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Online Hashing
Long-Kai Huang, Qiang Yang, and Wei-Shi Zheng

Abstract—Although hash function learning algorithms have
achieved great success in recent years, most existing hash models
are off-line, which are not suitable for processing sequential or
online data. To address this problem, this work proposes an
online hash model to accommodate data coming in stream for
online learning. Specifically, a new loss function is proposed to
measure the similarity loss between a pair of data samples in
hamming space. Then, a structured hash model is derived and
optimized in a passive-aggressive way. Theoretical analysis on the
upper bound of the cumulative loss for the proposed online hash
model is provided. Furthermore, we extend our online hashing
from a single-model to a multi-model online hashing that trains
multiple models so as to retain diverse online hashing models in
order to avoid biased update. The competitive efficiency and
effectiveness of the proposed online hash models are verified
through extensive experiments on several large-scale datasets as
compared to related hashing methods.

Index Terms—Hashing, online hashing

I. INTRODUCTION

There have been great interests in representing data using
compact binary codes in recent developments. Compact binary
codes not only facilitate storage of large-scale data but also
benefit fast similarity computation, so that they are applied to
fast nearest neighbor search [1]–[4], as it only takes very short
time (generally less than a second) to compare a query with
millions of data points [5].

For learning compact binary codes, a number of hash
function learning algorithms have been developed in the last
five years. There are two types of hashing methods: the
data independent ones and the data dependent ones. Typi-
cal data independent hash models include Locality Sensitive
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Hashing (LSH) [6] and its variants like `p-stable hashing
[7], min-hash [8] and kernel LSH (KLSH) [9]. Since us-
ing information of data distribution or class labels would
make significant improvement in fast search, more efforts
are devoted to the data-dependent approach [10]–[16]. For
the data dependent hashing methods, they are categorized
into unsupervised-based [17]–[20], supervised-based [21]–
[26], and semi-supervised-based [27]–[29] hash models. In
addition to these works, multi-view hashing [30], [31], multi-
modal hashing [32]–[36], and active hashing [37], [38] have
also been developed.

In the development of hash models, a challenge remained
unsolved is that most hash models are learned in an offline
mode or batch mode, that is to assume all data are available in
advance for learning the hash function. However, learning hash
functions with such an assumption has the following critical
limitations:

• First, they are hard to be trained on very large-scale
training datasets, since they have to make all learning
data kept in the memory, which is costly for processing.
Even though the memory is enough, the training time of
these methods on large-scale datasets is intolerable. With
the advent of big data, these limitations become more and
more urgent to solve.

• Second, they cannot adapt to sequential data or new com-
ing data. In real life, data samples are usually collected
sequentially as time passes, and some early collected
data may be outdated. When the differences between the
already collected data and the new coming data are large,
current hashing methods usually lose their efficiency on
the new data samples. Hence, it is important to develop
online hash models, which can be efficiently updated to
deal with sequential data.

In this paper, we overcome the limitations of batch mode
hash methods [17]–[19], [21], [23]–[26] by developing an
effective online hashing learning method called Online Hash-
ing (OH). We propose a one-pass online adaptation criterion
in a passive-aggressive way [39], which enables the newly
learned hash model to embrace information from a new pair
of data samples in the current round and meanwhile retain
important information learned in the previous rounds. In
addition, the exact labels of data are not required, and only the
pairwise similarity is needed. More specifically, a similarity
loss function is first designed to measure the confidence of the
similarity between two hash codes of a pair of data samples,
and then based on that similarity loss function a prediction
loss function is proposed to evaluate whether the current
hash model fits the current data under a structured prediction
framework. We then minimize the proposed prediction loss
function on the current input pair of data samples to update
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the hash model. During the online update, we wish to make
the updated hash model approximate the model learned in the
last round as much as possible for retaining the most historical
discriminant information during the update. An upper bound
on the cumulative similarity loss of the proposed online
algorithm are derived, so that the performance of our online
hash function learning can be guaranteed.

Since one-pass online learning only relies on the new data
at the current round, the adaptation could be easily biased by
the current round data. Hence, we introduce a multi-model
online strategy in order to alleviate such a kind of bias, where
multiple but not just one online hashing models are learned
and they are expected to suit more diverse data pairs and will
be selectively updated. A theoretical bound on the cumulative
similarity loss is also provided.

In summary, the contributions of this work are
1) Developing a weakly supervised online hash function

learning model. In our development, a novel similarity
loss function is proposed to measure the difference of the
hash codes of a pair of data samples in Hamming space.
Following the similarity loss function is the prediction
loss function to penalize the violation of the given similar-
ity between the hash codes in Hamming space. Detailed
theoretical analysis is presented to give a theoretical upper
loss bound for the proposed online hashing method;

2) Developing a Multi-Model Online Hashing (MMOH), in
which a multi-model similarity loss function is proposed
to guide the training of multiple complementary hash
models.

The rest of the paper is organized as follows. In Sec.
II, related literatures are reviewed. In Sec. III, we present
our online algorithm framework including the optimization
method. Sec. IV further elaborates one left issue in Sec. III
for acquiring zero-loss binary codes. Then we give analysis
on the upper bound and time complexity of OH in Sec. V,
and extend our algorithm to a multi-model one in Sec. VI.
Experimental results for evaluation are reported in Sec. VII
and finally we conclude the work in Sec. VIII.

II. RELATED WORK

Online learning, especially one-pass online learning, plays
an important role for processing large-scale datasets, as it
is time and space efficient. It is able to learn a model
based on streaming data, making dynamic update possible. In
typical one-pass online learning algorithms [39], [40], when
an instance is received, the algorithm makes a prediction,
receives the feedback, and then updates the model based on
this new data sample only upon the feedback. Generally, the
performance of an online algorithm is guaranteed by the upper
loss bound in the worst case.

There are a lot of existing works of online algorithms to
solve specific machine learning problems [39]–[43]. However,
it is difficult to apply these online methods to online hash
function learning, because the sign function used in hash
models is non-differentiable, which makes the optimization
problem more difficult to solve. Although one can replace the
sign function with sigmoid type functions or other approximate

differentiable functions and then apply gradient descent, this
becomes an obstacle on deriving the loss bound. There are
existing works considering active learning and online learning
together [44]–[46], but they are not for hash function learning.

Although it is challenging to design hash models in an
online learning mode, several hashing methods are related
to online learning [22], [41], [47]–[50]. In [41], the authors
realized an online LSH by applying an online metric learning
algorithm, namely LogDet Exact Gradient Online (LEGO)
to LSH. Since [41] is operated on LSH, which is a data
independent hash model, it does not directly optimize hash
functions for generating compact binary code in an online
way. The other five related works can be categorized into two
groups: one is the stochastic gradient descent (SGD) based
online methods, including minimal loss hashing [22], online
supervised hashing [49] and Adaptive Hashing (AdaptHash)
[50]; another group is matrix sketch based methods, including
online sketching hashing (OSH) [47] and stream spectral
binary coding (SSBC) [48].

Minimal loss hashing(MLH) [22] follows the loss-adjusted
inference used in structured SVMs and deduces the convex-
concave upper bound on the loss. Since MLH is a hash model
relying on stochastic gradient decent update for optimization,
it can naturally be used for online update. However, there
are several limitations that make MLH unsuitable for online
processing. First, the upper loss bound derived by MLH is
actually related to the number of the historical samples used
from the beginning. In other words, the upper loss bound
of MLH may grow as the number of samples increases and
therefore its online performance could not be guaranteed.
Second, MLH assumes that all input data are centered (i.e.
with zero mean), but such a pre-processing is challenging
for online learning since all data samples are not available
in advance.

Online supervised hashing (OECC) [49] is a SGD version
of the Supervised Hashing with Error Correcting Codes (ECC)
algorithm [51]. It employs a 0-1 loss function which outputs
either 1 or 0 to indicate whether the binary code generated
by existing hash model is in the codebook generated by error
correcting output codes algorithm. If it is not in the codebook,
the loss is 1. After replacing the 0-1 loss with a convex
loss function and dropping the non-differentiable sign function
in the hash function, SGD is applied to minimize the loss
and update the hash model online. AdaptHash [50] is also a
SGD based methods. It defines a loss function the same as
the hingle-like loss function used in [22], [52]. To minimize
this loss, the authors approximated the hash function by a
differentiable sigmoid function and then used SGD to optimize
the problem in an online mode. Both OECC and AdaptHash
do not assume that data samples have zero mean as used in
MLH. They handle the zero-mean issue by a method similar to
the one in [52]. All these three SGD-based hashing methods
enable online update by applying SGD, but they all cannot
guarantee a constant loss upper bound.

