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GA-Fisher: A New LDA-Based Face Recognition
Algorithm With Selection of Principal Components

Wei-Shi Zheng, Jian-Huang Lai, and Pong C. Yuen

Abstract—This paper addresses the dimension reduction
problem in Fisherface for face recognition. When the number of
training samples is less than the image dimension (total number of
pixels), the within-class scatter matrix (Sw) in Linear Discriminant
Analysis (LDA) is singular, and Principal Component Analysis
(PCA) is suggested to employ in Fisherface for dimension reduc-
tion of Sw so that it becomes nonsingular. The popular method is
to select the largest nonzero eigenvalues and the corresponding
eigenvectors for LDA. To attenuate the illumination effect, some
researchers suggested removing the three eigenvectors with the
largest eigenvalues and the performance is improved. However,
as far as we know, there is no systematic way to determine which
eigenvalues should be used. Along this line, this paper proposes
a theorem to interpret why PCA can be used in LDA and an
automatic and systematic method to select the eigenvectors to
be used in LDA using a Genetic Algorithm (GA). A GA-PCA is
then developed. It is found that some small eigenvectors should
also be used as part of the basis for dimension reduction. Using
the GA-PCA to reduce the dimension, a GA-Fisher method is
designed and developed. Comparing with the traditional Fish-
erface method, the proposed GA-Fisher offers two additional
advantages. First, optimal bases for dimensionality reduction are
derived from GA-PCA. Second, the computational efficiency of
LDA is improved by adding a whitening procedure after dimen-
sion reduction. The Face Recognition Technology (FERET) and
Carnegie Mellon University Pose, Illumination, and Expression
(CMU PIE) databases are used for evaluation. Experimental re-
sults show that almost 5% improvement compared with Fisherface
can be obtained, and the results are encouraging.

Index Terms—Dimension reduction, face recognition, GA-PCA,
genetic algorithms, LDA, PCA.

I. INTRODUCTION

L INEAR DISCRIMINANT analysis (LDA) [1], [16] has
been one of the popular techniques employed in the face

recognition. The basic idea of the Fisher Linear Discriminant
is to calculate the Fisher optimal discriminant vectors so that
the ratio of the between-class scatter and the within-class
scatter (Fisher Index) is maximized. In addition to maximizing
the Fisher Index, some restrictions, when finding the optimal
vectors, are added to reduce the error rate in face recognition.
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In 1975, Foley and Sammon presented Foley–Sammon optimal
discriminant vectors [5], and in 2001, Jin et al. [4] presented
uncorrelated optimal discriminant vectors.

A number of LDA-based recognition algorithms/systems
have been developed in the last few years. The most well known
technique is the Fisherface, which combines the techniques
of Principal Component Analysis (PCA) with the LDA. The
superior performance of LDA on face recognition has been
reported in many literatures and Face Recognition Technology
(FERET) evaluation test [9]. Despite the advantages of using
LDA on pattern recognition applications, LDA suffers from a
small sample size (S3) problem. The problem happens when
the number of training samples is less than total number of
pixels in an image. Under this situation, the within-class scatter
matrix will be singular. In turn the inverse of within-class
scatter matrix cannot be calculated. S3 problem always occur
in face recognition applications.

Basically, there are at least four approaches proposed to
overcome the S3 problem. The most well-known technique is
the Fisherface [1], which combines the techniques of Principal
Component Analysis (PCA) with the LDA (it is also known as
PCA LDA). It performs the dimension reduction by PCA [6],
[7] before LDA. The basic idea of PCA for dimension reduc-
tion is to keep the (top n) largest nonzero eigenvalues and the
corresponding eigenvectors for LDA. The idea of this approach
is correct from image compression point of view; keeping
the largest nonzero principal components means that we keep
most of the energy (information) of that image by projecting
into lower dimension subspace. However, from the pattern
classification point of view, this argument may not be true. The
main reason is that, in pattern classification, we would like to
find a set of projection vectors that can provide the highest
discrimination between different classes. Therefore, choosing
the largest principal components as the bases for dimension-
ality reduction may not be optimal. Along this line, Zhao et al.
[16] and Pentland et al. [21] proposed to remove the largest
three eigenvalues for representation. A lot of experiments have
been performed to support this argument, but the theoretical
justifications are not enough. The second approach is adding
a small perturbation to the within-class scatter matrix [22],
so that it becomes nonsingular. The idea is nice, but physical
meaning and further analysis have not been given. The third
approach is utilizing the pseudo-inverse of the within-class
scatter matrix to solve the S3 problem [23]. The computation
of this approach can be processed by QR decomposition [23],
and it has been proved that the solution to the eigenproblem
on LDA QR is equivalent to the one on generalized LDA. The
nullspace method [3] is another approach. The basic idea of
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this approach is to reduce the searching space in a particular
subspace. Usually null space of the within-class scatter matrix
or range of between-class scatter matrix is used.

