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Abstract. Annotations delineating regions of interest can provide valu-
able information for training medical image classification and segmenta-
tion methods. However the process of obtaining annotations is tedious
and time-consuming, especially for high-resolution volumetric images. In
this paper we present a novel learning framework to reduce the require-
ment of manual annotations while achieving competitive classification
performance. The approach is evaluated on a dataset with 59 3D opti-
cal projection tomography images of colorectal polyps. The results show
that the proposed method can robustly infer patterns from partially an-
notated images with low computational cost.

1 Introduction

Optical Projection Tomography (OPT) microscopy is a relatively new 3D imag-
ing modality [7]. It has an effective resolution of 5µm to 10µm and is ideally
suited for specimens between 0.5 mm and 10 mm. Recently OPT has been used
to image colorectal polyps. The analysis of these images is currently performed
visually and the classification of polyps exhibits variability depending on the
experience and awareness of the experts [4]. We investigate automated analysis
of polyp regions to assist pathologists in colorectal cancer diagnosis.

To model the underlying patterns of image regions, accurate annotations are
desirable. However the volumetric images of polyps are large (10243 voxels);
while high resolution brings us considerable detail, difficulty arises in obtaining
annotations. In our dataset, a polyp typically extends across 700 ∼ 800 slices
and about 0.5 billion voxels in total. Fully delineating 3D regions slice by slice
is tedious and time-consuming.

In this paper we investigate an alternative approach based on partial, sparse,
incomplete annotations. We propose a learning framework for partially anno-
tated OPT images, for the task of classifying dysplastic changes in colorectal
polyps. More specifically, the objective in this paper is to discriminate between
image patches that contain low-grade dysplasia (LGD) and image patches that
contain invasive cancer. This is a first step towards the goal of automated polyp
analysis.
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(a) (b)

Fig. 1. OPT colorectal polyp images with (a) region annotation and (b) partial anno-
tations.

Different forms of partial annotation can be appropriate for different image
modalities and applications. In this paper, we consider partial annotations con-
sisting of just one click or a few clicks in the 3D polyp region of interest (as shown
in Fig. 1(b)) as an alternative to the stronger annotation shown in Fig. 1(a). The
annotation effort required is quite different. Our goal is to reduce the annota-
tion efforts while achieving good classification performance. In addition, learning
should scale well making it suitable for high-resolution volumetric images.

In [4] local features for patch and region classification of OPT images were
compared. Here we focus on the model learning aspect of the task. Our method
falls into the broad category of weakly supervised classification. At one extreme
of this category, annotation is performed only at the image level in which case
Multiple Instance Learning (MIL) has been adopted. In MIL, a sample is clas-
sified as positive if at least one of the instances is classified as positive. Dundar
et al. [2] proposed a large margin based approach for pathology slides. It shared
some similarity to this work however the prediction was at image level. In [8]
MIL was adapted to classify and segment histopathology images. Doyle et al. [1]
applied active learning to detect cancer regions with histopathology annotations.
Our approach is to leverage spatial annotation but to keep annotation simple,
sparse and thus fast to perform.

2 Methods

In supervised classification settings, locations outside annotated regions are usu-
ally ignored during training because the corresponding class labels are considered
unknown. However, for images annotated with a partial annotation protocol, the
annotations carry information about the class membership at unannotated loca-
tions. We refer to 3D windows as patches. Patches in the training set at locations
with annotated (known) class labels are referred to as reference patches. Patches
near to them (in terms of displacement or distance in feature space) are referred
to as candidate patches. In this paper, we consider an extreme form of partial
annotation consisting of point locations obtained via mouse clicks. We introduce
our definition of contextual relevance, based on which we then propose a ranking
model for classification.
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2.1 Labeling Patches’ Confidence

First we assign confidence labels to candidate patches. Consider a reference patch
Sr sampled at an annotated location zr labeled as yr ∈ {1,−1}. The patch Sk

sampled at location zk will have a lower confidence label yk. yk can be set to:

yk = a(Sk,Sr) yr, (1)

where a( · , · ) ∈ (0, 1] is a measurement of affinity between two image patches.
The absolute value of yk can be viewed as a confidence measurement.

