic total variation (LTV) 
model. After that, illumination normalization is performed 
on large-scale feature image while small-scale feature 
image is smoothed. Finally, a normalized face image is 
generated by combination of the normalized large-scale 
feature image and smoothed small-scale feature image. 
CMU PIE and (Extended) YaleB face databases with 
different illumination variations are used for evaluation 
and the experimental results show that the proposed 
method outperforms existing methods. 

1. Introduction 
Face recognition technologies have been widely applied 

in the areas of intelligent surveillance, identity 
authentication, human-computer interaction and digital 
amusement. However, one of the limitations in deploying 
the face recognition for practical use is the relatively low 
performance under illumination variations. It has been 
observed that the effect of illumination variations in face 

images is more significant than the effect of the image 
variations due to the change in face identity [1]. Most 
existing methods for face recognition such as principal 
component analysis (PCA) [2], independent component 
analysis (ICA) [3] and linear discriminant analysis (LDA) 
[19] based methods are sensitive to illumination variations 
[4]. So face illumination normalization is a central problem 
in face recognition and face image processing, and then 
many well-known algorithms have been developed to 
tackle this problem. 

For a face image, we call its small intrinsic details the 
small-scale features and call its large intrinsic features, 
illumination and shadows cast by big objects, the 
large-scale features. Accordingly, existing techniques for 
illumination normalization can be roughly divided into two 
categories. The first category aims at extracting the 
small-scale features that are conceived to be illumination 
invariant for face recognition. Methods in this category 
include logarithmic total variation (LTV) model [5], self 
quotient image (SQI) [6] and discrete wavelet transform 
(DWT) based method [7]. However, all these methods 
discard the large-scale features of face images, which may 
be useful for recognition.  

The second category aims at compensating the 
illuminated image. Methods of this category do 
illumination normalization directly on the whole face 
image. Some representative algorithms include histogram 
equalization (HE) [8], shape-from-shading (SFS) [9], 
illumination cone [10], BHE and linear illumination model 
[11], low-dimensional illumination space representation 
[12], illumination compensation by truncating discrete 
cosine transform coefficients in logarithm domain [13], 
quotient image relighting method (QI) [14] and the 
non-point light quotient image relighting method (NPL-QI) 
based on PCA subspace [15] [16]. In particular, QI and 
NPL-QI can generate image simulating arbitrary 
illumination conditions. However, these methods also 
distort the small-scale features simultaneously during the 
normalization process. Therefore the recognition 
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performance will be degraded, as small-scale features are 
always invariant to illumination. 

Since most (if not all) of existing methods focus on either 
the small-scale features or the whole face image, it is hard 
to get good recognition performance and generate 
normalized face image with good visual results. Instead, 
this paper proposes a new framework, in which large- and 
small- scale features of a face image are processed 
independently. In the proposed framework, a face image is 
first decomposed into a large-scale feature image and a 
small-scale feature image. Normalization is then mainly 
performed on the large-scale feature image, and meanwhile 
a smooth operator is applied on the small-scale feature 
image. Finally, the processed large- and small- scale feature 
images are combined to generate a normalized face image. 

The rest of this paper is organized as follows. In section 
2, the proposed framework is presented. In section 3, 
experimental results are reported. Finally, conclusion of 
this paper is given in section 4. 

2. Proposed Framework 

2.1. Motivation & Algorithm Overview 
Based on the Lambertian model, a face image I can be 

described by  
LRlrnI T ⊗=•= , (1) 

where r is the albedo of face, n is the surface normal of face, 
•  is the dot product, l is the illumination and ⊗  is the 
pointwise product. Denote R as the reflectance image and L 
as the illumination image . As R depends only on the albedo 
and surface normal, so it is the intrinsic representation of an 
object. Many existing methods attempt to extract the 
reflectance image for face recognition. Unfortunately, 
estimating R from I is an ill-posed problem [17]. To solve 
this problem, Chen et al. proposed a practical methodology 
[5]. Denote lR  as the albedo of large scale skin areas and 
background. Then, based on Eq.(1) the following result is 
obtained: 

),(),(
)),(),())(,(/),((

),(),(),(

yxSyx
yxLyxRyxRyxR

yxLyxRyxI

ll

ρ=
=
=

 (2) 