It is known that dimension reduction in LDA is important.
A poor strategy may lead to lost information and a poor recog-
nition may emerge. This paper focuses on the first approach as
mentioned. In particular, we would like to address the following
questions.

1) PCA is typically used for dimension reduction. Why it
can be used in LDA?

2) The popular methods select the N largest principal com-
ponents for dimension reduction, but what about the
smaller ones? Can they be used? How to use?

This paper develops a framework of dimension reduction for
LDA, and the contributions include the following.

1) A rigorous mathematical theory, which proves the fea-
sibility of the PCA, used as a process of dimensional
reduction for LDA, is developed.

2) We found that some smaller component principals are
also important, and they sometime greatly contribute to
the accuracy of recognition. Along this line, a new prin-
cipal component selection method named GA-PCA is
developed.

3) Integrating the GA-PCA in LDA method, a new LDA-
based algorithm, called GA-Fisher, is developed.

4) Many experiments with two widely accepted measure-
ments, namely Cumulative Match Characteristic (CMC)
and Receiver Operating Characteristic (ROC), are used
for evaluation. The experimental results support our
arguments.

The outline of this paper is as follows. Section II provides the
general background on LDA and Fisherface. In Section III, we
perform an analysis on dimension reduction and develop a new
PCA Dimension Reduction Theorem, called PCA-DRT. Based
on PCA-DRT, Section IV proposes a new model of dimension
reduction technique, namely GA-PCA, and its application to the
LDA-based face recognition, namely GA-Fisher, is introduced
in Section V. An interpretation on Fisherface will be discussed
in Section VI. Experimental results are reported in Section VII.
Finally, conclusions are given in Section VIII.

II. BACKGROUND OF LDA AND FISHERFACE

Let us consider a set of samples in the n-dimensional image
space , and assume that each image belongs to one of the

classes . Let us also consider is the
number of samples in class is the

mean image of class is the
mean image of all samples.

Then, the within-class scatter matrix is defined as

(1)

the between-class scatter matrix is defined as

(2)

and total-class scatter matrix is defined as

(3)

If is not singular, LDA (also known as Fisher Linear
Discriminant [15]) tries to find a projection

that satisfies the Fisher criterion

(4)

where are the eigenvectors of corre-
sponding to largest eigenvalues .

However, if is singular, the inverse of does not exist.
In turn, Fisherface is usually adopted. Fisherface makes use
of PCA to project the image set to a lower dimensional space

so that within-class scatter matrix is nonsingular and then
applies the standard LDA.

The optimal projection of Fisherface is normally given
by

(5)

(6)

(7)

(8)

where are the eigenvectors corresponding to
largest positive eigenvalues of .

III. ANALYSIS ON DIMENSION REDUCTION AND PCA
DIMENSION REDUCTION THEOREM (PCA-DRT)

This section is divided into two parts. First, we do some anal-
ysis on using PCA for dimension reduction. In the second part,
we develop a PCA dimension reduction theorem.

A. Analysis

The use of PCA for dimension reduction in the Fisherface
(PCA LDA) has two purposes. First, when small sample size
problem occurs, becomes singular. PCA is used to reduce
the dimension such that becomes nonsingular. The second
purpose is that even though there is no S3 problem, the use of
PCA for dimension reduction in the Fisherface (PCA LDA) is
to reduce the computational complexity. This paper focuses on
the S3 problem. In fact, our proposed method is generic can be
served as second purpose as well.

PCA is a standard decorrelation technique and derives a set
of orthogonal bases. In recent years, it has been suggested that
the largest rank principal components are selected,
and the corresponding eigenvectors have been selected as the
bases. This would satisfy the minimum mean squared error cri-
terion. However, from pattern classification criterion, are there
any contributions from the smaller principal components?
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From (3) and (6), it can be determined that

where can be viewed as the distance of within-
class to which contributes, and is the dis-
tance of between-class to which contributes. When
closes to zero, both and tend to
zero.

The FERET database with ten persons and three training
images/person is used to perform an experiment as an example.
Fig. 1 plots a graph of index of principal component
(x-axis) against values of
(y-axis). The smaller the index represents the principal com-
ponent with larger eigenvalue.

Although PCA has been employed in face recognition tech-
nology for more than 15 years, to the best of our knowledge,
there is no rigid algorithm for determining which principal
component(s) should be used for face recognition. The most
popular guideline is to select the top n largest principal com-
ponents for LDA. As an example, one would select the largest
20 principal components as shown in line L1. However, Fig. 1
shows that even is larger than 20, there exists a value of

(e.g., 21, 22, 23, 25, 27),
which is larger than that in the range of 15 and 20. This intuitive
observation indicates that some of the smaller principal com-
ponents have better balance on maximizing the between-class
distance while minimizing the within-class distance than the
selected large principal components. Therefore, a strategy for
selecting some smaller principal components as the bases is
required.