As patches sampled at locations near to each other usually belong to the same
class, the reference patch of Sk can be set as the nearest annotated patch Sr.
Affinity a( · , · ) is set as a Gaussian function with regard to spatial displacement
of Sk and Sr in the image and a scaling parameter σ, i.e.:

a(Sk,Sr) = exp(−‖zk − zr‖2

σ2
). (2)

Another way to define a( · , · ) is to consider similarity in image feature space.
Assuming feature xr is extracted from reference patch Sr and xk from Sk, we
can alternatively define the function as:

a(Sk,Sr) = exp (−‖xk − xr‖2

δ2
). (3)

Note that a( · , · ) can be extended to use multiple reference patches. Here we
assign only one (the nearest) reference patch for each candidate patch.

2.2 Contextual Relevance Ranking Model

Let xi ∈ IRd, i = 1, · · · , N denote a feature vector extracted from an image
patch indexed by i. We assign the label yi ∈ {1,−1} if the ith feature vector is
from a reference patch; otherwise we set yi according to formula (1). We form
the ranking model by optimizing a regularized margin-based problem:

min
w, b

λ

2
||w||2, (4)

s.t.
1

yi
(wTxi + b) ≥ 1, ∀xi ∈ X, (5)

wTxi −wTxj ≥ Rij , ∀xi ∈ X+,xj ∈ X−, (6)

where X+ = {xk : 0 < yk < 1} and X− = {xk : −1 < yk < 0}. Rij is the
pairwise contextual relevance of two patches Si and Sj :

Rij =
a(Si,Sir)a(Sj ,Sjr)

a(Si,Sir) + a(Sj ,Sjr)
, (7)

where the patches Sir and Sjr are the reference patches of Si and Sj respectively.
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Fig. 2. Geometric interpretation of contextual relevance ranking model. w is the weight
vector; point k is a feature vector extracted from a reference patch. r refers to the
differences of ranking score between data point k and points in the other class (projected
along the direction of w). Constraints in formula (5) were designed for minimizing
classification error; constraints in formula (6) were designed for optimizing ranking
difference r.

Constraints (5) are for all feature vectors in the training set. Note that in (5)
features from candidate patches yk are loosely constrained compared to their
reference patches yr ∈ {−1, 1} because |yk| ∈ (0, 1). Constraints (6) are rankings
of a pair of patches from two images with regard to their contextual relevance.
We argue that patches sampled nearer to annotated locations (in terms of image
location or location in feature space) should be classified with a larger score,
i.e., further away from decision boundaries. The constraints keep the projected
distance between any data point with high magnitude in y and the data in the
opposite class large. In the case that pair (xi, xj) is labeled with certainty, i.e.,
yi = ±1 and yj = ±1, the pairwise constraint (6) vanishes due to constraint (5).
Fig. 2 illustrates the geometric interpretation of this model.

Given a fixed training set, the optimization problem can be transformed into

dual form of w by constructing a new feature set with
(xi−xj)

Rij
. Then this can

be solved by any SVM dual form solver, e.g. LIBSVM, SVMlight. However, this

method is very slow and constructing feature set
(xi−xj)

Rij
across all the pairwise

constraints is infeasible for our problem because the set of candidate patches is
large. Here we tackle the primal form directly with a recently proposed efficient
stochastic gradient method, SAG [6]. This method enables us to learn features
online and with minimal storage cost.

To solve the optimization problem we minimize function (4) while controlling
constraint violations in (5) and (6). Combining them together the risk function

J(w, b) on training features {xi}Ni=1 and labels {yi}Ni=1 can be written as:

J(w, b) =
λ

2
||w||2 +

1

N+N−

∑
xi∈X+

∑
xj∈X−

(fi + fj + Cgij); (8)

where: fi = f(
1

yi
(wTxi + b)), fj = f(

1

yj
(wTxj + b)), (9)

gij = g(wTxi −wTxj −Rij). (10)
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Fig. 3. Demonstration of loss functions (left to right): (1) squared hinge loss f(t), (2)
Huber loss gh(t), (3) smoothed hinge loss gs(t).