In this case, the term ),(/),( yxRyxR l=ρ  contains only 
the smaller intrinsic structure of a face image, and S  
contains not only the extrinsic illumination and shadows 
casted by bigger objects but also the large intrinsic facial 
structure. In this paper, ρ  is called the small-scale feature 
image and S is called the large-scale feature image. 
 As we know, illumination variation mainly affects the 

large-scale features of a face image and it is important to 
retain the invariant features such as the small-scale features 
during illumination normalization. We observe from Eq.(2) 
that an image could be decomposed into a small-scale 

feature image and a large-scale feature image. This implies 
that illumination normalization could be performed on S 
meanwhile the small intrinsic facial features in ρ  could 
keep unchanged. Even some necessary processing is 
performed on ρ , it would be independent to the one on S. 
Moreover, after normalizing S and ρ , the normalized face 
image can also be generated by Eq. (2). Motivated by this 
observation, this paper proposes a new framework for 
illumination normalization described as follows: 
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(3) 

Fig. 1 shows the diagram of the proposed framework. It 
consists of four steps, namely face image decomposition, 
smoothing on small-scale feature image (T2), illumination 
normalization on large-scale feature image (T1) and 
reconstruction of normalized images. Details of each step 
are discussed as follows. 

2.2. Face Image Decomposition Using 
Logarithmic Total Variation 

First, we decompose a face image into a small-scale 
feature image and a large-scale feature image as shown in 
Eq.(2). In this paper, we employ a recently developed LTV 
model [5] for image decomposition. Compared to existing 
methods, LTV has the capabilities of edge-preserving and 
multi-scale decomposition. By performing logarithm 
transform on Eq.(2), LTV model is described as follow: 

),(log),(log),(log),( yxSyxyxIyxf +== ρ  
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Lu
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(4)

where ∫ ∇ || u  is the total variation of u and λ is a scalar 
threshold on scale. In our experiments, we set 4.0=λ . In 
Eq.(4), minimizing ∫ ∇ || u  would make the level sets of u 
have simple boundaries, and minimizing 

1L
uf −  would 

ensure the approximation of u to f. PDE-based gradient 
descent technique, interior-point second-order cone 
program (SCCP) algorithm, or network flow method can be 

 
Figure 1: Diagram of the proposed framework  



 

 

used for solving Eq.(4). In this paper, SCCP is used, and 
therefore, ρ  and S can be approximately estimated by 
solving Eq.(4) as follows: 

)exp( *uS ≈ ,  )exp( *v≈ρ  (5) 

An example of the face image decomposition result is 
showed in Fig. 2.  

In [5], Chen et al. only directly use small-scale feature 
image for face recognition, while the large-scale feature 
image is not taken into consideration. Moreover, no 
normalization is further performed on large- and small- 
scale feature images in [5] for generating face image under 
normal illumination. 

2.3. Smoothing on Small-Scale Feature Image 

As shown in Fig. 2, after face image decomposition 
using LTV, some light spots may appear in the small-scale 
feature image ρ  under some challenging illumination 
condition, which also appear in the illustration [5]. 
Although the influence of these spots might be ignored for 
face recognition, it would have negative effect on the visual 
quality of the reconstructed image at the final step in the 
proposed framework. For this reason, a threshold minimum 
filtering is performed on ρ  for getting better visual results 
later. 

Suppose (x0, y0) is the center point of convolution region. 
Then, the threshold minimum filtering performs as follows. 
The filter kernel will convolute only if θρ ≥),( 00 yx , 
where θ  is an empirical threshold. In our experiment, a 

33×  mask is used and each image is convolved twice. An 
example of the filtering result is illustrated in Fig. 3. 

2.4. Illumination Normalization on Large-Scale 
Feature Image 

Recall the discussion of Eq.(2). Although the extrinsic 
illumination and shadows cast by bigger objects appear in 
the large-scale feature image, S may contain the larger 
intrinsic facial structures that are also illumination 
invariant. In order to improve the visual quality of 
normalized face image, large-scale features have to be 
used. For these reasons, the large-scale feature image 
should be normalized. To remove the illumination effect in 
S, some effective illumination normalization processing is 
needed. In this paper, two methods, namely NPL-QI and 
truncating DCT coefficients in logarithm domain 
(LOG-DCT) are separately employed for this purpose. 
NPL-QI takes the advantage of the linear relationship 
between spherical harmonic bases and PCA bases. It 
extends the illumination estimation of QI from single point 
light source to any type of illumination conditions and is 
good for simulation of images under arbitrary illumination 
condition. Regarding LOG-DCT, it was developed based 
on the theory that illumination variation mainly lies in the 

low-frequency band. It is suggested that appropriate 
number of DCT coefficients in logarithm domain can be 
used to approximate the illumination variation, and these 
DCT coefficients are then truncated to reduce the effect of 
illumination.  