Online sketching hashing (OSH) [47] was recently proposed
to enable learning hash model on stream data by combining
PCA hashing [27] and matrix sketching [53]. It first sketches
stream samples into a small size matrix and meanwhile guar-
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antee approximating data covariance, and then PCA hashing
can be applied on this sketch matrix to learn a hash model.
Sketching overcomes the challenge of training a PCA-based
model on sequential data using limited storage. Stream spectral
binary coding (SSBC) [48] is another learning to hash method
on stream data based on the matrix sketch [53] skill. It applies
matrix sketch processing on the Gaussian affinity matrix in
spectral hashing algorithm [17]. Since the sketched matrix
reserves global information of previously observed data, the
new update model may not be adapted well on new observed
data samples after a large number of samples have been
sketched in the previous steps.

A preliminary version of this work was presented in [52].
Apart from more detailed analysis, this submission differs
from the conference version in the following aspects: 1) we
have further modified the similarity loss function to evaluate
the hash model and to guide the update of the hash model;

2) we have developed a multi-model strategy to train mul-
tiple models to improve online hashing; 3) We have modified
the strategy of zero-loss codes inference, which suits the
passive aggressive scheme better; 4) much more experiments
have been conducted to demonstrate the effectiveness of our
method.

III. ONLINE MODELLING FOR HASH FUNCTION
LEARNING

Hash models aim to learn a model to map a given data
vector x ∈ Rd to an r-bit binary code vector h ∈ {−1, 1}r.
For r-bit linear projection hashing, the kth(1 ≤ k ≤ r) hash
function is defined as

hk(x) = sgn(wT
k x + bk) =

{
1, if wT

k x + bk ≥ 0,

−1, otherwise,

where wk ∈ Rd is a projection vector, bk is a scalar threshold,
and hk ∈ {−1, 1} is the binary hash code.

Regarding bk in the above equation, a useful guideline
proposed in [17], [27], [54] is that the scalar threshold bk
should be the median of {wT

k xi}ni=1, where n is the number
of the whole input samples, in order to guarantee that half
of the output codes are 1 while the other half are −1. This
guarantees achieving maximal information entropy of every
hash bit [17], [27], [54]. A relaxation is to set bk to the mean
of {wT

k xi}ni=1 and bk will be zero if the data are zero-centered.
Such a pretreatment not only helps to improve performance but
also simplifies the hash function learning. Since data come in
sequence, it is impossible to obtain the mean in advance. In our
online algorithm, we will estimate the mean after a few data
samples are available, update it after new data samples arrive,
and perform update of zero-centered operation afterwards.
Hence, the r-bit hash function becomes

h = h(x) = sgn(WTx), (1)

where W = [w1,w2, ...,wr] ∈ Rd×r is the hash projection
matrix and h = [h1(x), h2(x), ..., hr(x)]T is the r-bit hash code.
Here, x is the data point after zero-mean shifting.

Unfortunately, due to the non-differentiability of the sign
function in Eq. (1), the optimization of the hash model
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Fig. 1. Similarity loss function. The top is for a pair of similar data
samples, and the bottom is for a pair of dissimilar ones.

becomes difficult. To settle such a problem, by borrowing the
ideas from the structured prediction in structured SVMs [55],
[56] and MLH [22], we transform Eq. (1) equivalently to the
following structured prediction form:

h = arg max
f∈{−1,1}r

fTWTx. (2)

In the structured hash function Eq. (2), fTWTx can be
regarded as a prediction value that measures the extent that the
binary code f matches the hash code of x obtained through
Eq. (1). Obviously, fTWTx is maximized only when each
element of f has the same sign as that of WTx.

A. Formulation

We start presenting the online hash function learning. In
this work, we assume that the sequential data are in pairs.
Suppose a new pair of data points xi

t and xj
t comes in the

tth (t = 1, 2, ...) round with a similarity label st. The label
indicates whether these two points are similar or not and it is
defined as:

st =

{
1, if xi

t and xj
t are similar,

−1, if xi
t and xj

t are not similar.

We denote the new coming pair of data points xi
t and xj

t by
xt = [xi

t,xj
t]. In the tth round, based on the hash projection

matrix Wt learned in the last round, we can compute the hash
codes of xi

t and xj
t denoted by hi

t, hj
t, respectively. Such a

pair of hash codes is denoted by ht = [hi
t,hj

t].
However, the prediction does not always match the given

similarity label information of xt. When a mismatch case is
observed, Wt, the model learned in the (t− 1)th round, needs
to be updated for obtaining a better hash model Wt+1. In
this work, the Hamming distance is employed to measure
the match or mismatch cases. In order to learn an optimal
hash model that minimizes the loss caused by mismatch cases
and maximizes the confidence of match cases, we first design
a similarity loss function to quantify the difference between
the pairwise hash codes ht with respect to the corresponding
similarity label st, which is formulated as follows:

R(ht, st) =

{
max{0,Dh(hi

t,hj
t)− α}, if st = 1,

max{0, βr −Dh(hi
t,hj

t)}, if st = −1,

(3)
where Dh(hi

t,hj
t) is the Hamming distance between hi

t and
hj

t, α is an integer playing as the similarity threshold, and β is
the dissimilarity ratio threshold ranging from 0 to 1. Generally,
βr > α, so that there is a certain margin between the match
and mismatch cases.

In the above loss function, a relaxation is actually introduced
by employing the threshold parameters α and βr as shown in
Fig. 1. α should not be too large, so that the similarity of
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the pairwise data samples can be preserved in the Hamming
space. In contrast, βr should not be too small; otherwise two
dissimilar data points cannot be well separated in Hamming
space. From Fig. 1, we can see that the mismatch can be one
of the following two cases: 1) the Hamming distance between
the prediction codes hi

t and hj
t is larger than α for a similar

pair; and 2) the Hamming distance between the prediction
codes hi

t and hj
t is smaller than βr for a dissimilar pair.

These two measure the risk of utilizing the already learned
hash projection matrix Wt on a new pair of data points, i.e.
R(ht, st).

If the model learned in the last round predicts zero-loss hash
code pair on a new pair, that is R(ht, st) = 0, our strategy is
to retain the current model. If the model is unsatisfactory, i.e.,
predicting inaccurate hash codes having R(ht, st) > 0, we need
to update the inaccurate previous hash projection matrix Wt.

To update the hash model properly, we claim that the zero-
loss hash code pair gt = [gi

t,gj
t] for current round data pair xt

satisfying R(gt, st) = 0 is available, and we use the zero-loss
hash code pair to guide update of the hash model, deriving the
updated Wt+1 towards a better prediction. We leave the details
about how to obtain the zero-loss hash code pair presented in
Sec. IV.

Now, we wish to obtain an updated hash projection matrix
Wt+1 such that it predicts similar hash code pair towards the
zero-loss hash code pair gt for the current input pair of data
samples. Let us define

Ht(W) = hi
tTWTxi

t + hj
tTWTxj

t, (4)

Gt(W) = gi
tTWTxi

t + gj
tTWTxj

t. (5)

Given hash function Eq. (2) with respect to Wt, we have
Ht(Wt) ≥ Gt(Wt), since hi

t and hj
t are the binary solutions

for xi
t and xj

t for the maximization, respectively, while gi
t

and gj
t are not. This also suggests the Wt is not suitable for

the generated binary code to approach the zero-loss hash code
pair gt, and thus a new projection Wt+1 has to be learned.

When updating the projection matrix from Wt to Wt+1, we
expect that the binary code generated for xi

t is gi
t. According

to the hash function in structured prediction form in Eq. (2),
our expectation is to require gi

tTWt+1Txi
t > hi

tTWt+1Txi
t.

