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Abstract
Person re-identification concerns the matching of
pedestrians across disjoint camera views. Due
to the changes of viewpoints, lighting condition-
s and camera features, images of the same person
from different views always appear differently, and
thus feature representations across disjoint camera
views of the same person follow different distribu-
tions. In this work, we propose an effective, low
cost and easy-to-apply schema called the Mirror
Representation, which embeds the view-specific
feature transformation and enables alignment of the
feature distributions across disjoint views for the
same person. The proposed Mirror Representation
is also designed to explicitly model the relation be-
tween different view-specific transformations and
meanwhile control their discrepancy. With our Mir-
ror Representation, we can enhance existing sub-
space/metric learning models significantly, and we
particularly show that kernel marginal fisher anal-
ysis significantly outperforms the current state-of-
the-art methods through extensive experiments on
VIPeR, PRID450S and CUHK01.

1 Introduction
In recent years, the close-circuit television (CCTV) has

been widely deployed in public area such as hospitals, rail-
way stations, office buildings, etc. Because of economical or
privacy issue, there are always non-overlapping regions be-
tween camera views. Inevitably, re-identifying a pedestrian
who disappears from a camera view and re-appears in another
disjoint camera view is indispensable for some cross-camera
analysis like tracking or activity prediction, and such a prob-
lem is called the person re-identification.

The non-overlapping cross-view re-identification differs
conventional recognition in the same view due to the great
changes of illumination, viewpoint or camera features, so
that appearance of a pedestrian changes dramatically across
camera views. Such environmental condition inconsistency
results in view-specific feature distortion, i.e., the pedestri-
an’s appearance itself from view a and view b is transformed
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to T a(x) and T b(x) respectively, where T a and T b are un-
known distortion functions. Consequently, the features dis-
tributions of the two views are not well-aligned. Since T a
and T b are usually of complex nonlinearity, it is the fact that
P (T a(x)) 6= P (T b(x)) and P (y|T a(x)) 6= P (y|T b(x)).

In the field of person re-identification, a lot of
methods have been developed including descriptor-based
methods[Zhao et al., 2014; Yang et al., 2014; Kviatkovsky et
al., 2013] and subspace/metric learning methods[Weinberg-
er et al., 2006; Mignon and Jurie, 2012; Davis et al., 2007;
Zheng et al., 2013; Li et al., 2013; Pedagadi et al., 2013;
Xiong et al., 2014]. Descriptor-based methods seek for more
reliable descriptors across views. However, it is extremely d-
ifficult to extract robust descriptors against large appearance
changes. Subspace learning seeks for discriminative combi-
nations of features and enhances the performance, and metric
learning aims to learn a variation insensitive and discriminan-
t similarity measure between samples. However, these ap-
proaches all have an underlying assumption that all samples
are drawn from the same distribution, which becomes invalid
for matching person across disjoint camera views.

Previous approaches assume there is a uniform transforma-
tion to alleviate the feature distortions in any camera view. In
this work, we relax this assumption by learning view-specific
transform for each camera view. To derive our approach, we
start from an intuitive feature transformation strategy called
zero-padding, which augments the original features with ze-
ros in view-specific entries. In this way, the view-specific
knowledge is embedded in the augmented features and tradi-
tional subspace/metric learning can learn view-specific fea-
ture combinations. This idea is similar to [Daumé III, 2009],
which aims at domain adaptation. However, as shown in Sec.
2.1, zero-padding may extract irrelevant feature transforma-
tions of different camera views and the discrepancy between
view-specific feature transformations is not explicitly con-
trolled. This ignores the fact that albeit captured from disjoint
camera views, the appearances of two cross-view person im-
ages are still relevant.