2.4.1 Applying NPL-QI 

In this section, non-point light quotient image (NPL-QI) 
[16] is employed to normalize the large-scale feature image 
S. Assume all face images have the same surface normal n. 
Utilizing principal components as the bases of illumination 
subspace, the NPL-QI of face y against face a is defined by 
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where ry and ra are the albedo of face y and face a 
respectively, ],,,[ 21 nuuuU =  is the eigenvector matrix 
of training samples and T

nllll ],,,[ 21=  is the estimated 
lighting that is the solution of the following equation: 

lUIlf y •−= min)(  (7) 

The Qy can be regarded as illumination invariant and used 
to synthesize the image under arbitrary illumination 
condition. Similarly, large-scale feature NLP-QI can be 
represented by 
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Figure 2: An example of face image decomposition using LTV 

 

         
(a)                          (b) 

Figure 3: An example of filtering on small-scale feature image. 
(a): raw ρ ; (b): filtered ρ  (i.e., 'ρ ). 

 

           
(a)                        (b)                       (c) 

Figure 4: Examples of illumination normalization on S. (a): raw S;
(b): the normalized S using NLP-QI; (c): the normalized S using 
LOG-DCT. 
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Accordingly, in Eq.(8), U' is trained by large-scale feature 
images. Using large-scale feature NPL-QI, Sy can be 
transferred into the normal illumination condition by 

normynorm lUQS •′⊗′= , (9) 

where lnorm is the normal illumination trained by facial 
large-scale feature images under normal illumination 
condition. An example showing illumination normalization 
on S is illustrated in Fig. 4 (b).  

2.4.2 Applying LOG-DCT 

In this section, we demonstrate the use of LOG-DCT 
algorithm [13] for preprocessing on large-scale feature 
image. LOG-DCT is used for normalizing illumination by 
discarding low-frequency DCT coefficients in logarithm 
domain. For a face image, I and I' represent the face image 
under normal and varying illumination conditions 
respectively. Then S and S' are the corresponding 
large-scale feature images, i.e., 

),(),(),( yxSyxyxI ρ= ,
),(),(),( yxSyxyxI ′=′ ρ . 

(10)

According to Eq.(2), we have 
),(),(),( yxLyxRyxS l=

),(),(),( yxLyxRyxS l ′=′  
(11)

Taking logarithm transform on Eq.(11) yields the 
following: 
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where LL loglog −′=ε is called the compensation term, 
the difference between the normal illumination and the 
estimated original illumination in the logarithm domain. 
From Eq.(12), it can be concluded that S can be obtained 
from S' by subtracting the compensation term ε  in the 
logarithm domain. 

Assume that the DCT coefficients of u' are ),( βαC , 
1,,1,0 −= Mα , 1,,1,0 −= Nβ . Then the inverse 

DCT is given by: 
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where A is the normalization coefficient function. In 
Eq.(13), setting n low-frequency DCT coefficients to be 
zero is equivalent to removing n low-frequency 
components, so we have 
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In our experiment, 169 low-frequency DCT coefficients 
around the origin of coordinates in frequency domain are 
setting to be zero. Since it is assumed in LOG-DCT that 
illumination variations are mainly contained in the 
low-frequency components, the term ∑ ∑−

=
−

=
1

0
1

0 ),(n n Eα β βα  
can be approximately regarded as the illumination 
compensation term ε , so û  is just the estimated 
normalized large-scale feature image in the logarithm 
domain. We therefore have 

),(ˆexp),( yxuyxSnorm = . (15)

The results of illumination normalization on S using this 
method are illustrated in Fig. 4 (c). 
 
2.5. Reconstructing Normalized Image 

Similar to Eq.(2), the normalized face image is finally 
reconstructed by combination of normalized large-scale 
feature image Snorm and smoothed small-scale feature image 
ρ′ :  

),(),(),( yxSyxyxI normnorm ρ′= . (16) 

Specifically, when using NPL-QI, according to Eq.(2) and 
(9), the reconstructed face image simulating normal 
illumination condition can be generated by 

)(' normynorm lUQI •′⊗′⊗= ρ . (17) 

When using LOG-DCT, the face image Inorm simulating 
normal illumination condition can be estimated by: 

[ ]),(ˆexp),('),( yxuyxyxInorm ρ= . (18)

 
3. Experimental results 

In this section experiments are conducted to justify the 
following two points: (1) illumination normalization 
mainly performing on the large-scale feature image 
outperforms that on the whole image; (2) large-scale 
features are also useful for face recognition and should not 
be discarded. The performances of algorithms are evaluated 
in the aspects of face recognition and visual results of 
illuminated compensated images. For clear of presentation, 
we call the proposed framework as the reconstruction with 
normalized large- and small-scale feature images (RLS).  
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Figure 5: Illumination normalization using different 
techniques. (a): original images, (b): images normalized by HE, 
(c): images normalized by LOG-DCT, (d): images normalized 
by NPL-QI, (e): images normalized by RLS(LOG-DCT), (f): 
images normalized by RLS(NPL-QI). 