To find the strategy, the first important point is to guar-

antee that after PCA projection, will
be nonsingular. A simple mathematical inequality shows that
rank rank rank . There-

fore, there is a possibility that is still singular after PCA
dimensionality reduction. A simple example to illustrate this
practical problem is shown in Appendix C. This example shows
that not all combinations of the principal components guarantee

that is nonsingular. Because of this, we develop a PCA

Dimension Reduction Theorem to ensure that could be
nonsingular with selected principal components so that PCA
can be used for dimension reduction in LDA.

B. PCA Dimension Reduction Theorem (PCA-DRT)

Theorem PCA-DRT: Let rank rank ,
using singular value decomposition, we get

, where
diag . If

, then there exists such that
# is nonsingular, and rank # rank ,

where is a positive integer, and
for any .

Detailed proof of Theorem PCA-DRT is shown in
Appendix A.

Remark 1: The requirement in the PCA-DRT theorem
can be removed. By Lemma 2 mentioned in Appendix A, it is

Fig. 1. Values of (w S w )=(w S w ) (y-axis) vs. index i =
1; 2; . . . ; 29 of eigenvalues (x-axis).

easy to obtain rank rank ; therefore,
rank rank has no doubt.

Remark 2: This theorem tells us that selecting the largest
eigenvectors of may not always guarantee that the within-
class scatter matrix is nonsingular after reducing the dimension.
Appendix D gives an example to show that it is not always true
from the mathematical point of view. In turn, we will provide a
more sensible interpretation in Section VI.

Remark 3: It is easy to conclude that one can select
principal components as bases so that the dimensionality of
within-class matrix can be reduced to , and the within-class
matrix is nonsingular in the new space.

This theorem tells us that if we want to use PCA to reduce the
dimensionality, some eigenvectors corresponding to the smaller
eigenvalues of may be selected.

IV. GA-PCA: SELECTION OF PRINCIPAL COMPONENTS

USING GENETIC ALGORITHM

As discussed in the previous section, we need to find a subset
of principal components to reduce the dimension. Although Re-
mark 3 shows that we can reduce the within-class scatter ma-
trix to any dimension smaller than rank , this paper
would like to reduce its dimensionality to because we believe
that less dimensionality may lose some discriminant informa-
tion. The most popular method is to select the largest principal
components (also analyzed in Remark 2). However, PCA-DRT
Theorem shows that the selection may be not unique. We can
add some smaller principal components while removing some
larger principal components. Small principal components may
contain useful information for recognition.

The Genetic Algorithm (GA) has been widely used in the pat-
tern recognition, feature selection [11], [12] and face recogni-
tion [14]. A survey of genetic algorithm has been published in
[8]. In this section, we propose a methodology to use the Ge-
netic Algorithm (GA) to select out of rank principal
components of as the bases for dimension reduction based
on PCA-DRT theorem, called GA-PCA. GA-PCA is driven by
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a fitness function in term of generalization ability, performance
accuracy, and the penalty item. Details are discussed as follows.

A. Chromosome Representation

We use one bit to indicate whether the principal component
is selected. Let be the chromosome representation
and , taking value of 0 or 1. If , the th
principal component is selected; otherwise, it is not. Thus, the
length of the chromosome is .

B. Genetic Operators

GA finds the solution via some operators driven by a fitness
function. The operators are selection, crossover, and mutation.
In this paper, we use the following.

1) Mixture selection–Building up the mating set by a two-
step selection: We first retain some best chromosomes
from the parent group, and then, a proportionate selection
process is implemented to select the others.

2) Two-point crossover: Pair the chromosomes in the
mating set stochastically; then, randomly select two
crossover points and implement the exchange procedure
between the crossover points. However, the exchange
procedure is not simply exchanging their genetic infor-
mation between the crossover points. Based on the idea
similar to [17], a process of random selection between
the crossover points is implemented, while guaranteeing
that the number of selections between the crossover
points of each chromosome retained no change. The
specific model is designed as follows.

Suppose and are two chromo-
somes. Let and are two crossover points for and ,
respectively. We can classify the pair , where

, into 2 sets, i.e., , where

Without loss of generality, we assume that
. Fig. 2(a) shows the parts of a pair chromosomes that are

located between the crossover points before the crossover oper-
ation.

Let . It is obvious that
and .

Fig. 2(b) shows the parts of a pair of chromosome corre-
sponding to (a) after the crossover operation and (b) is obtained
as follows:

We first retain the pair bits in set in the same place re-
spectively, i.e., , and let the
other bits be 0, i.e., .

