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Abstract 
 

It is well known that the effect of illumination is mainly 

on the large-scale features (low-frequency components) of 

a face image. In solving the illumination problem for face 

recognition, most (if not all) existing methods either only 

use extracted small-scale features while discard 

large-scale features, or perform normalization on the 

whole image. In the latter case, small-scale features may be 

distorted when the large-scale features are modified. In this 

paper, we argue that large-scale features of face image are 

important and contain useful information for face 

recognition as well as visual quality of normalized image. 

Moreover, this paper suggests that illumination 

normalization should mainly perform on large-scale 

features of face image rather than the whole face image. 

Along this line, a novel framework for face illumination 

normalization is proposed. In this framework, a single face 

image is first decomposed into large- and small- scale 

feature images using logarithmic total variation (LTV) 

model. After that, illumination normalization is performed 

on large-scale feature image while small-scale feature 

image is smoothed. Finally, a normalized face image is 

generated by combination of the normalized large-scale 

feature image and smoothed small-scale feature image. 

CMU PIE and (Extended) YaleB face databases with 

different illumination variations are used for evaluation 

and the experimental results show that the proposed 

method outperforms existing methods. 

1. Introduction 

Face recognition technologies have been widely applied 

in the areas of intelligent surveillance, identity 

authentication, human-computer interaction and digital 

amusement. However, one of the limitations in deploying 

the face recognition for practical use is the relatively low 

performance under illumination variations. It has been 

observed that the effect of illumination variations in face 

images is more significant than the effect of the image 

variations due to the change in face identity [1]. Most 

existing methods for face recognition such as principal 

component analysis (PCA) [2], independent component 

analysis (ICA) [3] and linear discriminant analysis (LDA) 

[19] based methods are sensitive to illumination variations 

[4]. So face illumination normalization is a central problem 

in face recognition and face image processing, and then 

many well-known algorithms have been developed to 

tackle this problem. 

For a face image, we call its small intrinsic details the 

small-scale features and call its large intrinsic features, 

illumination and shadows cast by big objects, the 

large-scale features. Accordingly, existing techniques for 

illumination normalization can be roughly divided into two 

categories. The first category aims at extracting the 

small-scale features that are conceived to be illumination 

invariant for face recognition. Methods in this category 

include logarithmic total variation (LTV) model [5], self 

quotient image (SQI) [6] and discrete wavelet transform 

(DWT) based method [7]. However, all these methods 

discard the large-scale features of face images, which may 

be useful for recognition.  

The second category aims at compensating the 

illuminated image. Methods of this category do 

illumination normalization directly on the whole face 

image. Some representative algorithms include histogram 

equalization (HE) [8], shape-from-shading (SFS) [9], 

illumination cone [10], BHE and linear illumination model 

[11], low-dimensional illumination space representation 

[12], illumination compensation by truncating discrete 

cosine transform coefficients in logarithm domain [13], 

quotient image relighting method (QI) [14] and the 

non-point light quotient image relighting method (NPL-QI) 

based on PCA subspace [15] [16]. In particular, QI and 

NPL-QI can generate image simulating arbitrary 

illumination conditions. However, these methods also 

distort the small-scale features simultaneously during the 

normalization process. Therefore the recognition 
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performance will be degraded, as small-scale features are 

always invariant to illumination. 

Since most (if not all) of existing methods focus on either 

the small-scale features or the whole face image, it is hard 

to get good recognition performance and generate 

normalized face image with good visual results. Instead, 

this paper proposes a new framework, in which large- and 

small- scale features of a face image are processed 

independently. In the proposed framework, a face image is 

first decomposed into a large-scale feature image and a 

small-scale feature image. Normalization is then mainly 

performed on the large-scale feature image, and meanwhile 

a smooth operator is applied on the small-scale feature 

image. Finally, the processed large- and small- scale feature 

images are combined to generate a normalized face image. 

The rest of this paper is organized as follows. In section 2, 

the proposed framework is presented. In section 3, 

experimental results are reported. Finally, conclusion of 

this paper is given in section 4. 