Figure 6: Illustration of the corresponding processing on large- 
and small- scale feature images of the images in Fig. 5 using the 
proposed framework. (a): original images, (b): small-scale 
feature image ρ , (c): filtered ρ  (i.e., ρ′ ), (d): large-scale 
feature image S, (e): S normalized by LOG-DCT, (f): S 
normalized by NPL-QI. 

 

Yale B [10], Extended Yale B and CMU PIE databases 
[18] are selected for evaluation. Images in Yale B are 
obtained from 10 individuals. Images are captured under 64 
different lighting conditions from 9 pose views and are 
divided into 5 subsets (Set 1 to Set 5) according to the 
ranges of the illumination angles between the light source 
direction and the camera axis. In the Extended Yale B 
database, there are 16128 images of 28 human subjects 
captured under the same condition as Yale B. In the 
experiment, only frontal face images from these two 
databases are selected. The CMU PIE consists of 68 
individuals. For testing, the frontal face images under 21 
different illumination conditions with background lighting 

off are selected. In our experiments, all images are simply 
aligned and each image is resized to 100×100.  

3.1. Illumination Normalization on Large-scale 
Feature Image vs. on Whole Image 

In this experiment, we show that performing 
illumination normalization on large-scale image 
outperforms that on the whole image. In our framework, the 
threshold minimum filtering is performed on small-scale 
feature images, and the NPL-QI and LOG-DCT are 
respectively applied for illumination normalization on 
large-scale feature images. Accordingly, these two methods 
under our framework are respectively called RLS(NPL-QI) 



 

 

        
(a)                                                                       (b) 

Figure 7: Average Diff of different algorithms on (a): CMU database and (b): Extended Yale B database. 

         
                                                            (a)                                                                          (b) 

Figure 8: Average Diff of different algorithms on (a): CMU database and (b): Yale B + Extended Yale B database. 

Recognition Rate (%) Method 
Set2 Set3 Set4 Set5 

HE 93.5 39.9 22.9 10.5 
NPL-QI 98.8 68.2 37.5 18.2 

RLS (NPL-QI) 100 91.4 54.1 22.0 
 

Table 1: Comparisons between different methods for 
illumination normalization on Extended Yale B.  

Recognition Rate (%) Method 
Set2 Set3 Set4 Set5 

HE 91.9 37.7 21.3 10.1 
LOG-DCT 99.8 83.6 85.5 83.8 

RLS (LOG-DCT) 100 87.1 87.6 84.8 
 

Table 2: Comparisons between different methods for 
illumination normalization on “Yale B + Extended Yale B”.  

 
Method Recognition Rate (%)

HE 47.3 
NPL-QI 88.4 

RLS (NPL-QI) 95.3 
LOG-DCT 99.8 

RLS (LOG-DCT) 99.9 

Table 3: Comparison between different methods for illumination 
normalization on CMU. 

and RLS(LOG-DCT). We compare them with NPL-QI and 
LOG-DCT which are directly applied on whole face image. 
In addition, HE is also carried out as a baseline algorithm. 
For evaluation, we perform face recognition on normalized 

face images and also provide a measurement of the image 
quality. 

We first compare the visual results of reconstructed 
images by different algorithms in Fig. 5. In addition, in Fig. 
6, we show the image decomposition results, i.e., 
small-scale and large-scale feature images, and the 
illumination normalization results on them using our model. 
It is shown that our methods preserve the intrinsic facial 
structures well. As shown, when normalization is directly 
performed on the whole image, the normalized faces will 
lose more facial details, such as the edges and some 
textures with large illumination variation. Note that there 
are "local artifacts" in some normalized face images. These 



 

 

local artifacts are caused by NPL-QI, as NPL-QI cannot 
perform well for shadows. 