Similarly, we expect the binary code generated for xj
t is gj

t

and this is also to require gj
tTWt+1Txj

t > hj
tTWt+1Txj

t.
Combining these two inequalities together, it would be ex-
pected that the new Wt+1 should meet the condition that
Gt(Wt+1) > Ht(Wt+1). To achieve this objective, we derive
the following prediction loss function `t(W) for our algorithm:

`t(W) = Ht(W)−Gt(W) +
√
R(ht, st). (6)

In the above loss function, ht, gt and R(ht, st) are constants
rather than variables dependent on Wt. R(ht, st) can be treated
a loss penalization. When used in the Criterion (7) later, a
small R(ht, st) means a slight update is expected, and a large
R(ht, st) means a large update is necessary. Note that the
square root of similarity loss function R(ht, st) is utilized
here, because it enables an upper bound on the cumulative
loss functions, which will be shown in Sec.V-A.

Note that if `t(Wt+1) = 0, we can have Gt(Wt+1) =

Ht(Wt+1) +
√
R(ht, st) > Ht(Wt+1). Let ĝt be the hash

codes of xt computed using the updated Wt+1 by Eq. (2).
Even though Gt(Wt+1) > Ht(Wt+1) cannot guarantee that
ĝt is exactly gt, it is probable that ĝt is very close to gt

rather than ht. It therefore makes sense to force `t(Wt+1) to
be zero or close to zero.

Since we are formulating a one-pass learning algorithm,
the previously observed data points are not available for the
learning in the current round, and the only information we
can make use of is the current round projection matrix Wt. In
this case, we force that the newly learned Wt+1 should stay
close to the projection matrix Wt as much as possible so as to
preserve the information learned in the last round as much as
possible. Hence, the objective function for updating the hash
projection matrix becomes

Wt+1 = arg min
W

1

2
||W −Wt||2F + Cξ,

s.t. `t(W) ≤ ξ and ξ ≥ 0,
(7)

where ‖·‖F is the Frobenius norm, ξ is a non-negative auxiliary
variable to relax the constraint on the prediction loss function
`t(W) = 0, and C is a margin parameter to control the
effect of the slack term, whose influence will be observed
in Sec.VII. Through this objective function, the difference
between the new projection matrix Wt+1 and the last one
Wt is minimized, and meanwhile the prediction loss function
`t(W) of the new Wt+1 is bounded by a small value. We call
the above model the online hashing (OH) model.

Finally, we wish to provide a comment on the function
Ht(W) in Eq. (4) and Eq. (6). Actually, an optimal case should
be to refine function Ht(W) as a function of variables W and
a code pair f = [fi, fj] ∈ {−1, 1}r×2 as follows:

Ht(W, f) = fti
T
WTxi

t + ftj
T
WTxj

t, (8)

and then to refine the prediction loss function when an optimal
update Wt+1 is used:

`t(Wt+1) = max
f∈{−1,1}r×2

Ht(Wt+1, f)−Gt(Wt+1)+
√
R(ht, st).

(9)
The above refinement in theory can make maxf H

t(Wt+1, f)−
Gt(Wt+1) be a more rigorous loss on approximating the zero-
loss hash code pair gt. But, it would be an obstacle to the op-
timization, since Wt+1 is unknown when maxf H

t(Wt+1, f)

is computed. Hence, we avert this problem by implicitly
introducing an alternating optimization by first fixing f to
be ht, then optimizing Wt+1 by Criterion (7), and finally
predicting the best f for maxf∈{−1,1}r×2 Ht(Wt+1, f). This
process can be iterative. Although this may be useful to further
improve our online model, we do not completely follow this
implicit alternating processing to learn the Wt+1 iteratively.
This is because data are coming in sequence and it would be
demanded to process a new data pair after an update of the
projection matrix W. Hence, in our implementation, we only
update Wt+1 once, and we provide the bound for R(ht, st)

under such a processing in Theorem 2.
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B. Optimization

When R(ht, st) = 0, ht is the optimal code pair and gt is
the same as ht, and thus `t(Wt) = 0. In this case, the solution
to Criterion (7) is Wt+1 = Wt. That is, when the already
learned hash projection matrix Wt can correctly predict the
similarity label of the new coming pair of data points xt, there
is no need to update the hash function. When R(ht, st) > 0,
the solution is

Wt+1 = Wt + τ txt(gt − h
t)T ,

τ t = min{C, `t(Wt)

||xt(gt − ht)T ||2F
}.

(10)

The procedure for deriving the solution formulation (Eq.
(10)) when R(ht, st) > 0 is detailed as follows.

First, the objective function (Criterion (7)) can be rewritten
below when we introduce the Lagrange multipliers:

L(W, τ t, ξ, λ) =
||W −Wt||2F

2
+ Cξ + τ t(`t(W)− ξ)− λξ,

(11)

where τ t ≥ 0 and λ ≥ 0 are Lagrange multipliers. Then, by
computing ∂L/∂W = 0, ∂L/∂ξ = 0, and ∂L/∂τ t = 0, we can
have

0 =
∂L
∂W

,

⇒W = Wt + τ t(xi
t(gi

t − hi
t)T + xj

t(gj
t − hj

t)T )

= Wt + τ txt(gt − h
t)T ,

(12)

0 =
∂L
∂ξ

= C − τ t − λ,

⇒ τ t = C − λ.
(13)

Since λ > 0, we have τ t < C. By putting Eq. (12) and Eq.
(13) back into Eq. (6), we obtain

`t(W) = −τ t||xt(gt − h
t)T ||2F + `t(Wt). (14)

Also, by putting Eqs. (12), (13) and (14) back into Eq. (11),
we have

L(τ t) = −1

2
τ t

2
||xt(gt − h

t)T ||2F + τ t`t(Wt).

By taking the derivative of L with respect to τ t and setting it
to zero, we get

0 =
∂L
∂τ t

= −τ t||xt(gt − h
t)T ||2F + `t(Wt),

⇒ τ t =
`t(Wt)

||xt(gt − ht)T ||2F
.

(15)

Since τ t < C, we can obtain

τ t = min{C, `t(Wt)

||xt(gt − ht)T ||2F
}. (16)

In summary, the solution to the optimization problem in
Criterion (7) is Eq. (10), and the whole procedure of the
proposed OH is presented in Algorithm 1.

Algorithm 1 Online Hashing
INITIALIZE W1

for t = 1,2,... do
Receive a pairwise instance xt and similarity label st;
Compute the hash code pair ht of xt by Eq. (1);
Compute the similarity loss R(ht, st) by Eq. (3);
if R(ht, st) > 0 then

Get the zero-loss code pair gt that makes R(gt, st) = 0;
Compute the prediction loss `t(Wt) by Eq. (6);
Set τ t = min{C, `t(Wt)

||xt(gt−ht)T ||2
F

};
Update Wt+1 = Wt + τ txt(gt − ht)T ;

else
Wt+1 = Wt;

end if
end for

C. Kernelization

Kernel trick is well-known to make machine learning
models better adapted to nonlinearly separable data [21]. In
this context, a kernel-based OH is generated by employing
explicit kernel mapping to cope with the nonlinear modeling.
In details, we aim at mapping data in the original space Rd

into a feature space Rm through a kernel function based on
m (m < d) anchor points, and therefore we have a new
representation of x which can be formulated as follows:

z(x) = [κ(x,x(1)), κ(x,x(2)), ..., κ(x,x(m))]
T ,

where x(1),x(2), ...,x(m) are m anchors.
For our online hash model learning, we assume that at

least m data points have been provided in the initial stage;
otherwise, the online learning will not start until at least m data
points have been collected, and then these m data points are
considered as the m anchors used in the kernel trick. Regarding
the kernel used in this work, we employ the Gaussian RBF
kernel κ(x,y) = exp(−||x−y||2/2σ2), where we set σ to 1 in
our algorithm.

IV. ZERO-LOSS BINARY CODE PAIR INFERENCE

In Sec.III-A, we have mentioned that our online hashing
algorithm relies on the zero-loss code pair gt = [gi

t,gj
t] which

satisfies R(gt, st) = 0. Now, we detail how to acquire gt.