To control the discrepancy between view-specific trans-
formations explicitly, we first generalize the zero-padding s-
trategy and introduce a novel augmented representation of
a pedestrian’s feature representation for a pair of camera
views. This achieves the discrepancy modeling on feature-
level. Secondly, we further introduce a transformation-level
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Figure 1: Illustration of the zero-padding augmentation. For visualization purpose, we only analyze one dimensional feature.
(a) visualizes the distorted feature distributions of view a and view b. (b) shows the zero-padded features (the solid blue curve
and the green curve) of both views and the aligned subspace (solid red line). The projected features are in dashed blue curve
and dash green curve. We show that with zero-padding it is possible to find a subspace that align the distorted features. Note
that in this example the distortion functions are assume to be linear, and for the non-linear case, kernel trick could be employed
for non-linear mappings. (Best viewed in color)

discrepancy by explicitly measuring the difference between
the transforms of two disjoint views. We call this the discrep-
ancy regularization. By transforming the augmented feature
to a new space, this regularization is involved in the new rep-
resentation. We call this transformed augmented representa-
tion the Mirror Representation, since it is generated by both
the original feature and the phantom feature. With the mirror
representation, we demonstrate that existing metric learning
methods can be greatly enhanced on person re-identification
across two disjoint camera views.

Our work is related to domain adaptation in machine learn-
ing. Some domain adaptation methods like [Pan et al., 2011;
Si et al., 2010; Geng et al., 2011; Xiao and Guo, 2014;
Li et al., 2014] aim at diminishing the gap between source
and target domains. However, these domain adaptation meth-
ods assume existence of the overlap between the classes of
training set and testing set so that a classifier/metric learned
from training set can be adapted to the testing one, while
for person re-identification the training and testing class-
es are non-overlapping. Our work is also different from
the transfer re-identification methods [Zheng et al., 2012;
Ma et al., 2013]. We do not address the problem of incor-
porating any other source data for transferring knowledge to
target task. Alternatively, we address a very different problem
against these re-identification work by alleviating the mis-
match of the feature distributions of different camera views.

In summary, our approach is efficient but not sophisticated,
and it is low cost and easy-to-use. Our contributions are listed
as follows:

• We propose a mirror representation to address the
view-specific feature distortion problem in person re-
identification, and then further extend it to the kernel
version;

• Based on the mirror representation, we are able to signif-
icantly enhance existing metric learning/subspace mod-
els, and we demonstrate that such a generalization ob-

Figure 2: Illustration of the feature distortion. Images of the
two rows are from different camera views on VIPeR dataset.
Note that both environment-specific distortion such as illumi-
nation conditions and person-specific distortions such as pose
and backpacks exist.

tains significant improvement on three popular datasets.

2 Approach
In this section, we propose two types of discrepancy mod-

eling to form the mirror representation. Before introduc-
ing our approach, we first present the analysis on the zero-
padding which motivates our modeling.

2.1 Zero-Padding Augmentation
To deal with the view-specific distribution mismatch prob-

lem, learning view-specific mapping is desirable for a sub-
space model. An intuitive idea is to apply zero-padding
for each view, i.e., transforming Xa to [Xa; 0] and Xb to
[0;Xb], where 0 denotes zero matrix whose size is d × na
or d × nb. Applying subspace/metric learning methods (like
MFA [Yan et al., 2007]) over such augmented features result-
s in a 2d × c projection matrix U = [U1;U2]. Projecting
the augmented features into U results in Y a = UT

1 X
a and

Y b = UT
2 X

b. SinceU1 andU2 are different, they are free to



adjust according to the feature distortion. The zero-padding
strategy can be visualized in Figure 1. Note that in this ex-
ample we use the linearity of distortion functions for demon-
stration; for more complex functions, non-linear mapping is
needed, which can be achieved by the kernel trick.

However, by using the zero-padding, one loses direct con-
trol of the relation betweenU1 andU2 on data of both views,
since U1 is always on Xa and U2 is always on Xb as
shown above. In person re-identification, the view-specific
distortion consists of two types, namely the environment-
specific and person-specific feature distortions (see Figure
2). The environment-specific feature distortion concerns en-
vironment change such as change of lighting, view point and
camera features, and the pedestrian-specific feature distortion
concerns the appearance’s change of a person himself/herself.
No matter which type of distortion, there is relation between
the same distortions across camera views. Without explicit-
ly embedding the relation between U1 and U2, the extracted
view-specific transforms of two disjoint views may be irrel-
evant, and thus an inferior re-identification performance will
be gained as shown in our experiment.