Fig. 2. Parts of a pair chromosome that locate between the crossover points.
(a) Before crossover. (b) After crossover.

Second, randomly select a subset from the
set , and let

, where .
Finally, let

.
It is clear that selection operator operates on the set only.
The key idea is that we want to retain the number of selected

principal components in each section of the chromosome be-
tween the crossover points so that the crossover operator does
not change the number of selected principal components in any
chromosome.

3) Adaptive probability mutation: Each bit of the chromo-
some would be changed by the decision on the mutation
rate, where the mutation rate is adaptive. We change the
bit by changing from 1 to 0 or vice versa. Once we re-
move or add one principal component, we randomly add
or remove a different one so that the total number of se-
lections remains unchanged.

C. Fitness Function

Given a set of principal components , denote

(9)

and as the eigenvalues corresponding to
. Denote

diag (10)

Fitness function plays a crucial role in choosing offspring
for the next generation from the current generation. It evaluates
the fitness values of chromosomes, which are important for
GA to select the better ones at each generation. Note that the
PCA-DRT theorem is a fundamental theorem of the principal
component selection. Based on PCA-DRT, the fitness function
for principal component selection is defined as (11), shown
at the bottom of the page, where is the generalization
term, is the performance accuracy term, and
is the penalty term. serves as the scatter measurement
of different classes; serves as performance indicator
of the recognition system, and is a penalty function
taken as a constraint on the selection. Generally speaking,

if satisfies theorem PCA-DRT
otherwise

(11)
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aims to select the principal components that have better
generalization at the dimension reduction step. For the sake of
the fact that the subjects outside the training set are unknown
in the training procedure, the value of is based on the
training set and provides an evaluation of the output of the
specific system. Therefore, is a trade-off function among

and . In our experiment, the specific forms
of , and are designed below, provided that

satisfies the PCA-DRT theorem.
As PCA is a decorrelation technique, the mutual relationship

between each principal component is statistically uncorrelated.
Hence, to evaluate , we consider combinations of dif-
ferent principal components on the generalization.

Let be a face image. After dimension reduction, becomes
; the mean image of class becomes ; the

mean image of all samples becomes , where we still
use as the symbol of the set of classes after dimension
reduction. Let

(12)

It is pointed out that Mahalanobis distance performs better
in the standard norm [10]. To measure the generalization
ability, the distance between and is defined by

(13)

Taking the Mahalanobis distance, is designed as

(14)

However, selecting too many smallest ones may be risky in
that is still singular after dimension reduction. This
scenario is discussed in Appendix C. Therefore, if and

are the same, we would like to choose the one that con-
tains more larger principal components, where are two
candidates of selected principal components.

In this case, a penalty function is needed. Let

SE (15)

Then, we define the penalty function as

(16)

where is the threshold of SE and is the parameter that
may affect the convergence of the GA and the weight of .
If is too large, the GA will be premature and may not get the
optimal result; it will also increase the weight of in (11).
If is too small, it results in a longer computational time to get
the optimal result, and will play a minor role.

The rest is to design . Generally speaking, from (11),
the value of evaluates the output of complete system,
based on the training set. In this paper, GA-PCA is used as a di-
mension reduction procedure for LDA (see a detailed descrip-
tion in Section V). Therefore, can be interpreted as an
evaluation function of the LDA performance. In this paper, we
found that the LDA-based recognition system is well trained,
which means that for both databases (FERET and CMU PIE),
the recognition performance for images inside training set is al-
most 100%. In order to reduce the computational burden and
simplify the procedure, we set for all experiments

in this paper. However, it must be pointed out that may
be a variable for other applications that employ GA-PCA. Fi-
nally, the optimal principal components selection evolves from

(17)

V. GA-FISHER

A. What Is GA-Fisher?

By virtue of the PCA-DRT Theorem and the GA-PCA al-
gorithm, we have selected a set of principal components for
dimension reduction. In this section, we combine the selected
eigenvalues/eigenvectors with a whitening procedure to develop
a GA-Fisher method for face recognition. Moreover, we have in-
vestigated that results of the GA-PCA algorithm would facilitate
a fast calculation for LDA after dimension reduction. Details are
discussed as follows.

The GA-Fisher algorithm is described as follows.

1) Calculate the eigenvectors corresponding to largest
eigenvalues of , where rank . Suppose
the eigenvectors are and their corre-
sponding eigenvalues are .

2) Use GA-PCA discussed in Section IV to select
rank principal components. Suppose

are finally selected and are
eigenvalues corresponding to them. Let

diag

.
3) Process a whitening procedure, i.e.,

4) Compute

5) Let . Then, is the
optimal projection for GA-Fisher.