2. Proposed Framework 

2.1. Motivation & Algorithm Overview 

Based on the Lambertian model, a face image I can be 

described by  

LRlrnI T ⊗=•= , (1) 

where r is the albedo of face, n
 
is the surface normal of face, 

•  is the dot product, l is the illumination and ⊗  is the 

pointwise product. Denote R as the reflectance image and L 

as the illumination image . As R depends only on the albedo 

and surface normal, so it is the intrinsic representation of an 

object. Many existing methods attempt to extract the 

reflectance image for face recognition. Unfortunately, 

estimating R from I is an ill-posed problem [17]. To solve 

this problem, Chen et al. proposed a practical methodology 

[5]. Denote lR  as the albedo of large scale skin areas and 

background. Then, based on Eq.(1) the following result is 

obtained: 
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In this case, the term ),(/),( yxRyxR l=ρ  contains only 

the smaller intrinsic structure of a face image, and S  

contains not only the extrinsic illumination and shadows 

casted by bigger objects but also the large intrinsic facial 

structure. In this paper, ρ  is called the small-scale feature 

image and S is called the large-scale feature image. 

 As we know, illumination variation mainly affects the 

large-scale features of a face image and it is important to 

retain the invariant features such as the small-scale features 

during illumination normalization. We observe from Eq.(2) 

that an image could be decomposed into a small-scale 

feature image and a large-scale feature image. This implies 

that illumination normalization could be performed on S 

meanwhile the small intrinsic facial features in ρ  could 

keep unchanged. Even some necessary processing is 

performed on ρ , it would be independent to the one on S. 

Moreover, after normalizing S and ρ , the normalized face 

image can also be generated by Eq. (2). Motivated by this 

observation, this paper proposes a new framework for 

illumination normalization described as follows: 







=
=′

=

′=

)(

)(

),(),(),(

..

),(),(),(

1

2

STS

T

yxSyxyxI

ts

yxSyxyxI

norm

normnorm

ρρ
ρ

ρ
 

(3) 

Fig. 1 shows the diagram of the proposed framework. It 

consists of four steps, namely face image decomposition, 

smoothing on small-scale feature image (T2), illumination 

normalization on large-scale feature image (T1) and 

reconstruction of normalized images. Details of each step 

are discussed as follows. 

2.2. Face Image Decomposition Using 

Logarithmic Total Variation 

First, we decompose a face image into a small-scale 

feature image and a large-scale feature image as shown in 

Eq.(2). In this paper, we employ a recently developed LTV 

model [5] for image decomposition. Compared to existing 

methods, LTV has the capabilities of edge-preserving and 

multi-scale decomposition. By performing logarithm 

transform on Eq.(2), LTV model is described as follow: 

),(log),(log),(log),( yxSyxyxIyxf +== ρ  

{ }∫ −+∇= 1||||||minarg*
L

u
ufuu λ  

** ufv −=  

(4) 

where ∫ ∇ || u  is the total variation of u and λ is a scalar 

threshold on scale. In our experiments, we set 4.0=λ . In 

Eq.(4), minimizing ∫ ∇ || u  would make the level sets of u 

have simple boundaries, and minimizing 
1L

uf −  would 

ensure the approximation of u to f. PDE-based gradient 

descent technique, interior-point second-order cone 

program (SCCP) algorithm, or network flow method can be 

 
Figure 1: Diagram of the proposed framework  
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used for solving Eq.(4). In this paper, SCCP is used, and 

therefore, ρ  and S can be approximately estimated by 

solving Eq.(4) as follows: 

)exp( *uS ≈ ,  )exp( *v≈ρ  (5) 

An example of the face image decomposition result is 

showed in Fig. 2.  

In [5], Chen et al. only directly use small-scale feature 

image for face recognition, while the large-scale feature 

image is not taken into consideration. Moreover, no 

normalization is further performed on large- and small- 

scale feature images in [5] for generating face image under 

normal illumination. 