2.2 A Feature-level Discrepancy Modeling
Formally, the zero-padding augmentation could be rewrit-

ten as:

Xa
aug = [I,0]TXa, Xb

aug = [0, I]TXb (1)

where I is an identity matrix and 0 is a zero matrix.
Note that the feature transformation matrices [I,0] and

[0, I] are totally orthogonal, since [I,0]T [0, I] = 0, and thus
the mapping functions are irrelevant. To impose restriction on
the discrepancy of two mapping functions, we generalize (1)
to:

Xa
aug = [R,M ]TXa, Xb

aug = [M ,R]TXb (2)

Thus the mapping functions are also generalized to:

fa(Xa) = UTXa
aug = (RTUT

1 +MTUT
2 )Xa

fb(X
b) = UTXb

aug = (MTUT
1 +RTUT

2 )Xb (3)

Note that in this generalized version, the discrepancy of
mapping functions is determined by either the discrepancyR
and M or U1 and U2. Note that the feature transformation
matrices [R,M ] and [M ,R] do not need to be orthogonal.
We can define R and M so that the discrepancy between
fa(·) and fb(·) can be measured. In this way, the discrepancy
of mapping functions is explicitly controlled/parameterized
on the feature-level. Let r be the parameter that controls the
discrepancy of [R,M ] and [M ,R]: when r = 0, the dis-
crepancy is minimized and [R,M ] is identical with [M ,R];
when r = 1, the discrepancy is maximized and (2) is reduced
to the zero-padding; when 0 < r < 1, the discrepancy in-
creases as r increases. Therefore, we design theR andM as
follows:

R = 1+r
z I

M = 1−r
z I

(4)

where z is the normalization term.
The choice of z affects the relation between r and the dis-

crepancy of feature transformations when 0 < r < 1. Empir-
ically, we find that choosing z as the L2 normalization, i.e.,

z =
√

(1− r)2 + (1 + r)2, resulting in satisfying perfor-
mance. Theorem 1 shows the relation between r and the dis-
crepancy of the feature transformations, which is measured
by the principle angles as detailed later. This theorem shows
that the principle angle is a monotonic function of r.
Theorem 1. Under the definition of (4) and let z =√

(1− r)2 + (1 + r)2, all the principle angles of [R,M ]T

and [M ,R]T are

θ = arccos(
2

r2 + 1
− 1) (5)

proof. Let uk ∈ span([R,M ]T ) and vk ∈
span([M ,R]T ), then the k.th principle angle is defined as:

cos(θk) = maxuTk vk
s.t. uTk uk = 1

vTk vk = 1
uTi uk = 0 vTi vk = 0 where i 6= k

(6)

Note that uk and vk can be represented as uk =
[R,M ]Thk and vk = [M ,R]T lk where hk and lk are d×1
unit vectors, uT v can be induced as follows:

uTk vk = hTk (RTM +MTR)lk
= 2(1−r)(1+r)

(1+r)2+(1−r)2h
T
k lk

= ( 2
r2+1 − 1)hTk lk

(7)

Since hk and lk are unit vectors, then maxhTk lk = 1 for
k = 1, 2, . . . , d.

2.3 A Transformation-level Discrepancy Modeling
In the last section, we measure the discrepancy of map-

ping functions in the feature level. From (3), we find that
the discrepancy can be further controlled by restricting the
difference between U1 and U2, which can be achieved by
forming a regularization term for minimization. Such a regu-
larization is complementary to the feature-level augmentation
introduced in the last section, since it is on the transformation
level when applied our approach to existing models.

More specifically, we form ||U1 − U2||2 as a regular-
ization term for minimization, which can be further repre-
sented as UTBU where B = [I,−I;−I, I]. By fur-
ther combining with the ridge regularization λ′UTU , i.e.
UTBU + λ′UTU , the proposed regularization term can be
re-expressed λUTCU where C = [I,−βI;−βI, I] and
β = 1

1+λ′ < 1. We call this regularization term the View
Discrepancy Regularization.

Now we show that one can perform a matrix transform
to integrate this regularization, so that the subspace/metric
learning methods need not to be modified except adding a
simple ridge regularization. Note that with the view discrep-
ancy regularization, many subspace/metric learning methods
([Pedagadi et al., 2013; Xiong et al., 2014; Mignon and Jurie,
2012] can be cast as:

min
U

f(UTXaug) + λUTCU

s.t. gi(U
TXaug) i = 1, 2, · · · , c

(8)

where f is the objective function and gi are the constraints.