B. Whitening Procedure

1) Why Is a Whitening Procedure Added?: From the Maha-
lanobis distance between and defined in Section IV, we
have

where .
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Hence, the whitening procedure is automati-
cally included if Mahalanobis distance is employed.

2) Fast Computation on LDA Procedure: This section re-
veals that GA-PCA can facilitate a fast algorithm for GA-Fisher
in calculating the in step 4 in Section V with the whitening
procedure.

For convenience, we redefine , and let
, and

.

These notations are also used in the following part and in
Appendix B.

It is obvious that is nonsingular by the PCA-DRT
Theorem. In the traditional LDA procedure, we need to cal-
culate the LDA transformation matrix

via ,
i.e., , where diag

.
However, we propose to do it in another way using the fol-

lowing theorem.
Theorem Fast Computation for LDA: Suppose is the

eigenvector of corresponding to the eigenvalue ,
then it is a sufficient and necessary condition that is the
eigenvector of corresponding to the eigenvalue ,
and if then takes value in (0, 1).

To proof the Theorem, we need the following propositions.
Proposition 1:

1) If any is the eigenvector of corresponding to
the eigenvalue , then is exactly the eigenvector of

corresponding to the eigenvalue .
2) If any is the eigenvector of corresponding to

the eigenvalue , then is exactly the eigenvector of
corresponding to the eigenvalue .

The proof of the Proposition 1 is given in Appendix B.

Now let us prove Fast Computation for LDA Theorem. By
Lemma 4 in Appendix B, any eigenvalue of is not less
than zero. Therefore by using Proposition 1, we can conclude
that any eigenvector of corresponding to the eigen-
value being larger than 0 is the same eigenvector of cor-
responding to the eigenvalue being larger than 1.

Since is nonsingular, can be decomposed into
with as a positive definite matrix, and .

Hence, we get .
Comparing with , we

get the following conclusion.
Proposition 2:

1) If any is the eigenvector of corresponding to the
eigenvalue , then is exactly the eigenvector of
corresponding to the eigenvalue .

2) If any is the eigenvector of corresponding to the
eigenvalue , then is exactly the eigenvector of
corresponding to the eigenvalue .

Combining Propositions 1 and 2, the Fast Computation for
the LDA Theorem is obvious.

Fig. 3. Face recognition using GA-Fisher.

From now on, we can solve

by calculating the eigenvectors of corresponding to the
eigenvalues in (0, 1).

C. Face Recognition System Using GA-Fisher

Using the GA-Fisher method described above, a complete
system is developed. The block diagram of the GA-Fisher face
recognition system is shown in Fig. 3. First of all, given a set of
training images, PCA is employed, and then, we get a set of prin-
cipal components. Applying the GA-PCA algorithm reported in
Section IV, a selected set of principal components and the corre-
sponding eigenvectors are obtained. Then, we can perform the
dimensionality reduction with the whitening transformation. Fi-
nally, based on the description in Section V, we can determine
the optimal projection matrix of GA-Fisher for face recognition.

VI. FURTHER INTERPRETATION ON FISHERFACE

In Section III, Remark 2 of the PCA-DRT Theorem points
out that we need experience or extra information in selecting
the largest eigenvectors of for dimensionality reduction in
Fisherface. Below, an additional interpretation is provided.

From the analysis in Section IV, as we set in our
experiment, the fitness function of GA-PCA for LDA becomes

, if satisfies the PCA-DRT Theorem, and
SE . is bounded. From Section V,

we get

where , and
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Fig. 4. Some images from larger subset of FERET database.

Using (2), we get

Therefore

Therefore, if is large enough and tends to zero, the
value dominates in the fitness function. In that case,
GA PCA LDA becomes Fisherface if satisfies The-
orem PCA-DRT. Therefore, Fisherface is a special case of
GA PCA LDA. This further explains why the Fisherface
selects the largest principal components of as a basis for
dimension reduction.

VII. EXPERIMENTAL RESULTS

The results presented in this section are divided into three
parts. First, we will use FERET database with smaller dataset
to demonstrate the procedures and details of the proposed
GA-PCA and GA-Fisher algorithms. We also show the
probability curve showing that selecting smaller principal
components always happens in GA-PCA. In the second part,

we will evaluate the performance of GA-Fisher using FERET
database with larger dataset. Finally, we will use CMU PIE
database to evaluate the GA-Fisher performance for pose and
illumination variations.

Two widely accepted measurements, namely Cumulative
Match Characteristic (CMC) and Receiver Operating Charac-
teristic (ROC), are used for evaluation.