2.3. Smoothing on Small-Scale Feature Image 

As shown in Fig. 2, after face image decomposition 

using LTV, some light spots may appear in the small-scale 

feature image ρ  under some challenging illumination 

condition, which also appear in the illustration [5]. 

Although the influence of these spots might be ignored for 

face recognition, it would have negative effect on the visual 

quality of the reconstructed image at the final step in the 

proposed framework. For this reason, a threshold minimum 

filtering is performed on ρ  for getting better visual results 

later. 

Suppose (x0, y0) is the center point of convolution region. 

Then, the threshold minimum filtering performs as follows. 

The filter kernel will convolute only if θρ ≥),( 00 yx , 

where θ  is an empirical threshold. In our experiment, a 

33×  mask is used and each image is convolved twice. An 

example of the filtering result is illustrated in Fig. 3. 

2.4. Illumination Normalization on Large-Scale 

Feature Image 

Recall the discussion of Eq.(2). Although the extrinsic 

illumination and shadows cast by bigger objects appear in 

the large-scale feature image, S may contain the larger 

intrinsic facial structures that are also illumination invariant. 

In order to improve the visual quality of normalized face 

image, large-scale features have to be used. For these 

reasons, the large-scale feature image should be normalized. 

To remove the illumination effect in S, some effective 

illumination normalization processing is needed. In this 

paper, two methods, namely NPL-QI and truncating DCT 

coefficients in logarithm domain (LOG-DCT) are 

separately employed for this purpose. NPL-QI takes the 

advantage of the linear relationship between spherical 

harmonic bases and PCA bases. It extends the illumination 

estimation of QI from single point light source to any type 

of illumination conditions and is good for simulation of 

images under arbitrary illumination condition. Regarding 

LOG-DCT, it was developed based on the theory that 

illumination variation mainly lies in the low-frequency 

band. It is suggested that appropriate number of DCT 

coefficients in logarithm domain can be used to 

approximate the illumination variation, and these DCT 

coefficients are then truncated to reduce the effect of 

illumination.  

2.4.1 Applying NPL-QI 

In this section, non-point light quotient image (NPL-QI) 

[16] is employed to normalize the large-scale feature image 

S. Assume all face images have the same surface normal n. 

Utilizing principal components as the bases of illumination 

subspace, the NPL-QI of face y against face a is defined by 

lU

I

r

r
Q

y

a

y

y
•

== , (6) 

where ry and ra are the albedo of face y and face a 

respectively, ],,,[ 21 nuuuU L=  is the eigenvector matrix 

of training samples and T
nllll ],,,[ 21 L=  is the estimated 

lighting that is the solution of the following equation: 

lUIlf y •−= min)(  (7) 

The Qy can be regarded as illumination invariant and used 

to synthesize the image under arbitrary illumination 

condition. Similarly, large-scale feature NLP-QI can be 

represented by 

     
                     I                       L                       R 
Figure 2: An example of face image decomposition using LTV 

 

         
(a)                          (b) 

Figure 3: An example of filtering on small-scale feature image. 

(a): raw ρ ; (b): filtered ρ  (i.e., 'ρ ). 

 

           
(a)                        (b)                       (c) 

Figure 4: Examples of illumination normalization on S. (a): raw S; 

(b): the normalized S using NLP-QI; (c): the normalized S using 

LOG-DCT. 
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Accordingly, in Eq.(8), U' is trained by large-scale feature 

images. Using large-scale feature NPL-QI, Sy can be 

transferred into the normal illumination condition by 

normynorm lUQS •′⊗′= , (9) 

where lnorm is the normal illumination trained by facial 

large-scale feature images under normal illumination 

condition. An example showing illumination normalization 

on S is illustrated in Fig. 4 (b).  