Since β < 1, C is full-rank and can be decomposed into
C = PΛP T , and thus P TCP = Λ. Let U = PΛ−

1
2H ,

and so UTCU = HTH . (8) is equivalent to:

min
H

f(HTΛ−
1
2P TXaug) + λHTH

s.t. gi(H
TΛ−

1
2P TXaug) i = 1, 2, · · · , c

(9)

If we transform the augmented features Xaug to
Λ−

1
2P TXaug , H could be solved using standard sub-

space/metric learning with the normal ridge regression, and
then U can be obtained by U = PΛ−

1
2H .

In this work, the transformed feature, Λ−
1
2P TXaug , is

called Mirror Representation, since the original feature as
well as its phantom are jointly transformed into a more robust
space for better representation of the view-specific knowl-
edge.

2.4 Kernelized Mirror Representation
The Mirror Representation discussed above provides lin-

ear view-specific mappings. However, the distortion func-
tions and the intrinsic data distribution are usually non-linear.
To overcome this problem, we borrow the idea of kernel mod-
eling in machine learning to develop a kernel mirror represen-
tation.

In order to extend the feature augmentation approach to
the kernel version, the anchor points are enriched to include
both training data points and their phantoms, and the location
of phantoms are view-specific. In our modeling, the anchor
points are data points from training set. Hence the mapping
functions are defined as below:

fa(xa) = αTk(X[R,M ],xa)
fb(x

b) = αTk(X[M ,R],xb)
(10)

where R and M are n × n matrices defined in (4),
and thus X[R,M ] and X[M ,R] are anchor points of
view a and view b respectively. k(A, ·) is defined as
[k(A1, ·), k(A2, ·), · · · , k(An, ·)] where k(·, ·) is the kernel
function andA is the anchor points.

Compared to the linear case, for the kernel case, U1 and
U2 are replaced with Xα1 and Xα2, respectively. Hence
the view discrepancy regularization UTCU is replaced with
αT1X

TCXα2 = αT1C
′α2, respectively, where C ′ =

[K,−βK,−βK,K].

3 A Principle Angle based Parameter
Estimation Strategy

The Mirror Representation consists of feature-level dis-
crepancy and transformation-level discrepancy. For those
modeling, there are two parameters r and β to jointly con-
trol discrepancy.

Intuitively, when feature distributions of different views
are largely mismatched, the optimal view-specific mapping
functions are more discrepant; otherwise, samples of differ-
ent views consist of more shared features and the mapping
functions are likely to be similar. In this work, we propose
to measure the degree of distribution mismatch by the prin-
ciple angles of different views. Let Ga and Gb be the PCA-
subspace of samples of view a and view b. The principle an-
gles can be computed by the Singular Value Decomposition

ofGT
aGb [Hamm and Lee, 2008]:

GT
aGb = V1 cos(Θ)V T

2 (11)

where cos(Θ) = diag(cos(θ1), cos(θ2), · · · cos(θd)) and θi
are principle angles.

With the principle angles, r and β are set as:

r = 1
d

∑d
k=1(1− cos2(θk)), β = 1

d

∑d
k=1 cos(θk)

(12)