A. Database and Parameter Setting

1) FERET Database: The FERET database will be used in
the first two experiments. In the first experiment, in order to il-
lustrate the procedure of our method, we select a smaller dataset,
which includes 72 people and six images for each individual.
In the second experiment, we have a larger dataset with 255
individuals, and each person has four frontal images with dif-
ferent illuminations, face expressions, ages, and they are with
or without glasses [9]. All images are extracted from four dif-
ferent sets, namely, Fa, Fb, Fc, and duplicate [9]. All images are
aligned by the centers of eyes and mouth, which are given in
the database and then normalized with the resolution 92 112.
Some images of the larger subset of the FERET database are
shown in Fig. 4.

2) CMU PIE Database: The CMU Pose, Illumination, and
Expression (PIE) [18], [24] database consists of 41 368 images
of 68 people. Each person has images captured under 13 dif-
ferent poses and 43 different illumination conditions and with
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TABLE I
CONSTRUCTION OF SUBSETS OF CMU PIE

Fig. 5. Some Images of each subset from CMU PIE database. (a) Subset-1. (b) Subset-2. (c) Subset-3. (d) Subset-4. (e) Subset-5.

Fig. 6. Performance on small subset of FERET database. (a) Identification performance of GA-Fisher versus Fisherface. (b) Verification performance of GA-Fisher
versus Fisherface. The false accept rate axis of ROC is on a logarithmic scale.

four different expressions. In this paper, we classify the images
into five subsets based on their poses, namely, fontal view, half
right profile, half left profile, full right profile, and full left pro-
file, with background (neutral illumination) turned off or on, as
shown in Table I. The images of these subsets come from cam-
eras that have flashed, except the one with neutral illumination.
The images are normalized to the resolution of 60 by 80. Fig. 5
shows some of the images in each subset.

3) Parameters Setting: The parameters of the fitness func-
tion and G.A. algorithm used in this paper are as follows.

1) SE , i.e., . The
values of and are determined experimentally.

2) Let the crossover rate be 80% and the mutation rate be
23% at the beginning; then, they would decrease gradu-
ally and finally reach at 70% and 3%, respectively.

3) In order to obtain the stable performance of GA, the pop-
ulation of the GA algorithm and its generation are 200
and 400, respectively.

B. Part I: Experiment on FERET Database With Small Dataset

This section mainly aims to demonstrate the procedures and
details of the proposed GA-PCA. We will present the proba-
bility of principal components selection. Two methods, namely,
Fisherface and GA-Fisher, are selected for evaluation and com-
parison. The experiment is performed as follows. Three images
per person are randomly selected for training, whereas the rest
of images are used for testing. This experiment is repeated with
ten runs. Due to the limit of length, we plot ROC curves for the
first run of the test. The average accuracy with five ranks and an
ROC curve are shown in Fig. 6. Unless otherwise stated, in this
paper, the false accept rate axis of the ROC is on a logarithmic
scale [19].

By comparing the accuracy with Fisherface (PCA LDA), the
effectiveness of GA-PCA can be seen. Employing the GA-PCA
algorithm for selecting principal components, GA-Fisher can
increase the accuracy from 87.08% to 89.63% at rank 1, and the
ROC curve also shows the superior performance of GA-PCA.
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Fig. 7. Probability of principal components’ selection during the experiment
on small FERET database.

This results show that the proposed GA-PCA is an effective
principal component selection algorithm for dimensionality re-
duction in LDA.

Moreover, we would like to report a statistic on the selection
of principal components by GA-PCA. They are recorded from
the ten runs with different training samples above. Fig. 7 shows
the percentage of principal components’ selected. The observa-
tions are as follows.

1) The largest principal components are always retained
(please note that this dataset does not contain images
with large illumination variations).

2) Around 20% of the cases select the smallest principal
components. This concludes that we should not hardcode
to remove all small principal components.

C. Part II: Experiment on FERET Database With Larger
Dataset

The FERET database with larger dataset (255 individuals,
four images per person) is selected for evaluation of the pro-
posed algorithm. In this experiment, we randomly select three
images of each person for training, and the rest are used for
testing. It is experimentally known that eliminating the first
three largest principal components for eigenface (PCA w/o 3)
is suggested to reduce the affect from illumination [7], [16].
In order to compare the methodology for dimension reduction
in LDA, three methods, namely Fisherface, Fisherface w/o 3
(PCA w/o 3 LDA), and GA-Fisher are selected for compar-
ison. The experiment is repeated for ten runs, and the average
rank accuracy is recorded and reported in Table II.

Table II shows that CMC Scores as the rank increases, and
the same conclusion as Part I can be drawn. The proposed
GA-Fisher algorithm gives the best result. GA-PCA performs
better than that of the one using PCA w/o 3 as the methodology
for dimensionality reduction.

Next, we would like to see the performance when the size of
the database changes from 50 to 255. The experiment setting is
the same as before. The results are shown in Fig. 8. It can be seen

TABLE II
CMC SCORES OF IDENTIFICATION PERFORMANCE

that both Fisherface and Fisherface w/o 3 have a more obviously
descendent trend than GA-Fisher with respect to database size
(or individual number). This concludes that GA-PCA selection
processing is less sensitive to the number of individuals. There-
fore, GA-PCA is an effective method for dimension reduction.
In turn, the proposed GA-Fisher algorithm gives the best results.