Dissimilar Case. We first present the case for dissimilar pairs.
As mentioned in Sec. III-A, to achieve zero similarity loss, the
Hamming distance between the hash codes of non-neighbors
should not be smaller than βr. Therefore, we need to seek
the gt such that Dh(gi

t,gj
t) ≥ βr. Denote the kth bit of

hi
t by hi

t
[k], and similarly we have hj

t
[k]
,gi

t
[k],gj

t
[k]

. Then
Dh(hi

t,hj
t) =

∑r
k=1Dh(hi

t
[k],hj

t
[k]

), where

Dh(hi
t
[k],hj

t
[k]

) =

{
0, if hi

t
[k] = hj

t
[k]
,

1, if hi
t
[k] 6= hj

t
[k]
.

Let K1 = {k|Dh(hi
t
[k],hj

t
[k]

) = 1} and K0 =

{k|Dh(hi
t
[k],hj

t
[k]

) = 0}. To obtain gt, we first set git[k] = hi
t
[k]

and gj
t
[k]

= hj
t
[k]

for k ∈ K1, so as to retain the Hamming
distance obtained through the hash model learned in the last
round. Next, in order to increase the Hamming distance, we
need to make Dh(gi

t
[k],gj

t
[k]

) = 1 for the k ∈ K0. That is, we
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need to set1 either gi
t
[k] = −hi

t
[k] or gj

t
[k]

= −hj
t
[k]

, for all the
k ∈ K0. Hence, we can pick up p bits whose indexes are in
set K0 to change/update such that

Dh(gi
t,gj

t) = Dh(hi
t,hj

t) + p. (17)

Now the problem is how to set p, namely the number of hash
bits to update. We first investigate the relationship between the
update of projection vectors and gt. Note that W consists of r
projection vectors wk (k = 1, 2, ..., r). From Eq. (12), we can
deduce that

wt+1
k = wt

k + τ t(xi
t(gi

t
[k] − hi

t
[k]) + xj

t(gj
t
[k]
− hj

t
[k]

)). (18)

It can be found that wt+1
k = wt

k, when gi
t
[k] = hi

t
[k] and

gj
t
[k]

= hj
t
[k]

; otherwise, wt
k will be updated. So the more

wk in W we update, the more corresponding hash bits of
all data points we subsequently have to update when applied
to real-world system. This takes severely much time which
cannot be ignored for online applications. Hence, we should
change hash bits as few as possible; in other words, we aim
to update wk as few as possible. This means that p should be
as small as possible, meanwhile guaranteeing that gt satisfies
the constrain R(gt, st) = 0. Based on the above discussion,
the minimum of p is computed as p0 = dβre−Dh(hi

t,hj
t) by

setting Dh(gi
t,gj

t) = dβre, as p = Dh(gi
t,gj

t)−Dh(hi
t,hj

t)

and Dh(gi
t,gj

t) ≥ dβre ≥ βr. Then gt is ready by selecting
p0 hash bits whose indexes are in K0.

After determining the number of hash bits to update, namely
p0, the problem now becomes which p0 bits should be picked
up from K0. To establish the rule, it is necessary to measure
the potential loss for every bit of ht

i and ht
j . For this purpose,

the prediction loss function in Eq. (6) can be reformed as∑
hi

t
[k]
6=gi

t
[k]

2hi
t
[k]w

t
k
T
xi

t +
∑

hj
t
[k]
6=gj

t
[k]

2hj
t
[k]

wt
k
T
xj

t +
√
R(ht, st).

This tells that hi
t
[k]w

t
k
T
xi

t or hj
t
[k]

wt
k
T
xj

t are parts of the
prediction loss, and thus we use it to measure the potential
loss for every bit. The problem is which bit should be picked
up to optimize. For our one-pass online learning, a large
update does not mean a good performance will be gained
since every time we update the model only based on a new
arrived pair of samples, and thus a large change on the hash
function would not suit the passed data samples very well. This
also conforms to the spirit of passive-aggressive idea that the
change of an online model should be smooth. To this end,
we take a conservative strategy by selecting the p0 bits that
corresponding to smallest potential loss as introduced below.
First, the potential loss of every bit w.r.t H(Wt) is calculated
by

δk = min{hi
t
[k]w

t
k
T
xi

t, hj
t
[k]

wt
k
T
xj

t}, k ∈ K0. (19)

We only select the smaller one between hi
t
[k]w

t
k
T
xi

t and

hj
t
[k]

wt
k
T
xj

t because we will never set gt simultaneously by
gi

t
[k] = −hi

t
[k] and gj

t
[k]

= −hj
t
[k]

for any k ∈ K0. After sorting

1The hash code in our algorithm is −1 and 1. Note that, gi
t
[k]

= −hi
t
[k]

means set gi
t
[k]

to be different from hi
t
[k]

Algorithm 2 Inference of gt for a dissimilar pair
Calculate the Hamming distance Dh(hi

t,hj
t) between hi

t and hj
t;

Calculate p0 = dβre −Dh(hi
t,hj

t);
Compute δk for k ∈ K0 by Eq. (19);
Sort δk;
Set the corresponding hash bits of the p0 smallest δk opposite to the
corresponding ones in ht by following the rule in Eq.(20) and keep the
others in ht without change.

Algorithm 3 Inference of gt for a similar pair
Calculate the Hamming distance Dh(hi

t,hj
t) between hi

t and hj
t;

Calculate p0 = Dh(hi
t,hj

t)− α;
Compute δk for k ∈ K1 by Eq. (19);
Sort δk;
Set the corresponding hash bits of the p0 smallest δk opposite to the
corresponding values in ht by following the rule in Eq.(20) and keep the
others in ht with no change.

δk, the p0 smallest δk are picked up and their corresponding
hash bits are updated by the following rule:{

gi[k] = −hi[k], if hi
t
[k]w

t
k
T
xi

t ≤ hj
t
[k]

wt
k
T
xj

t,

gj[k] = −hj[k]
, otherwise.

(20)

The procedure of obtaining gt for a dissimilar pair is
summarized in Algorithm 2.

Similar Case. Regarding similar pairs, the Hamming distance
of the optimal hash code pairs gt should be equal or smaller
than α. Since the Hamming distance between the predicted
hash codes of similar pairs may be larger than α, we should
pick up p0 bits from set K1 instead of from set K0, and
set them opposite to the corresponding values in ht so as to
achieve R(gt, st) = 0. Similar to the case for dissimilar pairs
as discussed above, the number of hash bits to be updated
is p0 = Dh(hi

t,hj
t) − α, but these bits are selected in K1.

We will compute δk for k ∈ K1 and pick up p0 bits with the
smallest δk for update. Since the whole processing is similar
to the processing for the dissimilar pairs, we only summarize
the processing for similar pairs in Algorithm 3 and skip the
details.

Finally, when wt
k is a zero vector, δk is zero as well no

matter what the values of hi
t
[k], hj

t
[k]

, xi
t and xj

t are. This
leads to the failure in selecting hash bits to be updated. To avert
this, we initialize W1 by applying LSH. In other words, W1

is sampled from a zero-mean multivariate Gaussian N (0, I),
and we denote this matrix by WLSH .

V. ANALYSIS

A. Bounds for Similarity Loss and Prediction Loss

In this section, we discuss the loss bounds for the proposed
online hashing algorithm. For convenience, at step t, we define

`tU = `t(U) = Ht(U)−Gt(U) +
√
R(ht, st), (21)

where U is an arbitrary matrix in Rd×r. Here, `tU is considered
as the prediction loss based on U in the tth round.

We first present a lemma that will be utilized to prove
Theorem 2.
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Lemma 1. Let (x1, s1), · · · , (xt, st) be a sequence of pairwise
examples, each with a similarity label st ∈ {1,−1}. The data
pair xt ∈ Rd×2 is mapped to a r-bit hash code pair ht ∈ Rr×2

through the hash projection matrix Wt ∈ Rd×r. Let U be an
arbitrary matrix in Rd×r. If τ t is defined as that in Eq. (10),
we then have
∞∑
t=1

τ t(2`t(Wt)− τ t||xt(gt − h
t)T ||2F − 2`tU ) ≤ ||U−W1||2F ,

where W1 is the initialized hash projection matrix that con-
sists of non-zero vectors.