4 Experiment
4.1 Datasets and Settings
Datasets: Our experiments were conducted on three publica-
bly available datasets: PRID450S [Roth et al., 2014], VIPeR
[Gray et al., 2007] and CUHK01 [Li et al., 2012]. All three
datasets are with significant feature distortion. PRID450S
contains 450 image pairs recorded from two different but stat-
ic surveillance cameras. VIPeR contains 632 pedestrian im-
age pairs captured outdoor with varying viewpoints and illu-
mination conditions. CUHK01 contains 971 pedestrians from
two disjoint camera views. Each pedestrian has two samples
per camera view.
Features: We equally partitioned each image into 18 hor-
izontal stripes, and RGB, HSV, YCbCr, Lab, YIQ and 16
Gabor texture features were extracted for each stripe. For
each feature channel, a 16D histogram was extracted and then
normalized by L1-norm. All histograms were concatenated
together to form a single vector. Since the PRID450S pro-
vides automatically generated foreground mask, our features
were extracted from the foreground area in this dataset. For
CUHK01 and VIPeR, our features were extracted on the w-
hole image.
Experimental Protocol: Our experiments follow the same
single-shot protocol: each time half of the pedestrians were
selected randomly to form the training set, and the remaining
pedestrian images were used to form the gallery set and test-
ing set. For CUHK01, each pedestrian has 2 images for each
view; we randomly selected one of them to form the gallery.
The cumulative matching characteristic (CMC) curve is used
to measure the performance of each method on each dataset.
A rank k matching rate indicates the percentage of the probe
image with correct matches found in the top k rank against
the p gallery images. In practice, a high rank-1 matching rate
is critical and the top k matching rank matching rate with a
small k value is also important since the top matching images
can be verified by human [Zheng et al., 2013]. To obtain s-
tatistically significant results, we repeated the procedure 10
times and reported the average results.
Methods for Comparison: PCCA, KPCCA[Mignon and Ju-
rie, 2012], MFA and KMFA [Yan et al., 2007] are selected
to evaluate the improvement of using our Mirror Representa-
tion. The kernels used in KPCCA and KMFA are χ2 andRχ2

(RBF-χ2). The Zero-Padding representation is also evaluat-
ed for comparison. Besides, Mirror-KMFA is also compared
with various person re-identification methods [Zhao et al.,
2014; 2013a; Li et al., 2013; Pedagadi et al., 2013; Zheng
et al., 2013; Yang et al., 2014; Kostinger et al., 2012; Hirzer
et al., 2012; Weinberger et al., 2006; Davis et al., 2007; Zhao



Representation Mirror Representation Original Feature Zero-Padding
Rank 1 5 10 20 1 5 10 20 1 5 10 20

V
IP

eR

KMFA(Rχ2 ) 42.97 75.82 87.28 94.84 37.37 71.23 84.72 93.45 33.67 67.66 82.31 91.87
KMFA(χ2) 39.62 71.36 84.18 93.23 35.57 67.34 81.14 91.74 30.28 63.54 77.88 89.15
KPCCA(Rχ2 ) 32.88 67.91 82.03 91.77 29.05 62.94 78.26 89.68 21.84 52.44 67.37 79.40
KPCCA(χ2) 29.37 64.11 78.96 90.63 25.63 59.78 76.27 87.78 18.77 51.17 66.77 82.31

MFA 33.48 63.10 75.60 86.55 30.76 59.43 73.61 85.41 21.87 52.06 66.58 81.39
PCCA 27.56 60.57 75.66 87.37 25.47 56.96 71.08 85.25 22.53 55.60 71.30 86.36

C
U

H
K

01

KMFA(Rχ2 ) 40.40 64.63 75.34 84.08 34.98 60.16 71.27 81.50 33.53 59.00 70.20 80.24
KMFA(χ2) 37.31 61.11 71.36 81.25 32.34 56.14 67.52 77.73 31.35 56.71 67.56 78.18
KPCCA(Rχ2 ) 29.57 56.53 69.21 79.40 25.30 52.40 64.61 76.76 17.84 41.53 53.95 67.83
KPCCA(χ2) 26.69 54.40 66.88 77.87 22.79 48.65 62.10 74.06 17.84 41.53 53.95 67.83

MFA 25.47 48.38 58.86 69.19 20.71 41.51 52.42 63.21 14.13 33.12 43.10 54.07
PCCA 19.74 40.96 52.44 65.00 16.79 38.13 49.29 61.35 3.89 9.02 12.32 16.28

PR
ID

45
0S

KMFA(Rχ2 ) 55.42 79.29 87.82 93.87 52.76 77.56 84.71 91.56 46.18 74.13 84.31 92.40
KMFA(χ2) 53.42 77.29 85.82 91.51 51.02 75.29 82.80 89.47 41.82 71.29 81.82 90.04
KPCCA(Rχ2 ) 41.51 71.51 81.42 91.24 40.09 68.76 79.73 90.13 33.60 65.78 78.18 88.00
KPCCA(χ2) 39.82 68.31 80.22 89.82 37.60 66.18 78.49 88.62 28.27 58.71 72.40 85.60

