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Abstract

This paper presents a novel alternative approach,

namely weakly supervised learning (WSL), to learn the

pre-image of a feature vector in the feature space

induced by a kernel. It is known that the exact pre-

image may typically seldom exist, since the input space

and the feature space are not isomorphic in general,

and an approximate solution is required in past. The

proposed WSL, however, would find an appropriate

rather than only a purely approximate solution. WSL is

able to involve some weakly supervised prior

knowledge into the study of pre-image. The prior

knowledge is weak and no class label of the sample is

required, providing only information of positive class

and negative class which should properly depend on

applications. The proposed algorithm is demonstrated

on kernel principal component analysis (KPCA) with

application to illumination normalization and image

denoising on faces. Evaluations of the performance of

the proposed algorithm show notable improvement as

comparing with some well-known existing approaches.

1. Introduction

In the last decade, kernel learning has been

attractive in pattern recognition and machine learning

[1]. Utilizing the kernel trick, a nonlinear mapping )(⋅φ

that maps data from input space into a featureX

space is implicitly induced by the kernel functionΗ

satisfies , where and),( ⋅⋅k >=< )(),(),( yxyx φφk Xyx ∈,

is the inner product. It gives rise to drive>⋅⋅< ,

nonlinear analysis on patterns without explicitly

defining .φ

The pre-image problem [2] in kernel methods is

interesting and is useful in some applications, such as

image denoising [2] and image compression [5]. And

what we are interested in is to find a pre-image in X

for , where and is the))(( xPro φ Xx ∈ ))(( xPro φ

projection of onto some linear subspace defined)(xφ

in . Take KPCA and denoising for example. ForΗ

some noisy pattern , is the projectionXx ∈ ))(( xPro φ

of onto the kernel principal component subspace)(xφ

for denoising. However, is defined in so))(( xPro φ Η

we want to recover its denoised pattern in . Ideally,X

the pre-image problem finds an exact pattern Xx ∈0ˆ

such that . The most difficulty of the))(()ˆ( 0 xProx φφ =

pre-image problem, however, is that the input space

and the feature space are not isomorphic in general and

the feature space always holds higher dimensionality.

So from the mathematical aspect, an exact value as0x̂

the pre-image of would not exist. Some))(( xPro φ

existing efforts settle for an approximate solution, such

as the least square distance minimization (LSDM) [2]

scheme (or more general technique in [8]) and the

distance constraint (DC) scheme [4] which has similar

idea with multidimensional scaling (MDS)[4], etc.

In essence, we always hold the question: “What is

the best pre-image?” Actually, approximation should

not be the sole strategy [5]. Rather than only achieving

a purely approximate solution of the pre-image, for

pattern recognition and image processing, we may be

more interested in learning an appropriate pre-image,

resulting in better classification performance or more

satisfactory visual result. Moreover, previous methods

are unsupervised, and may not achieve good

performance if the application is challenging, e.g. the

illumination normalization shown in our experiments.

Our idea is to integrate some weakly supervised

prior knowledge to find a more appropriate solution of

the pre-image depending on the application. Based on

this idea, we would propose a novel approach, namely

weakly supervised learning (WSL), to learn the pre-

image that is appropriate but also approximate by



integrating some weak prior knowledge, including

only positive class and negative class. Definitions of

them depend on different applications. No class label

of any sample is in fact required. In the experiment, we

extend the application of the pre-image learning in

KPCA to face illumination normalization, where no

physical models of the illumination and shape of the

face are required. Moreover, a denoising experiment

has also been presented. The experimental results show

the proposed algorithm achieves notable improvement

against the previous approaches on pre-image learning.

The exposition would focus on the RBF kernel, and the

idea can be also well extended to other kernels.

2. Weakly Supervised Learning on Pre-

image

Before demonstrating our idea, suppose Xxx ∈N,,1⋯

are training samples and . In thisN ))(,),(( 1 NxxΦ φφ ⋯=

paper we mainly consider the RBF kernel,

. We denote any0),/||||exp(),( 2 >−= − cck jiji xxxx

linear transform matrix by defined inT
q

T
),,( 1

φφφ uuU ⋯=

the Reproducing Kernel Hilbert Space (RKHS) by:Η

It is valid with the Representer Theorem of RKHS [1].

For KPCA, is the transform of the principal
TφU

component subspace in RKHS [2-4]. Then , theXx∈∀

projection of onto the space is:)(xφ },,{ 1
φφ
qspan uu ⋯

where .)(),,( 1 xΦPPγ xxx φγγ TTT
N == ⋯

Now, we introduce the weakly supervised learning

(WSL) to learn an appropriate pre-image of ))(( xPro φ

by integrating weakly supervised prior knowledge.