Proof. By using the definition

∆t = ||Wt −U||2F − ||W
t+1 −U||2F ,

we can have
∞∑
t=1

∆t =

∞∑
t=1

(||Wt −U||2F − ||W
t+1 −U||2F )

= ||W1 −U||2F − ||W
t+1 −U||2F ≤ ||W

1 −U||2F .

(22)

From Eq. (12), we know Wt+1 = Wt + τ txt(gt − ht)T , so
we can rewrite ∆t as

∆t = ||Wt −U||2F − ||W
t+1 −U||2F

= ||Wt −U||2F − ||W
t −U + τ txt(gt − h

t)T ||2F
= ||Wt −U||2F − (||Wt −U||2F

+ 2τ t(Ht(W)−Gt(W)− (Ht(U)−Gt(U)))

+ (τ t)2||xt(gt − h
t)T ||2F )

≥ −2τ t((
√
R(ht, st)− `t(Wt))− (

√
R(ht, st)− `tU ))

− (τ t)2||xt(gt − h
T )T ||2F

= τ t(2`t(Wt)− τ t||(xt(gt − h
t)T ||2F − 2`tU ).

By computing the sum of the left and the right of the above
inequality we can obtain

∞∑
t=1

∆t ≥
∞∑
t=1

τ t(2`t(Wt)− τ t||(xt(gt − h
t)T ||2F − 2`tU ).

Finally, putting Eq. (22) into the above equation, we prove
Lemma 1.

Theorem 2. Let (x1, s1), · · · , (xt, st) be a sequence of pair-
wise examples, each with a similarity label st ∈ {1,−1} for all
t. The data pair xt ∈ Rd×2 is mapped to a r-bit hash code pair
ht ∈ Rr×2 through the hash projection matrix Wt ∈ Rd×r. If
||xt(gt − ht)T ||2F is upper bounded by F 2 and the margin
parameter C is set as the upper bound of

√
R(ht,st)
F 2 , then the

cumulative similarity loss (Eq. (3)) is bounded for any matrix
U ∈ Rd×r, i.e.

∞∑
t=1

R(ht, st) ≤ F 2(||U−W1||2F + 2C

∞∑
t=1

`tU ),

where C is the margin parameter defined in Criterion (7).

Proof. Based on Lemma 1, we can obtain
∞∑
t=1

τ t(2`t(Wt)− τ t||(xt(gt − h
t)T ||2F )

≤ ||U−W1||2F + 2

∞∑
t=1

τ t`tU .

(23)

Based on Eq. (16), we get that

`t(Wt)

||xt(gt − ht)T ||2F
≥ τ t.

This deduces that

τ t(2`t(Wt)− τ t||(xt(gt − h
t)T ||2F )

≥τ t(2`t(Wt)− `t(Wt)) = τ t`t(Wt).
(24)

According to the definition of prediction loss function in
Eq. (6) and the upper bound assumption, we know that for
any t, √

R(ht, st) ≤ `t(Wt),

||xt(gt − h
t)T ||2F ≤ F

2, and√
R(ht, st)

F 2
≤ C (25)

With these three inequalities and Eq.(16) , it can be deduced
that

τ t`t(Wt) = min

{
`t(Wt)

2

||xt(gt − ht)T ||2F
, C`t(Wt)

}

≥ min

{
R(ht, st)

||xt(gt − ht)T ||2F
, C
√
R(ht, st)

}

≥ min
{
R(ht, st)

F 2
,
R(ht, st)

F 2

}
=
R(ht, st)

F 2
.

(26)

By combining Eq. (23) and Eq. (26), we obtain that
∞∑
t=1

R(ht, st)

F 2
≤ ||U−W1||2F + 2

∞∑
t=1

τ t`tU .

Since, τ t ≤ C for all t, we have
∞∑
t=1

R(ht, st) ≤ F 2(||U−W1||2F + 2C

∞∑
t=1

`tU ). (27)

The theorem is proven.

Note: In particular, if the assumption that there exists a
projection matrix satisfying zero or negative prediction loss
for any pair of data samples holds, there would exist a U

satisfying `tU ≤ 0 for any t. If so, the second term in inequality
(27) vanishes. In other words, the similarity loss is bounded
by a constant, i.e. F 2||U−W1||2F . After a certain amount of
update, the similarity loss for new data sample pairs becomes
zero in such an optimistic case.

B. Time and Space Complexity

Based on the algorithm summarized in Algorithm 1, we
can find that the time of computing the prediction code for
xt is O(dr) and that of obtaining the similarity loss is O(r).
The process of obtaining the zero-loss code pair gt takes at
most O(rlogr+rd) with O(rd) to compute all δk and O(rlogr)

to sort hash bits according to δk. As for the update process
of the projection matrix, it takes O(rd). Therefore, the time
complexity for training OH at each round is O(dr + rlogr).
Overall, if n pairs of data points participate in the training
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stage, the whole time complexity is O((dr+ rlogr)n). For the
space complexity, it is O(d+ dr) = O(dr), with O(d) to store
the data pairs and O(dr) to store the projection matrix. Overall,
the space complexity remains unchanged during training and
is independent of the number of training samples.

VI. MULTI-MODEL ONLINE HASHING

In order to make the online hashing model more robust and
less biased by current round update, we extend the proposed
online hashing from updating one single model to updating the
T models. Suppose that we are going to train T models, which
are initialized randomly by LSH. Each model is associated to
the optimization of its own similarity loss function in terms
of Eq. (3), denoted by Rm(ht

m, s
t) (m = 1, 2, · · · , T ), where

ht
m is the binary code of a new pair xt predicted by the mth

model at step t. At step t, if xt is a similar pair, we only select
one of the T models to update. To do that, we compute the
similarity loss function for each model Rm(ht

m, s
t), and then

we select the model, supposed the mth
0 model that obtains the

smallest similarity loss, i.e., m0 = arg minmRm(ht
m, s

t). Note
that for a similar pair, it is enough that one of the models has
positive output, and thus the selected model is the closest one
to suit this similar pair and is more easier to update. If xt is a
dissimilar pair, all models will be updated if the corresponding
loss is not zero, since we cannot tolerate an wrong prediction
for a dissimilar pair. By performing online hashing in this way,
we are able to learn diverse models that could fit different
data samples locally. The update of each model follows the
algorithm presented in our last section.

To guarantee the rationale of the multi-model online hash-
ing, we also provide the upper bound for the accumulative
multi-model similarity loss in the theorem below.

Theorem 3. Let (x1, s1), · · · , (xt, st) be a sequence of pair-
wise examples, each with a similarity label st ∈ {1,−1} for all
t. The data pair xt ∈ Rd×2 is mapped to a r-bit hash code pair
ht ∈ Rr×2 through the hash projection matrix Wt ∈ Rd×r.
Suppose ||xt(gtm −htm)T ||2F is upper bounded by F 2, and the
margin parameter C is set as the upper bound of

√
R∗

m(ht
m,st)

F 2

for all m, where R∗m(ht
m, s

t) is an auxiliary function defined
as:

R
∗
m(h

t
m, s

t
) =

{
Rm(h

t
m, s

t
), if the m

th model is selected for update at step t,

0, otherwise.
(28)

Then for any matrix U ∈ Rd×r, the cumulative similarity loss
(Eq. (3)) is bounded, i.e.,

∞∑
t=1

T∑
m=1

R∗m(ht
m, s

t) ≤ TF 2(||U−W1||2F + 2C

∞∑
t=1

`tU ),

where C is the margin parameter defined in Criterion (7).

Proof. Based on Theorem 2, the following inequality holds
for m = 1, 2, ...T :

∞∑
t=1

R∗m(ht
m, s

t) ≤ F 2(||U−W1||2F + 2C

∞∑
t=1

`tU ).

By summing these multi-model similarity losses of all models,
Theorem 3 is proved.

VII. EXPERIMENTS

In this section, extensive experiments were conducted to
verify the efficiency and effectiveness of the proposed OH
models from two aspects: metric distance neighbor search
and semantic neighbor search. First, four selected datasets are
introduced in Sec. VII-A. And then, we evaluate the proposed
models in Sec. VII-B. Finally, we make comparison between
the proposed algorithms and several related hashing models in
Sec. VII-C.

A. Datasets

The four selected large-scale datasets are: Photo
Tourism [57], 22K LabelMe [58], GIST1M [59] and
CIFAR-10 [60], which are detailed below.