MFA 40.58 77.56 67.47 86.58 38.22 63.42 73.87 83.64 21.16 50.00 62.98 76.84
PCCA 38.40 68.40 79.51 88.31 36.76 65.69 76.22 85.16 32.80 64.62 76.98 87.38

Table 1: Top Matching Rank(%) on VIPeR, CUHK01 and PRID450S. Three representations, the Mirror Representation, the
original feature and the zero-padding are compared. Among the three representations, we mark the best performance for each
dataset, each method and each rank in red color and mark the second best in blue.
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Figure 3: Comparison to the state-of-the-art on VIPeR, PRID450S and CUHK01

et al., 2013b], domain adaptation methods [Daumé III, 2009;
Pan et al., 2011; Si et al., 2010] as well as the baselines a
regularized CCA (rCCA) and L1-norm method. In order to
balance the scale of the objective function when applying our
mirror representation Eq. 9), λ is set as 10−6, 10−2, 10−2

and 0.5 for KPCCA, KMFA, PCCA and MFA respectively.

rank 1 5 10 20
Mirror-KMFA(Rχ2 ) 42.97 75.82 87.28 94.84

MLF+LADF [Zhao et al., 2014] 43.39 73.04 84.87 93.70
Daumé-KMFA(Rχ2 ))[Daumé III, 2009] 26.36 58.86 74.56 88.73

MLF [Zhao et al., 2014] 29.11 52.34 65.95 79.87
SalMatch [Zhao et al., 2013a] 30.16 52.31 65.54 79.15

LADF [Li et al., 2013] 29.34 61.04 75.98 88.10
LFDA [Pedagadi et al., 2013] 24.18 52.00 67.12 82.00

RDC [Zheng et al., 2013] 15.66 38.42 53.86 70.09
TFLDA [Si et al., 2010] 5.92 16.77 25.51 40.00
TCA [Pan et al., 2011] 5.35 10.79 16.17 25.16

rCCA(baseline) 11.80 31.01 45.66 63.10
L1(baseline) 12.15 26.01 32.82 42.47

Table 2: Top Matching Rank (%) on VIPeR compared to the
state-of-the-art.

rank 1 5 10 20
Mirror-KMFA(Rχ2 ) 55.42 79.29 87.82 91.56

Daumé-KMFA(Rχ2 ))[Daumé III, 2009] 42.53 69.56 80.36 88.93
SCNCD(ImgF) [Yang et al., 2014] 42.44 69.22 79.56 88.44
KISSME [Kostinger et al., 2012] 33.47 59.82 70.84 79.47

EIML [Hirzer et al., 2012] 34.71 57.73 67.91 77.33
LMNN [Weinberger et al., 2006] 28.98 55.29 67.64 78.36

ITML [Davis et al., 2007] 24.27 47.82 58.67 70.89
TFLDA [Si et al., 2010] 5.82 14.22 19.60 29.42
TCA [Pan et al., 2011] 4.04 8.76 11.82 19.42

rCCA(baseline) 12.49 31.96 44.98 61.11
L1(baseline) 10.76 22.93 30.04 39.69

Table 3: Top Matching Rank (%) on PRID450S compared to
the state-of-the-art.

4.2 Effectiveness of Mirror Representation
Table 1 shows the comparison among the top rank match-

ing performance of MFA, KMFA, PCCA, and KPCCA across
3 representations: the Mirror Representation, the original fea-
ture and the zero-padding. It is clear that the Mirror Rep-
resentation enhances the performance of all the methods we
tested, while the zero-padding does not. As we discussed in
Sec. 2.1, zero-padding is likely to loses the control of the dis-
crepancy of view-specific transformations, probably leading



rank 1 5 10 20
Mirror-KMFA(Rχ2 ) 40.40 64.63 75.34 84.08

Daumé-KMFA(Rχ2 ))[Daumé III, 2009] 21.08 44.92 55.72 68.02
MLF [Zhao et al., 2014] 34.30 55.06 64.96 74.94