2.4.2 Applying LOG-DCT 

In this section, we demonstrate the use of LOG-DCT 

algorithm [13] for preprocessing on large-scale feature 

image. LOG-DCT is used for normalizing illumination by 

discarding low-frequency DCT coefficients in logarithm 

domain. For a face image, I and I' represent the face image 

under normal and varying illumination conditions 

respectively. Then S and S' are the corresponding 

large-scale feature images, i.e., 

),(),(),( yxSyxyxI ρ= ,

),(),(),( yxSyxyxI ′=′ ρ . 
(10) 

According to Eq.(2), we have 

),(),(),( yxLyxRyxS l=

),(),(),( yxLyxRyxS l
′=′  

(11) 

Taking logarithm transform on Eq.(11) yields the 

following: 
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where LL loglog −′=ε is called the compensation term, 

the difference between the normal illumination and the 

estimated original illumination in the logarithm domain. 

From Eq.(12), it can be concluded that S can be obtained 

from S' by subtracting the compensation term ε  in the 

logarithm domain. 

Assume that the DCT coefficients of u' are ),( βαC , 

1,,1,0 −= MLα , 1,,1,0 −= NLβ . Then the inverse 

DCT is given by: 

∑ ∑








 +







 +
×

∑ ∑=′

−

=

−

=

∆

−

=

−

=

1

0

1

0

1

0

1

0

),(

2

)12(
cos

2

)12(
cos

),()()(),(

M N

M N

E

N

y

M

x

CAAyxu

α β

α β

βα

βπαπ

βαβα

＝

     (13)

where A is the normalization coefficient function. In 

Eq.(13), setting n low-frequency DCT coefficients to be 

zero is equivalent to removing n low-frequency 

components, so we have 
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In our experiment, 169 low-frequency DCT coefficients 

around the origin of coordinates in frequency domain are 

setting to be zero. Since it is assumed in LOG-DCT that 

illumination variations are mainly contained in the 

low-frequency components, the term ∑ ∑−
=

−
=

1
0

1
0 ),(n n Eα β βα  

can be approximately regarded as the illumination 

compensation term ε , so û  is just the estimated 

normalized large-scale feature image in the logarithm 

domain. We therefore have 

),(ˆexp),( yxuyxSnorm = . (15) 

The results of illumination normalization on S using this 

method are illustrated in Fig. 4 (c). 

 

2.5. Reconstructing Normalized Image 
Similar to Eq.(2), the normalized face image is finally 

reconstructed by combination of normalized large-scale 

feature image Snorm and smoothed small-scale feature image 

ρ ′ :  

),(),(),( yxSyxyxI normnorm ρ ′= . (16) 

Specifically, when using NPL-QI, according to Eq.(2) and 

(9), the reconstructed face image simulating normal 

illumination condition can be generated by 

)(' normynorm lUQI •′⊗′⊗= ρ . (17) 

When using LOG-DCT, the face image Inorm simulating 

normal illumination condition can be estimated by: 

[ ]),(ˆexp),('),( yxuyxyxInorm ρ= . (18) 

 

3. Experimental results 

In this section experiments are conducted to justify the 

following two points: (1) illumination normalization 

mainly performing on the large-scale feature image 

outperforms that on the whole image; (2) large-scale 

features are also useful for face recognition and should not 

be discarded. The performances of algorithms are evaluated 

in the aspects of face recognition and visual results of 

illuminated compensated images. For clear of presentation, 

we call the proposed framework as the reconstruction with 

normalized large- and small-scale feature images (RLS).  
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(c) 

    
(d) 

    
(e) 

    
(f) 

Figure 5: Illumination normalization using different 

techniques. (a): original images, (b): images normalized by HE, 

(c): images normalized by LOG-DCT, (d): images normalized 

by NPL-QI, (e): images normalized by RLS(LOG-DCT), (f): 

images normalized by RLS(NPL-QI). 

Figure 6: Illustration of the corresponding processing on large- 

and small- scale feature images of the images in Fig. 5 using the 

proposed framework. (a): original images, (b): small-scale 

feature image ρ , (c): filtered ρ  (i.e., ρ ′ ), (d): large-scale 

feature image S, (e): S normalized by LOG-DCT, (f): S 

normalized by NPL-QI. 