Finally, we would like to evaluate the GA-Fisher algorithm
using the Receiver Operating Characteristic (ROC). The results
are plotted in Fig. 9.

Note that a lower false accept rate (FAR) may lead to a more
secure system. From Fig. 9, GA-Fisher outperforms the other
two methods when the FAR is smaller than 0.1%. For larger
FAR, the performance of the proposed GA-Fisher gives an
equally good performance than the other two methods. This
may be due to the fact that the images variations in the FERET
database are not very large.

D. Part III: Experiment on CMU PIE Database

The CMU PIE database is a challenging face database that
consists of the pose and illumination variations. To perform the
face recognition across different poses, one aspect is to deter-
mine what kind of the pose gesture first and then to do the
recognition work based on the fixed pose [20]. In fact, many
robust pose estimation algorithms, which are not the scope of
this paper, have been developed. As described, the images in
the CMU PIE database are divided into five subsets according
to the pose variation, as this paper mainly focuses on the recog-
nition part. For each subset, we randomly selected three images
from each individual for training, and the rest of the images in
that subset are used for testing. Again, this experiment is re-
peated for ten runs, and the average rank accuracy is recorded
and tabulated in Table III. It can be seen from Table III that the
proposed GA-Fisher gives the best performance in all five sub-
sets. On the average, the proposed GA-Fisher gives 2% to 3%
improvement on both Fisherface and Fisherface w/o 3.

Finally, we would like to see the performance of the
GA-Fisher from the ROC curve. The ROC curve of each subset
of images are calculated and plotted in Figs. 10(a) to (e). It can
be seen that the proposed GA-Fisher gives the best performance
in most cases.

VIII. CONCLUSION

This paper performs a comprehensive investigation into
the principal component selection of for dimensionality
reduction. We have proposed a Principal Component Anal-
ysis Dimension Reduction Theory (PCA-DRT) to address the
problem as to why the principal components can be used to
reduce the dimensionality while guaranteeing the within-scatter



1074 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005

Fig. 8. Rank 1–5 identification performance as a function of database size. (a) GA-Fisher. (b) Fisherface. (c) Fisherface w/o 3 eigenvectors with the largest
eigenvalues.

Fig. 9. ROC curves of three methods on the FERET database.

matrix to be nonsingular after the transformation. This paper
also points out that some smaller principal components are
useful, and some larger principal components can be removed.
Along this line, we propose a new principal component selec-
tion algorithm called GA-PCA. Integrating the GA-PCA with
a whitening transformation into LDA, a new LDA, called the
GA-Fisher (GA-PCA Whitening Transformation LDA) has
been developed. GA-Fisher reveals the importance of dimen-
sionality reduction before LDA in the case of small sample
size.

GA-Fisher offers two additional advantages over existing
LDA algorithms in solving the small sample size problem. One
is the optimal basis for dimensionality reduction derived from
GA-PCA. Another is the optimization of the calculation of the
features by the LDA procedure after dimensionality reduction.
Experimental results of both identification performance and
verification performance on FERET and CMU PIE show that
GA-Fisher performs best in most cases.

Nevertheless, a new framework for principal components
selection for dimension reduction in LDA has been set up.
GA-PCA has been demonstrated to be an efficient algorithm
for principal component selection. Even if we have lots of (suf-
ficient) samples, dimensionality reduction is also needed if we
cannot afford the high computation due to high dimensionality.

APPENDIX

A. Proof of PCA-DRT Theorem

We need two lemmas in order to prove the theorem. Lemma
1 is obvious. Huang [13] has proved Lemma 2.

Lemma 1: Suppose matrix , where is a di-
agonal matrix, , and . Then,
rank rank rank rank .

Lemma 2: , where is the
nullspace of is the nullspace of and is
the nullspace of [13].

Proof of PCA-DRT Theorem: From Section II,
. Applying the singular value decomposi-

tion on , we get that satisfies ,
where

( in the small sample size problem case).
Therefore, diag

, i.e., .

Define ; then, , where
.

Next, we need to prove that rank rank . If it is
true, the proof of the PCA-DRT Theorem is straightforward.

Since and , we have the fol-
lowing relations:

rank rank (A.1)

rank rank (A.2)

It is obvious that if rank rank , then rank
rank .