In addition, we propose an objective measurement for 
the visual quality of a normalized image as follows: 

d
II

Diff eddards 2normaliztan −
= , (19) 

where tedInormalie  and dardsI tan  denote the normalized image 
of a same subject and the corresponding image under 
normal illumination condition respectively, and d  is the 
number of pixels in an image. For Yale B and Extended 
Yale B, the face image of any subject captured by the 
frontal camera is regarded as the normal one, i.e., dardsI tan  
in Eq. (19). For CMU, the images captured by the 11th 
camera are the dardsI tan . The results are reported in Fig. 7 
and 8, and the smaller the value Diff is, the better the 
algorithm performs. As show, the proposed algorithms 
achieve lower Diff values, and these also support the results 
shown in Fig. 5. 

Finally, recognition results are reported for evaluation of 
the proposed framework. For each subject of the databases, 
only the image under normal illumination condition is 
registered as the reference image, and the rest images are 
treated as the query images. Nearest neighbor (NN) 
classifier is selected for classification, where normalized 
correlation is used as the similarity metric. The results are 
tabulated in tables 1, 2 and 3. The results show that the 
proposed scheme gets higher recognition rates. Note that 
when using NPL-QI in our experiments, all the 640 images 
from Yale B have to be used for training U’ and lnorm in 
Eq.(7)～(9), so the methods employed NPL-QL are only 
performed on Extended Yale B and CMU databases. 
Furthermore, according to [13], for the algorithms using 
LOG-DCT, logarithm images are directly used for 
recognition, i.e., the inverse logarithm transform step is 
skipped for face recognition. It can be seen that the 
algorithms under our framework gets higher recognition 
rates than the ones directly applying on the whole images. 

The above experimental results indicate that when 
illumination normalization is mainly performed on 
large-scale feature image rather than the whole face image,  
higher recognition rates and better visual quality of 
reconstructed images are obtained.      

3.2. Using vs. Discarding Large-scale features  
Many methods only use the small-scale features for face 

recognition and discard the large-scale features. However, 
larger intrinsic facial structures which are also invariant to 
illumination may be contained in the large-scale features. 
In this experiment, we show large-scale features are useful 
for recognition and they should not be discarded. In the last 
section, LOG-DCT performs best in the aspect of 
recognition. So, to demonstrate the advantage of our 
framework, we select LOG-DCT to perform illumination 

normalization on the large-scale feature image and then use 
the reconstructed images for recognition. In this section, the 
performance of LTV model [5] is reported for comparison, 
and the results are tabulated in table 4. The setting of 
reference and query samples is the same as the last section. 
Chen et al. only use the small-scale feature images 
generated by LTV for recognition [5], while in our scheme, 
normalization is further performed on the large- and small- 
scale images and finally a reconstructed image is obtained. 
The results suggest that the proposed scheme gives higher 

 
Figure 9: ROC curves of different methods on “Yale B +
Extended Yale B” database. 

 
Figure 10: ROC curves of different methods on CMU 
database. 

 
Recognition Rate (%) 

Yale B+Extended YaleB Method 
Set2 Set3 Set4 Set5 CMU

LTV [5] 99.8 79.4 76.1 78.3 99.9 
RLS(LOG-DCT) 100 87.1 87.6 84.8 99.9 

 
Table 4: Comparison between different methods for 
illumination normalization. 



 

 

recognition rates on “Yale B+ Extended YaleB”. As LTV 
and RLS(LOG-DCT) get the same recognition rate on 
CMU, we further compare their ROC curves in Fig. 10. 
Also, the ROC curves on “YaleB+Extended YaleB” are 
given in Fig. 9, in which subset 2~5 are used as the testing 
data set. The figures show that significant improvements 
are obtained by RLS(LOG-DCT).  

The above experimental results justify that only using 
small-scale features of face images for face recognition is 
not enough. Large-scale features are very important and 
should not be discarded. 

4．Conclusions 
A novel technique for face illumination normalization is 

developed in this paper. Rather than doing illumination 
normalization on the whole face image or discarding the 
large-scale features, the proposed framework performs 
illumination normalization on both large- and small- 
feature images independently. In particular, this paper 
demonstrates that large-scale features of face images are 
also important and useful for face recognition and obtaining 
good visual quality of normalized illuminated images. 
Moreover, we suggest performing illumination 
normalization mainly on the large-scale features rather than 
the whole face image meanwhile keeping the small intrinsic 
facial features which are invariant to illumination, as it 
would result in superior performance Utilizing the 
proposed framework, experimental results on CMU PIE 
and (Extended) YaleB databases are encouraging. 
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