The loss term f( · ) corresponding to constraints (5) is squared hinge loss:

f(t) = max(0, 1− t)2; (11)

the loss term g( · ) corresponding to constraints (6) can be a Huber loss function
or a smoothed hinge loss function:

g(t) =

 0 if t ≥ 0
−2t− 1 if t < −1
t2 otherwise

, (12) g(t) =

 0 if t ≥ 0
−t− 1

2 if t < −1
1
2 t

2 otherwise
. (13)

In risk function J(w, b), parameter λ is the regularization strength; C ≥ 0
controls the trade-off between classification errors and ranking errors; N+ and
N− are the number of positive and negative samples respectively. Fig. 3 illus-
trates the loss function used in J(w, b). Squared hinge loss is much more sensitive
to outliers and large errors than the smoothed hinge loss and Huber loss. It is
applied to patch classification to ensure the risk function is sensitive to every
training label. The latter two functions are choices for the pairwise ranking er-
rors. OPT images of colorectal polyps usually involve large intra-class variations
so we expect the pairwise outliers would not dominate the risk function. There
are other loss functions that meet our requirements [5]. We chose these convex
and smooth functions as they can be efficiently integrated into SAG.

To apply SAG methods for minimizing J(w, b) iteratively, at each iteration
w is updated with an average of the gradient of a randomly selected training
pair (xi,xj) and most recently computed gradients of the other training pairs.
At the (k+1)th iteration the updating rule with a small step size αk has the
form:

wk+1 = (1− αkλ)wk − αk

N+N−

∑
xi∈X+

∑
xj∈X−

gradkij , (14)

where for the training pair (ik, jk), we set:

gradkij =

{
f ′i + f ′j + Cg′ij if(i, j) = (ik, jk)

gradk−1ij otherwise
. (15)

For the bias term b, we simply extend each feature vector with one bias com-
ponent (from x to [x; b]) in each iteration. This method has an exponential
convergence rate and with a few implementation tricks (described in [6]) we re-
duce the storage cost to O(N+N−). This allows the method to scale to large
datasets.
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3 Experiments

Data. OPT images from 59 patients acquired using ultraviolet light and Cy3
dye were used in this study. Each image was of one colorectal polyp specimen
and had 1024 × 1024 × 1024 voxels with aspect ratio 1 : 1 : 1. For each volu-
metric image, 3D regions were annotated by a trained pathologist with labels of
dysplastic change. In 30 images, regions judged to consist entirely of low-grade
dysplasia (LGD) were annotated. In the other 29 images, regions judged to con-
sist entirely of invasive cancer were annotated. During the manual annotation
process, the pathologist was asked to roughly indicate significant regions instead
of exhaustively delineating all the regions.

Experimental Setup. We evaluated two aspects of the proposed model in
terms of patch classification performance: (1) the ability to utilise unlabelled
patches, compared with not using unlabelled patches, and using unlabelled patches
naively (standard SVM); (2) the choice of loss function and affinity measurement.

In the experiments we applied 10-fold cross-validation. The dataset was ran-
domly split into 10 folds (about 3 cancer and 3 LGD images per fold); 10 itera-
tions of training and testing were performed such that within each iteration one
fold was used as test set. The performance was averaged over the 10 iterations.