Photo Tourism [57]. It is a large collection of 3D pho-
tographs including three subsets, each of which has about
100K patches with 64 × 64 grayscale. In the experiment, we
selected one subset consisting of 104K patches taken from
Half Dome in Yosemite. We extracted 512-dimensional GIST
feature vector for each patch and randomly partitioned the
whole dataset into a training set with 98K patches and a testing
set with 6K patches. The pairwise label st is generated based
on the matching information. That is, st is 1 if a pair of patches
is matched; otherwise st is −1.

22K LabelMe [58]. It contains 22,019 images. In the
experiment, each image was represented by 512-dimensional
GIST feature vector. We randomly selected 2K images from
the dataset as the testing set, and set the remaining images as
the training set. To set the similarity label between two data
samples, we followed [21], [27]: if either one is within the
top 5% nearest neighbors of the other measured by Euclidean
distance, st = 1 (i.e., they are similar); otherwise st = −1 (i.e.,
they are dissimilar).

Gist1M [59]. It is a popular large-scale dataset to evaluate
hash models [20], [61]. It contains one million unlabeled data
with each data represented by a 960-dimensional GIST feature
vector. In the experiment, we randomly picked up 500,000
points for training and the non-overlapped 1,000 points for
testing. Owing to the absence of label information, we utilize
pseudo label information by thresholding the top 5% of the
whole dataset as the true neighbors of an instance based on
Euclidean distance, so every point has 50,000 neighbors.

CIFAR-10 and Tiny Image 80M [60]. CIFAR-10 is a
labeled subset of the 80M Tiny Images collection [62]. It
consists of 10 classes with each class containing 6K 32 × 32

color images, leading to 60K images in total. In the experi-
ment, every image was represented by 2048-dimensional deep
features, and 59K samples were randomly selected to set up
the training set with the remained 1K as queries to search
through the whole 80M Tiny Image collection.

For measurement, the mean average precision (mAP) [63],
[64] is used to measure the performance of different al-
gorithms, and mAP is regarded as a better measure than
precision and recall when evaluating the quality of results in
retrieval [63], [64]. All experiments were independently run
on a server with CPU Intel Xeon X5650, 12 GB memory and
64-bit CentOS system.
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Fig. 2. mAP comparison results of OH with respect to different β on all
datasets. (Best viewed in color.)

B. Evaluation of the Proposed Methods

In the proposed models, there are three key parameters,
namely β, C and T . In this subsection, we mainly investigate
the influence of these parameters. Additionally, we will ob-
serve the influence of the RBF kernel function on the proposed
models.

As stated in the previous section, the initial projection
matrix W1 is randomly set based on Gaussian distribution,
which is similar to the generation of W in LSH [6]. Thus, such
an initialization of W1 is denoted by W1 = WLSH . For the
similarity threshold, α is set to 0, because in most applications,
the nearest neighbors of a given sample are looked up within
0 Hamming distance. The dissimilar ratio threshold, β, is set
to 0.4 on CIFAR-10 and Gist 1M and set to 0.5 on the other
two datasets. Besides, the code length r is set as r = 64 in
this section, and the RBF kernel is a default kernel used in
the proposed models in the experiments. When a parameter
is being evaluated, the others are set as the default values as
shown in Table I.

TABLE I
THE DEFAULT VALUES OF THE PARAMETERS IN MMOH

parameter T r W1 α β C
value 1 48 WLSH 0 0.4 ∼ 0.5 1

1) Effect of Dissimilarity Ratio Threshold β: As indicated
in Eq. (3), β is used to control the similarity loss on dissimilar
data. A large β means that dissimilar data should be critically
separated as far as possible in Hamming space. Thus, a too
large β may lead to excessively frequent update of the pro-
posed OH models. In contrast, a small β indicates dissimilar
data are less critically separated. Therefore, a too small β
may make the hash model less discriminative. Consequently, a
proper β should be set for the proposed online hashing models.

We investigate the influence of β on OH on different datasets
by varying β from 0.1 to 0.9. Fig. 2 presents the experimental
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Fig. 3. mAP comparison results of MMOH with respect to different T on
all datasets. (Best viewed in color.)

results. On all datasets, when β increases, the performance of
OH becomes better and better at first. However, when β is
larger than 0.5, further increasing β may lead to performance
degradation.

In summary, a moderately large β is better on the other three
datasets. Based on the experimental results, β = 0.5 is set as
a default value for OH on Photo Tourism and 22K LabelMe
datasets in the experiments below, and β = 0.4 is the default
value for OH tested on GIST 1M and CIFAR-10 datasets.

2) Effect of the Number of Multiple Models T : Before
the investigation about the effect of the number of models T
on MMOH, it should be noticed that when T = 1, MMOH
degrades to OH. And when T > 1, we use the multi-index
technique [65] to realize fast hash search. The influence of
T on MMOH is observed by varying T from 1 to 4. Fig.
3 presents the experimental results of MMOH on the four
datasets. From this figure, we can find that when more models
are used (i.e., larger T ), the performance of MMOH on most
datasets except CIFAR-10 is always better. On 22K LabelMe
and GIST1M, the improvement of using more models are more
clear, and it is less on Photo Tourism. On CIFAR-10, MMOH
seems not sensitive to different values of T . In summary, the
results in Fig. 3 suggest that MMOH performs overall better
and more stably when more models are used.

3) Effect of Margin Parameter C : In Eq. (10), C is the
upper bound of the τ t, and τ t can be viewed as the step size
of the update. A large C means that Wt will be updated
more towards reducing the loss on the current data pair. In
Theorem 2, a large C is necessary to guarantee the bound on
the accumulative loss for OH. In this experiment, the lower
bound of C in Theorem 2 was 0.017 since the maximum value√
R(ht, st) was 8 and the minimum value of F 2 was 479.
The effect of C on the mAP performance was also evaluated

on all datasets by varying C from 1E−5 to 1E−1. From Figure
4, we find that a larger C (i.e. C = 1E− 1) is preferred on all
datasets. When C increases from C = 1E − 5 to C = 1E − 2,
the final performance of OH improves by a large margin on all
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Fig. 4. mAP comparison results of OH with C ranging from 0.00001 to 0.1.
(Best viewed in color.)
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Fig. 5. Cumulative similarity loss of OH with C ranging from 0.00001 to
10. (Best viewed in color.)

datasets. Further increasing the value of C can only slightly
improve the final performance, especially on Photo Tourism,
22K LabelMe and Gist1M. We also find that the performance
would nearly not change when setting C > 1E−1 as this value
is larger than `t(Wt)

||xt(gt−ht)T ||2F
for most t we have investigated.

Hence, C = 1E − 1 is chosen as a default value in the other
experiments for OH.

Finally, we evaluated the effect of C on the cumulative
similarity loss experimentally. For this purpose, we took Photo
Tourism dataset as example and ran OH over more than 106

loops by varying C from 1E− 5 to 1E1, where duplication of
training data was allowed. The comparison result in Figure 5
shows how the cumulative similarity loss increases when the
number of iteration rounds increases. The lowest cumulative
loss is achieved by setting C = 0.1, which is the one larger but
closest to the required lower bound value of C (i.e., 0.017).
When C is too small, i.e. C < 1E−3, the cumulative loss grows
strongly. This verifies that C should be lower bounded in order
to make the cumulative loss under control. If C ≥ 1E− 3, the
cumulative loss tends to increase much more slowly as shown

in Figure 5.

C. Comparison with Related Methods

To comprehensively demonstrate the efficiency and effec-
tiveness of the proposed OH and MMOH, we further compared
it with several related hashing algorithms in terms of mAP and
training time complexity.

1) Compared Methods: There is not much work on devel-
oping online hashing methods. To make a proper comparison,
the following three kinds of hashing methods were selected:
(a) KLSH [9], a variant of LSH [6] which uses RBF kernel

function to randomly sample the hash projection matrix
W, is selected as the baseline comparison algorithm. This
algorithm is a data-independent hashing method and thus
considered as the baseline method.