Furthermore, ; then

rank rank (A.3)

In addition, we know that
. We conclude that

rank rank rank (A.4)

According to (A.1)–(A.4), in order to prove rank
rank , we need to prove

rank rank (A.5)

To prove (A.5), suppose ; then,
. Then,

will be a set of linearly independent vectors. If not, there
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TABLE III
CMC (RANK ACCURACY) FOR SUBSET 1 TO SUBSET 5 ON CMU PIE DATABASE

Fig. 10. ROC Curves of five subsets in CMU PIE database, where (a) to (e) refer to subset-1 to subset-5, respectively.

must exist a set such that , where
with some nonzero. Then, defining

, we have .
Moreover, , i.e.,

. By virtue of Lemma 2, we obtain , i.e.,
.

However,
. Since is a set of

linearly independent vectors, for any . However, it

is known that ; therefore,
, which is a contradiction.

Hence, rank rank ; then, rank
rank by (A.1)–(A.5).

Finally, # is derived from the following:

Denote ...
...
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since ; therefore, rank rank
. Then, there exists having

, and for any , such that
rank .

Thus

...

rank

i.e., .
Denote #

. Then, # , therefore
rank # rank . This finishes the proof.

B. Proof of Proposition 1

This section follows the notations defined in Section V. To
prove Proposition 1, we need to introduce two lemmas (proof
will be given).

Lemma 3: is symmetrical matrix and
, where is an unit matrix with rank .

Proof: Since , we have the following.
,

i.e., .
Therefore, .
Since is a symmetrical and positive definite matrix, it

yields , where is an orthogonal matrix,
and diag .

Therefore, , which indicates that
is symmetrical so that is a

symmetrical matrix. This finishes the proof.
Lemma 4: Suppose is any eigenvalue of . Then,

.
Proof: Note that from Lemma 3, we obtain

. Suppose is the eigenvector of corre-
sponding to the eigenvalue . Then, we have

Furthermore, we obtain

Let

Therefore, , and hence, is the eigenvalue
of . Moreover, we obtain

Therefore, is a semipositive definite matrix, implying that
. This finishes the proof.

Now let us begin to prove Proposition 1.

Proof of Proposition 1: Let be an eigenvector
of that corresponds to the eigenvalue , i.e.,

. From Lemma 4, we know that ,
and from Lemma 3, we get

Thus, .
Therefore, any that is the eigenvector of corre-

sponding to the eigenvalue is exactly the eigenvector of
corresponding to the eigenvalue .

This finishes the proof of the first case. The proof of the
second case is easy and is just the inverse of the proof of the
first case.

Then, the proof of the Proposition 1 is finished.

C. Example

We use the genetic algorithm to develop the example. The
algorithm is ready made in this paper, except for a little mod-
ification. Use the model in Section IV and modify the fitness
function as follows:

rcond

where rcond is the reciprocal condition number es-
timate of matrix (just like the command “rcond” in
Matlab). We see that is just the within-class scatter
matrix after dimensionality reduction. We knowthat if
is well conditioned, rcond is near 1.0. If is
badly conditioned, rcond is near 0.0. Therefore, if

becomes singular, then rcond will be very
small, and will be large.

This model works on a subset of FERET, which consists of 72
objects and three training images per person. The crossover rate
and mutation rate are set to be 80% and 23%, respectively, at the
beginning, then decrease gradually, and finally reach at 70% and
3%, respectively. The population and generation of GA are 100
and 200, respectively. The experiment has been run many times
with different training lists, and in some cases, we have found
some basis that would make singular. An instance of
the order of principal components selected in our experiment is
[1 3 4 5 7 9 11 13 14 15 16 17 18 19 21 23 24 27 32 33 34 37
38 40 42 48 49 50 51 52 53 55 57 61 62 63 64 65 66 67 68 70
72 73 75 76 77 79 80 81 82 83 84 86 88 89 90 91 93 94 96 97
98 99 100 101 105 106 107 108 109 110 111 113 114 115 116
117 119 120 122 123 124 125 127 128 129 130 131 132 138
139 140 142 145 146 147 148 149 151 152 155 157 159 160
161 163 164 165 167 168 169 170 174 176 177 179 182 183
185 186 187 188 189 190 191 192 193 194 195 196 197 199
200 201 202 203 206 207 209 210 211 213 214];

We see that there are 144 principal components selected,
where rank . Using Matlab, we have calculated that

rank

where size and rank are commands in Matlab.
In addition, Matlab’s warning message is that when calcu-

lating the inverse of :
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Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. rcond .
We see that is really singular after dimensionality

reduction, at least from the computation point of view.
In conclusion, this experiment also tells us why theorem

PCA-DRT is needed.

D.

This example focuses on the mathematical operation.
Let

It is satisfied that rank rank
rank and is obvious that is singular. We know

that the eigenvalue of is either 0 or 1 and that
are

eigenvectors corresponding to eigenvalue 1, where they are
linearly independent.

If , then

is still singular after dimensionality reduction. If

, then rank

rank , and therefore, exists.
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