ITML [Davis et al., 2007] 15.98 35.22 45.60 59.81
LMNN [Weinberger et al., 2006] 13.45 31.33 42.25 54.11

SalMatch [Zhao et al., 2013a] 28.45 45.85 55.67 67.95
eSDC(KNN) [Zhao et al., 2013b] 19.67 32.72 40.29 50.58

TFLDA [Si et al., 2010] 1.44 4.97 8.10 12.89
TCA [Pan et al., 2011] 1.84 5.03 7.84 11.86

rCCA(baseline) 8.21 24.19 34.87 47.76
L1(baseline) 4.45 12.97 19.80 29.94

Table 4: Top Matching Rank (%) on CUHK01 compared to
the state-of-the-art.

to a serious overfitting to training data and therefore gener-
alizing not very well on unseen testing data, since in person
re-identification the people for training will not appear in the
testing stage.

Our Mirror Representation enhances the performance in
both linear case and non-linear case. It is not surprising that
using the kernel trick boosts the performance, since the dis-
tortion functions are non-linear and non-linear mappings are
more suitable. Note that a more complex kernel Rχ2 usually
achieves better results than the simpler one χ2, which may
also indicates the complexity of the feature distortion.

4.3 Comparison to Related Methods
From tables 2-4, we find that the KMFA(Rχ2 ) with Mir-

ror Representation achieves promising results on the three
datsets. We compare this method with the other state-
of-the-art methods. Tables 2-4 and Figure 3 show that
our method significantly outperforms other methods except
MLF+LADF [Zhao et al., 2014] at rank-1 on VIPeR. How-
ever, MLF+LADF combines MLF [Zhao et al., 2014] and
LADF [Li et al., 2013], and neither of the these two meth-
ods outperforms ours. We also compare another feature aug-
mentation method [Daumé III, 2009] with exactly the same
KMFA setting denoted as Daumé-KMFA(Rχ2 ). Since it also
does not control the discrepancy of view-specific mappings,
the performance is unsatisfactory.

We additionally compare two popular domain adaptation
methods TCA[Pan et al., 2011] and TFLDA[Si et al., 2010].
As shown, they do not perform well. This is probably be-
cause both TCA and TFLDA assume P (Ys|Xs) = P (Yt|Xt)
or P (Xs) = P (Xt), which is not suitable for person re-
identification, since the people to train are the ones to test.

4.4 Parameter Sensitivity Analysis
The Mirror Representation has two parameters: r and

β. Using either the feature-level discrepancy or the
transformation-level discrepancy could enhance the perfor-
mance. Due to space limit, we take KMFA on CUHK01 for
illustration. To demonstrate the effectiveness of the feature-
level discrepancy, we disable the transformation-level dis-
crepancy by setting β = 0 and evaluate the parameter sen-
sitivity of r. Figure 4 (a) shows that turning r can signifi-
cantly enhance the performance by nearly 5%. When r = 1
and β = 0, the performance is unsatisfactory, since the two
learned view-specific transformation may be irrelevant. The

demonstration of the transformation-level discrepancy is sim-
ilar: we disable the feature-level discrepancy by setting r = 1
and evaluate the sensitivity of β. Figure 4 (b) shows that
turning β can also boost the performance significantly. Note
that the best result achieved by turning r or β exhaustively
is 40.90% rank-1 matching rate, while in our experiments we
turn r and β automatically and achieve 40.40%. This demon-
strates the effectiveness of our parameter estimation strategy.
Figure 4 (c) shows the parameter sensitivity of λ, which is the
ridge regularizer in (9). As shown, there is a clear trend that
the performance will go down as λ increase.
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Figure 4: Parameter Sensitivity Analysis with KMFA on
CUHK01.

5 Conclusion
In this paper, we have proposed the Mirror Representation

to alleviate the view-specific feature distortion problem for
person re-identification. The Mirror Representation consist-
s of two complementary components: feature augmentation
and view discrepancy regularization, designed for feature-
level discrepancy and transformation-level discrepancy re-
spectively. Principles angles of different camera views are
used to estimate the parameters. With our Mirror Represen-
tation, the kernel marginal fisher discriminant analysis signif-
icantly outperforms the state-of-the-art on all three popular
datasets.
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