(b) Five non-batch based hashing models were selected:
LEGO-LSH [41], MLH [22], SSBC [48], OSH [47] and
AdaptHash [50]. LEGO-LSH [41], another variant of
LSH, utilizes an online metric learning to learn a metric
matrix to process online data, which does not focus on the
hash function learning but on metric learning. MLH [22]
and AdaptHash [50] both enable online learning by
applying stochastic gradient descent (SGD) to optimize
the loss function. SSBC [48] and OSH [47] are specially
designed for coping with stream data by applying matrix
sketching [53] on existing batch mode hashing methods.
Except AdaptHash and OSH, other three methods all
require that the input data should be zero-centered, which
is impractical for online learning since one cannot have
all data samples observed in advance.

(c) Four batch mode learning hashing models were selected.
One is the unsupervised method ITQ [19]. ITQ is consid-
ered as a representative method for unsupervised hashing
in batch mode. Since OH is a supervised method, we
selected three supervised methods for comparison in
order to see how an online approach approximate these
offline approaches. The three supervised methods are su-
pervised hashing with kernel (KSH) [21], fast supervised
hash (FastHash) [26] and supervised discrete hashing
(SDH) [16]. KSH is a famous supervised hashing method
to preserve the pairwise similarity between data samples.
FastHash and SDH are two recently developed supervised
hashing method in batch mode, where we run SDH for
fast search the same as in [66].

2) Settings: Since MLH, LEGO-LSH and OH are based
on pairwise data input, we randomly sampled data pairs in
sequence from the training set. For OSH, the chunk size of
streaming data was set as 1000 and each data chunk was
sequentially picked up from the training sequence as well. Ad-
ditionally, the key parameters in the compared methods were
set as the ones recommended in the corresponding papers. For
the proposed OH, the parameters were set according to Table
I and the number of models T is set to be 4 for MMOH.

3) Comparison with Related Online Methods: We com-
pare OH with the selected related methods in two aspects:
mAP comparison and training time comparison.

- mAP Comparisons
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Fig. 6. mAP comparison results among different online hash models
with respect to different code lengths. (Best viewed in color.)

Figure 6 presents the comparison results among LEGO-
LSH, MLH, SSBC, OSH, OH and MMOH with the code
length varying from 16 to 128.

From this figure, we find that when the hash code length
increases, the performance of MMOH and OH becomes better
and better on all datasets. MMOH achieves the best perfor-
mance and OH achieves the second on almost all datasets when
the code length is larger than 32, except Photo Tourism where
LEGO-LSH and OH perform very similarly. Specifically, as
the bit length increases, MMOH performs significantly better
than OSH and MLH on all datasets, and it performs better
than LEGO-LSH on 22K LabelMe, GIST1M and CIFAR-10.
In addition, as the hash bit length increases, it is more clear to
see MMOH performed better than the compared methods on
CIFAR-10. All these observations demonstrate the efficiency
and effectiveness of OH and MMOH to the compared hashing
algorithms on processing stream data in an online way.

- Training Time Comparisons

In this part, we investigate the comparison on the accumu-
lated training time, which is another main concern for online
learning. Without loss of generality, the Photo Tourism dataset
was selected and 80K training points were randomly sampled
to observe the performance of different algorithms. All results
are averaged over 10 independent runs conducted on a server
with Intel Xeon X5650 CPU, 12 GB memory and 64-bit
CentOS system. For fairness, in each run, all experiments were
conducted using only one thread. Specially, SSBC is excluded
in this experiment since its training time is significantly longer
than any other methods.

First, we investigate the training time of different algorithms
when the number of training samples increases. In this exper-
iment, the hash bit length was fixed to 64 and the comparison
result is presented in Figure 7(a). From this figure, we find
that:

1) As the number of training samples increases, the accu-
mulated training time of all methods almost increases
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(a) Training time comparison among different algorithms when
the number of samples increases.
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(b) Training time comparison among different algorithms with
different code lengths.

Fig. 7. Training time comparison among different algorithms on Photo
Tourism. (Best viewed in color.)

linearly. However, it is evident that LEGO-LSH increases
much faster than the other compared methods. In particu-
lar, OH, AdaptHash and MMOH increase the lowest, and
in particular OH takes only 0.0015 seconds (using single
thread run in a single CPU) for each pair for update.

2) Compared with LEGO-LSH and OSH, the accumulated
training time of other three methods are considerably
much smaller. Specifically, when the number of samples
is 8× 104, the accumulated training time of LEGO-LSH
is 10 times more as compared to MMOH and MLH.
Besides, the time of OSH is 2 times more as compared
to MMOH and MLH and is 4 times more as compared
to OH and AdaptHash.

3) The training time of MMOH and MLH is very similar.
The training time of OH is slightly less than AdaptHash,
and it is always the least one.

Second, we further investigate the training time of different
methods when the hash code length increases, where the
training sample size is fixed to be 80,000. The comparison
result is displayed in Figure 7(b). From this figure, we find
that:

1) When the code length increases, the accumulated training
time of all algorithms increases slightly except LEGO-
LSH. The training time of LEGO-LSH does not change
obviously when the code length is larger than 24. This is
because most of the training time was spent on the metric
training, which is independent of the hash code length,
while the generation of hash projection matrix in LSH
costs very little time [41].
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2) MMOH took considerably smaller accumulated training
time than LEGO-LSH and OSH. This is because only
a small part of hash bits are updated in MMOH, which
reduces the time cost in updating.

3) Compared to MLH, MMOH took a little more time than
MLH when the bit length is smaller than 64. However,
when the bit length is larger than 64, the training time
of MMOH becomes slightly less than that of MLH. This
phenomenon can be ascribed to the fact that the time
spent on selecting the hash model to preserve in MMOH
does not heavily depend on the code length, and the time
cost of updating hash model in MMOH grows slower
than that in MLH.

4) OH took the least training time in all the comparison.
The training time of AdaptHash is slightly higher. And
the training time of OH and AdaptHash is only about half
of the training time of MLH and MMOH.

From the above investigation, we can conclude that OH and
MMOH are very efficient in consuming considerably small
accumulated training time and thus are more suitable for online
hash function learning.

4) Comparison to Batch Mode Methods: Finally, we
compare batch mode (offline) learning-based hashing models.
The main objective here is not to show which is better, as
online learning and offline learning have different focuses. The
comparison here is to show how well an online model can now
approach the largely developed batch mode methods.

Figure 8 presents the comparison results on different hash
code length varying from 16 to 128 on the four datasets. SDH
is only conducted on Photo Tourism and CIFAR-10 as only
these two datasets provides class label information. From this
figure, it is evident that OH significantly outperforms KLSH
when using different numbers of hash bits on all datasets.
Specifically, when the code length increases, the difference
between OH and KLSH becomes much bigger, especially on
Photo Tourism and 22K LabelMe.

When compared with the unsupervised methods ITQ, OH
outperforms it when the code length is larger than 32 bits over
all datasets. These comparison results demonstrate that OH is
better than the compared data-independent methods KLSH and
the data-dependent unsupervised methods ITQ overall.

For comparison with three supervised methods, the mAP
of MMOH is the highest on GIST 1M dataset, slightly higher
than KSH and FastHash, when the code length is larger than 16
bits. KSH and FastHash have their limitation on this dataset.
KSH cannot engage all data in training as the similarity matrix
required by KSH is of tremendous space cost, and the Block
Graph Cut technique in FastHash may not work well on
this dataset as the supervised information is generated by the
Euclidean distance between data samples. On the other three
datasets, MMOH is not the best, but performs better than
two unsupervised methods KLSH and ITQ. Indeed, from the
performance aspect, when all labeled data are available at one
time using OH and MMOH is not the best choice as compared
to batch mode supervised hashing methods. However, OH
and MMOH solve a different problem as compared to the
supervised batch ones. OH and MMOH concern how to train
supervised hashing model on stream data in an online learning
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Fig. 8. mAP comparison against KLSH and learning-based batch
mode methods with different code lengths on all datasets. (Best
viewed in color.)

framework, while the batch ones are not. A bound on the
cumulative loss function is necessary for an online learning
model while it is not necessary for batch mode methods.
Hence, OH and MMOH have their unique merits.