 

Yale B [10], Extended Yale B and CMU PIE databases 

[18] are selected for evaluation. Images in Yale B are 

obtained from 10 individuals. Images are captured under 64 

different lighting conditions from 9 pose views and are 

divided into 5 subsets (Set 1 to Set 5) according to the 

ranges of the illumination angles between the light source 

direction and the camera axis. In the Extended Yale B 

database, there are 16128 images of 28 human subjects 

captured under the same condition as Yale B. In the 

experiment, only frontal face images from these two 

databases are selected. The CMU PIE consists of 68 

individuals. For testing, the frontal face images under 21 

different illumination conditions with background lighting 

off are selected. In our experiments, all images are simply 

aligned and each image is resized to 100×100.  

3.1. Illumination Normalization on Large-scale 

Feature Image vs. on Whole Image 

In this experiment, we show that performing 

illumination normalization on large-scale image 

outperforms that on the whole image. In our framework, the 

threshold minimum filtering is performed on small-scale 

feature images, and the NPL-QI and LOG-DCT are 

respectively applied for illumination normalization on 

large-scale feature images. Accordingly, these two methods 

under our framework are respectively called RLS(NPL-QI) 
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(a)                                                                       (b) 

Figure 7: Average Diff of different algorithms on (a): CMU database and (b): Extended Yale B database. 

         
                                                            (a)                                                                          (b) 

Figure 8: Average Diff of different algorithms on (a): CMU database and (b): Yale B + Extended Yale B database. 

Recognition Rate (%) 
Method 

Set2 Set3 Set4 Set5 

HE 93.5 39.9 22.9 10.5 

NPL-QI 98.8 68.2 37.5 18.2 

RLS (NPL-QI) 100 91.4 54.1 22.0 

 
Table 1: Comparisons between different methods for 

illumination normalization on Extended Yale B.  

Recognition Rate (%) 
Method 

Set2 Set3 Set4 Set5 

HE 91.9 37.7 21.3 10.1 

LOG-DCT 99.8 83.6 85.5 83.8 

RLS (LOG-DCT) 100 87.1 87.6 84.8 

 
Table 2: Comparisons between different methods for 

illumination normalization on “Yale B + Extended Yale B”.  

 

Method Recognition Rate (%) 

HE 47.3 

NPL-QI 88.4 

RLS (NPL-QI) 95.3 

LOG-DCT 99.8 

RLS (LOG-DCT) 99.9 

 
Table 3: Comparison between different methods for illumination 

normalization on CMU. 

and RLS(LOG-DCT). We compare them with NPL-QI and 

LOG-DCT which are directly applied on whole face image. 

In addition, HE is also carried out as a baseline algorithm. 

For evaluation, we perform face recognition on normalized 

face images and also provide a measurement of the image 

quality. 

We first compare the visual results of reconstructed 

images by different algorithms in Fig. 5. In addition, in Fig. 

6, we show the image decomposition results, i.e., 

small-scale and large-scale feature images, and the 

illumination normalization results on them using our model. 

It is shown that our methods preserve the intrinsic facial 

structures well. As shown, when normalization is directly 

performed on the whole image, the normalized faces will 

lose more facial details, such as the edges and some 

textures with large illumination variation. Note that there 

are "local artifacts" in some normalized face images. These 
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local artifacts are caused by NPL-QI, as NPL-QI cannot 

perform well for shadows. 

In addition, we propose an objective measurement for 

the visual quality of a normalized image as follows: 

d

II
Diff

eddards 2normaliztan −
= , (19) 

where tedInormalie  and dardsI tan  denote the normalized image 

of a same subject and the corresponding image under 

normal illumination condition respectively, and d  is the 

number of pixels in an image. For Yale B and Extended 

Yale B, the face image of any subject captured by the 

frontal camera is regarded as the normal one, i.e., dardsI tan  

in Eq. (19). For CMU, the images captured by the 11
th

 

camera are the dardsI tan . The results are reported in Fig. 7 

and 8, and the smaller the value Diff is, the better the 

algorithm performs. As show, the proposed algorithms 

achieve lower Diff values, and these also support the results 

shown in Fig. 5. 