Test patches were randomly sampled from annotated regions in the test sets
(about 1400 patches per fold). The partial annotation process was simulated
by randomly sampling point locations within the pathologist-annotated regions.
Candidate patches were randomly sampled outside the annotated regions in the
training set. With reference and candidate patches, three types of models were
trained:

– T1: training with only reference patches, using standard SVM. (SVM-ref )
– T2: training with both reference and candidate patches, using standard

SVM. Labels of candidate patches can be assigned with either feature-based
or location-based affinity (formula (2) or (3)). (SVM-fea and SVM-loc)

– T3: using our proposed model with both reference and candidate patches.
We evaluated four combinations of different loss functions (formula (12) and
(13)) and affinities (formula (2) and (3)). (Prop-hub-fea, Prop-hub-loc, Prop-
squ-fea, and Prop-squ-loc)

We started with a training set with only 1 reference patch and 20 candidate
patches for each training image (training set size: 1140). The models were learned
using T1, T2 and T3 methods respectively and the classification performance
was evaluated on the test patches. Then we added more reference patches and
their associated candidate patches. At each iteration 1 reference and about 6
candidate patches per image were added. Such iterations were repeated 30 times
till there were 1, 590 reference patches in the training set. At the final iteration
the number of training patches was about 12, 000.

The size of each image patch was set to 21 × 21 × 21 voxels. For feature
extraction we used Bag of Words with Random Projection since this achieved
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highest classification accuracies in [4]. The dimensionality of each feature vector
was 200. Each feature was normalized to zero mean and unit variance.

In all standard SVM evaluations we used the LIBLINEAR [3] solver that
solves the L2 regularized squared loss primal problem (with regularization pa-
rameter searched from 10−7 to 107 and eps = 0.01). In our proposed method, C
searched from 10−10 to 10−5, λ = 1

N+N− , b = 0, and the stochastic gradient step
size was set to 0.004. The scaling factors were estimated from standard deviation
of all distances (‖zk−zr‖ or ‖xk−xr‖) between reference patches and candidate
patches in the training set (σ = 158.1 in formula (2), δ = 7071.1 in formula (3)).
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Fig. 4. AUC values depending on number of reference patches with (a) location-based
affinity measurement, and (b) feature-based affinity measurement.

Results. Area Under ROC Curve (AUC) obtained when classifying patches as
LGD or invasive cancer was used as a performance measure. Fig. 4 shows AUC
values depending on the number of reference patches per training image. We list
the AUC values depending on number of reference patches per image in Table 1.

With more than 10 reference patches per image (530 reference patches, about
3,000 training patches in total) the classification performances of all the meth-
ods saturated. With both location-based and feature-based affinity the SVM-loc
method showed the same or slightly higher AUCs than the SVM-ref method. This
indicates that simply feeding uncertain patches to standard SVM does little to
help patch classification performance. The information presented in uncertain
patches was not utilized effectively by standard SVM. The proposed methods
performed relatively well with small training sets indicating that they were mak-
ing effective use of the unannotated patches. AUCs of all methods converged to
similar values.

For both affinity-based experiments, the proposed models with Huber loss
and smoothed hinge loss showed almost the same AUCs. However our grid search
of parameters showed that the best parameters C are quite different (C = 10−4

for Huber loss and C = 10−2 for smoothed hinge loss).
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Table 1. Performance comparison between standard SVM and proposed model. AUC
values(%) ± standard errors depending on number of reference patches per image.

affinity Location-based Feature-based

patches 1 2 5 10 1 2 5 10

SVM-ref 71± 2.9 72 ± 1.4 79 ± 2.3 82 ± 2.1 71 ± 2.9 72 ± 1.4 79 ± 2.3 82 ± 2.1
SVM 67 ± 2.2 69 ± 3.0 80 ± 2.2 83 ± 2.3 70 ± 2.8 71 ± 2.5 79 ± 2.8 82 ± 1.7
Prop-hub 70 ± 2.2 74 ± 2.0 81± 1.9 84± 1.6 78± 2.7 78± 2.4 84± 2.6 85± 1.9
Prop-squ 71± 2.3 75± 1.8 81± 1.8 84± 1.9 77 ± 3.0 78± 2.7 83 ± 2.7 84 ± 1.9

4 Conclusions

We have proposed a learning model for partially annotated images. The exper-
iment on a dataset of 59 OPT images showed that it is able to robustly learn
from patches with uncertain labels, achieving high classification accuracies while
reducing the annotation effort. At the same time our model can be efficiently
evaluated with only O(N+N−) in storage cost. Therefore it is suitable for high-
resolution, volumetric datasets.
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