VIII. CONCLUSION & DISCUSSION

In this paper, we have proposed an one-pass online learning
algorithm for hash function learning called Online Hashing.
OH updates its hash model in every step based on a pair of
input data samples. We first re-express the hash function as
a form of structured prediction and then propose a prediction
loss function according to it. By penalizing the loss function
using the previously learned model, we update the hash model
constrained by an inferred optimal hash codes which achieve
zero prediction loss. The proposed online hash function model
ensures that the updated hash model is suitable for the current
pair of data and has theoretical upper bounds on the similarity
loss and the prediction loss. Finally, a multi-model online
hashing (MMOH) is developed for a more robust online hash-
ing. Experimental results on different datasets demonstrate
that our approach gains satisfactory results, both efficient on
training time and effective on the mAP results. As part of
future work, it can be expected to consider updating the model
on multiple data pairs at one time. However, the theoretical
bound for online learning needs further investigation in this
case.

ACKNOWLEDGEMENTS

This work was completed when the first student was an
undergraduate student at Sun Yat-sen University.

REFERENCES

[1] A. R. Webb and K. D. Copsey, Statistical pattern recognition. Wiley.
com, 2003.



13

[2] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell, “Distance metric
learning, with application to clustering with side-information,” in Neural
Information Processing Systems, 2002, pp. 521–528.

[3] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in Neural Information
Processing Systems, 2005, pp. 1473–1480.

[4] W.-S. Zheng, S. Gong, and T. Xiang, “Re-identification by relative dis-
tance comparison,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 3, pp. 653–668, 2013.

[5] M. Norouzi, A. Punjani, and D. Fleet, “Fast exact search in hamming
space with multi-index hashing,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 6, pp. 1107–1119, 2014.

[6] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in ACM Symposium on Theory of Computing, 2002, pp. 380–
388.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in ACM Symposium on
Computational Geometry, 2004, pp. 253–262.

[8] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detection:
min-hash and tf-idf weighting,” in British Machine Vision Conference,
2008, pp. 1–10.

[9] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in International Conference on Computer Vision,
2009, pp. 2130–2137.

[10] Z. Tang, X. Zhang, and S. Zhang, “Robust perceptual image hashing
based on ring partition and nmf,” IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 3, pp. 711–724, 2014.

[11] L. Zhang, Y. Zhang, X. Gu, J. Tang, and Q. Tian, “Scalable similarity
search with topology preserving hashing,” IEEE Transactions on Image
Processing, vol. 23, no. 7, pp. 3025–3039, 2014.

[12] A. Shrivastava and P. Li, “Densifying one permutation hashing via
rotation for fast near neighbor search,” in International Conference on
Machine Learning, 2014, pp. 557–565.

[13] Z. Yu, F. Wu, Y. Zhang, S. Tang, J. Shao, and Y. Zhuang, “Hashing
with list-wise learning to rank,” in ACM Special Interest Group on
Information Retrieval, 2014, pp. 999–1002.

[14] X. Liu, J. He, and B. Lang, “Multiple feature kernel hashing for large-
scale visual search,” Pattern Recognition, vol. 47, no. 2, pp. 748–757,
2014.

[15] B. Wu, Q. Yang, W. Zheng, Y. Wang, and J. Wang, “Quantized
correlation hashing for fast cross-modal search,” in International Joint
Conference on Artificial Intelligence, 2015, pp. 3946–3952.

[16] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hash-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 37–45.

[17] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Neural
Information Processing Systems, 2008, pp. 1753 –1760.

[18] W. Liu, J. Wang, S. Kumar, and S. Chang, “Hashing with graphs,” in
International Conference on Machine Learning, 2011, pp. 1–8.

[19] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2011, pp. 817–824.

[20] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon, “Spherical hashing,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2012,
pp. 2957–2964.

[21] W. Liu, J. Wang, R. Ji, Y. Jiang, and S.-F. Chang, “Supervised hashing
with kernels,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 2074–2081.

[22] M. Norouzi and D. Fleet, “Minimal loss hashing for compact binary
codes,” in International Conference on Machine Learning, 2011, pp.
353–360.

[23] Y. Mu, J. Shen, and S. Yan, “Weakly-supervised hashing in kernel
space,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2010, pp. 3344 –3351.

[24] P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with
latent factor models,” in ACM Special Interest Group on Information
Retrieval, 2014, pp. 173–182.

[25] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in The Association
for the Advancement of Artificial Intelligence, 2014, pp. 2156–2162.

[26] G. Lin, C. Shen, Q. Shi, A. v. d. Hengel, and D. Suter, “Fast supervised
hashing with decision trees for high-dimensional data,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014, pp. 1971–1978.

[27] J. Wang, O. Kumar, and S. Chang, “Semi-supervised hashing for scalable
image retrieval,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2010, pp. 3424 –3431.

[28] J. Wang, S. Kumar, and S. Chang, “Sequential projection learning for
hashing with compact codes,” in International Conference on Machine
Learning, 2010, pp. 1127–1134.

[29] J. Cheng, C. Leng, P. Li, M. Wang, and H. Lu, “Semi-supervised
multi-graph hashing for scalable similarity search,” Computer Vision
and Image Understanding, vol. 124, pp. 12–21, 2014.

[30] N. Quadrianto and C. H. Lampert, “Learning multi-view neighborhood
preserving projections,” in International Conference on Machine Learn-
ing, 2011, pp. 425–432.

[31] M. Rastegari, J. Choi, S. Fakhraei, D. Hal, and L. Davis, “Predictable
dual-view hashing,” in International Conference on Machine Learning,
2013, pp. 1328–1336.

[32] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing
with semantic correlation maximization,” in The Association for the
Advancement of Artificial Intelligence, 2014, pp. 2177–2183.

[33] J. Masci, M. Bronstein, A. Bronstein, and J. Schmidhuber, “Multimodal
similarity-preserving hashing,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 4, pp. 824–830, 2014.

[34] Y. Wei, Y. Song, Y. Zhen, B. Liu, and Q. Yang, “Scalable heterogeneous
translated hashing,” in ACM Special Interest Group on Knowledge
Discovery and Data Mining, 2014, pp. 791–800.

[35] D. Wang, X. Gao, X. Wang, and L. He, “Semantic topic multimodal
hashing for cross-media retrieval,” in International Joint Conference on
Artificial Intelligence, 2015, pp. 3890–3896.

[36] D. Wang, X. Gao, X. Wang, L. He, and B. Yuan, “Multimodal discrim-
inative binary embedding for large-scale cross-modal retrieval,” IEEE
Transactions Image Processing, vol. 25, no. 10, pp. 4540–4554, 2016.

[37] Y. Zhen and D.-Y. Yeung, “Active hashing and its application to image
and text retrieval,” Data Mining and Knowledge Discovery, vol. 26,
no. 2, pp. 255–274, 2013.

[38] Q. Wang, L. Si, Z. Zhang, and N. Zhang, “Active hashing with joint
data example and tag selection,” in ACM Special Interest Group on
Information Retrieval. ACM, 2014, pp. 405–414.

[39] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, pp. 551–585, 2006.

[40] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” Journal of Machine
Learning Research, vol. 11, pp. 1109–1135, 2010.

[41] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman, “Online metric learning
and fast similarity search,” in Neural Information Processing Systems,
2008, pp. 761–768.

[42] Y. Li and P. M. Long, “The relaxed online maximum margin algorithm,”
in Neural Information Processing Systems, 1999, pp. 498–504.

[43] M. K. Warmuth and D. Kuzmin, “Randomized online pca algorithms
with regret bounds that are logarithmic in the dimension,” Journal of
Machine Learning Research, 2008.

[44] J. Silva and L. Carin, “Active learning for online bayesian matrix
factorization,” in ACM Conference on Knowledge Discovery and Data
Mining, 2012, pp. 325–333.

[45] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers
with online and active learning,” Journal of Machine Learning Research,
vol. 6, pp. 1579–1619, 2005.

[46] W. Chu, M. Zinkevich, L. Li, A. Thomas, and B. Tseng, “Unbiased on-
line active learning in data streams,” in ACM Conference on Knowledge
Discovery and Data Mining, 2011, pp. 195–203.

[47] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching hashing,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2503–2511.

[48] M. Ghashami and A. Abdullah, “Binary coding in stream,” CoRR, vol.
abs/1503.06271, 2015.
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