Finally, recognition results are reported for evaluation of 

the proposed framework. For each subject of the databases, 

only the image under normal illumination condition is 

registered as the reference image, and the rest images are 

treated as the query images. Nearest neighbor (NN) 

classifier is selected for classification, where normalized 

correlation is used as the similarity metric. The results are 

tabulated in tables 1, 2 and 3. The results show that the 

proposed scheme gets higher recognition rates. Note that 

when using NPL-QI in our experiments, all the 640 images 

from Yale B have to be used for training U
’ 
and lnorm in 

Eq.(7)～(9), so the methods employed NPL-QL are only 

performed on Extended Yale B and CMU databases. 

Furthermore, according to [13], for the algorithms using 

LOG-DCT, logarithm images are directly used for 

recognition, i.e., the inverse logarithm transform step is 

skipped for face recognition. It can be seen that the 

algorithms under our framework gets higher recognition 

rates than the ones directly applying on the whole images. 

The above experimental results indicate that when 

illumination normalization is mainly performed on 

large-scale feature image rather than the whole face image,  

higher recognition rates and better visual quality of 

reconstructed images are obtained.      

3.2. Using vs. Discarding Large-scale features  

Many methods only use the small-scale features for face 

recognition and discard the large-scale features. However, 

larger intrinsic facial structures which are also invariant to 

illumination may be contained in the large-scale features. 

In this experiment, we show large-scale features are useful 

for recognition and they should not be discarded. In the last 

section, LOG-DCT performs best in the aspect of 

recognition. So, to demonstrate the advantage of our 

framework, we select LOG-DCT to perform illumination 

normalization on the large-scale feature image and then use 

the reconstructed images for recognition. In this section, the 

performance of LTV model [5] is reported for comparison, 

and the results are tabulated in table 4. The setting of 

reference and query samples is the same as the last section. 

Chen et al. only use the small-scale feature images 

generated by LTV for recognition [5], while in our scheme, 

normalization is further performed on the large- and small- 

scale images and finally a reconstructed image is obtained. 

The results suggest that the proposed scheme gives higher 

 
Figure 9: ROC curves of different methods on “Yale B + 

Extended Yale B” database. 

 
Figure 10: ROC curves of different methods on CMU 

database. 

 

Recognition Rate (%) 

Yale B+Extended YaleB Method 

Set2 Set3 Set4 Set5 
CMU 

LTV [5] 99.8 79.4 76.1 78.3 99.9 

RLS(LOG-DCT) 100 87.1 87.6 84.8 99.9 
 

Table 4: Comparison between different methods for 

illumination normalization. 
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recognition rates on “Yale B+ Extended YaleB”. As LTV 

and RLS(LOG-DCT) get the same recognition rate on 

CMU, we further compare their ROC curves in Fig. 10. 

Also, the ROC curves on “YaleB+Extended YaleB” are 

given in Fig. 9, in which subset 2~5 are used as the testing 

data set. The figures show that significant improvements 

are obtained by RLS(LOG-DCT).  

The above experimental results justify that only using 

small-scale features of face images for face recognition is 

not enough. Large-scale features are very important and 

should not be discarded. 

4．．．．Conclusions 

A novel technique for face illumination normalization is 

developed in this paper. Rather than doing illumination 

normalization on the whole face image or discarding the 

large-scale features, the proposed framework performs 

illumination normalization on both large- and small- 

feature images independently. In particular, this paper 

demonstrates that large-scale features of face images are 

also important and useful for face recognition and obtaining 

good visual quality of normalized illuminated images. 

Moreover, we suggest performing illumination 

normalization mainly on the large-scale features rather than 

the whole face image meanwhile keeping the small intrinsic 

facial features which are invariant to illumination, as it 

would result in superior performance Utilizing the 

proposed framework, experimental results on CMU PIE 

and (Extended) YaleB databases are encouraging. 
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