We at the moment assume we have such knowledge

and establish the theoretical fundamental. We define

the positive class which the pre-image is expected

close to and the negative class which the pre-image is

expected far away from. Denote the positive class by

and the negative class by ,},,{ 1
+++

+
=

N
C zz ⋯ },,{ 1

−−−
−

= NC zz ⋯

where and are samples in the positive class and+
iz −

jz

negative class respectively. We do not restrict or+
iz −

jz

to be out of the samples used to produce , such asTφU

the transform of KPCA. Specific values of them would

be designed properly depending on applications later.

The key idea of our learning would drive the pre-

image close to the local positive class information and

far away from the local negative class information as a

constraint added to the least square distance

minimization criteria. Take illumination normalization

,ΦPppΦU == ),,( 1 q⋯
φ qN

q
×∈= RppP ),,( 1 ⋯ (1)

xΦγxΦΦPPxUUxPro ===  )()())(( φφφ φφ TT
T

(2)

for example. is the projection of onto))(( xPro φ )(xφ

the kernel principal component space to attenuate

illumination. If the positive class holds faces with nice

illumination and the negative class is with the bad

ones, then should be expected towards the))(( xPro φ

faces with nice illumination and away from the bad

ones in the feature space . So if hasΗ ))(( xPro φ +θ

nearest positive samples and)(,),(
1

++
+θ

φφ
ii

zz ⋯
−θ

nearest negative samples in , then)(,),(
1

−−
−θ

φφ
ii

zz ⋯ Η

our learning aims to learn an appropriate solution ,0x̂

the pre-image of drawn towards))(( xPro φ ++
+θ

ii
zz ,,

1
⋯

and far away from in the input space as a−−
−θ

ii
zz ,,

1
⋯

constraint added to least square distance minimization

criteria such that both approximate and appropriate

solution could be approached meanwhile. The idea is

valid in the ideal case that has its exact pre-))(( xPro φ

image . Since for RBF kernel (or more general0x̂

isotropic kernel [4]), , is close to (farXz ∈∀ )(zφ

from) if and only if is close to (far from)))(( xPro φ z

. However an exact pre-image seldom exists. So0x̂

WSL drives a constraint to find that preserves the0x̂

local relationship with the positive and negative class

in the input space as does in the feature))(( xPro φ

space. In summary, WSL learns the criterion below:

where is one of the)(,|{)( +++++ ∈= zzzx φθ CH
+θ

nearest positive samples of } and)(xφ |{)( −− = zxθH

, is one of the nearest negative−− ∈Cz )( −zφ −θ

samples of }. And , . and)(xφ 0>+η 0>−η || )(x+
θH

are the size of and respectively.|| )(x−
θH )(x+

θH )(x−
θH

To get optimization, we first note that:

As declared, we consider the RBF kernel such that

, then)/||||exp()(),(),( 2 ck jijiji xxxxxx −−>==< φφ

xxΦγxxxProx x ˆ))ˆ(,2(ˆ))ˆ()),((2(ˆ0 ∂><−∂=∂><−∂=∂∂ φφφF

)/||ˆ||exp()ˆ,()ˆ(, 2
11 ck ii

N
iii

N
i xxxxxΦγ xxx −−∑=∑>=< == γγφ

So . Also, we have:)ˆ)(ˆ,(4ˆ
1

1
0 iii

N
i kcF xxxxx x −∑=∂∂ =

− γ

{ }
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where is the mean of+
∈

+
+++ ∑= − zxz xzx )()(

1|| )(~
θθ θ HH H

local positive samples, −
∈

−
−−− ∑= − zxz xzx )()(

1|| )(~
θθ θ HH H

is the mean of local negative samples. Hence we have

)~ˆ(2 )~ˆ(2)ˆ)(ˆ,(

ˆ)(
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xx
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FFF

To optimize, let . We have:0x =∂−+∂ −+ ˆ)( 0 FFF

Like [1], one can solve by the fixed-point iterationx̂

Or we have an essence view from (8) on the top, where

, so that the1
1

1 ))ˆ,(2(5.0 −−+
=

− −+∑×= ηηγρ tii
N
it kc xxx

iteration is a special case of the gradient descent

optimization scheme in essence. Therefore, a more

general practical solution to get the local optimization

could be drawn by the gradient descent scheme like

for some suitable at each step. Actually, (9) is a0* >tρ

general scheme suitable for any kernel but not only for

RBF and (7) is also enough in our experiment. In the

experiment, the mean value of all training samples is

set to be the initial value of for the iteration. Thistx̂

setting is the same for LSDM [2] for a fair comparison.

From (7), we see that, as long as given the

appropriate prior knowledge, is drawn towards1ˆ +tx

the appropriate local prior information of positive class

and pushed away some local prior information of

negative class at each step. Finally we would get an

appropriate pre-image depends on the application

meanwhile achieving the approximation. However,

, , and should be carefully set so that the+θ −θ +η −η

prior knowledge helps learn an appropriate pre-image

since approximation is also important in our algorithm.

Finally, the learning is weakly supervised since it

only integrates the prior information involving the

positive class and the negative class. In fact, the proper
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class label of each sample is not required. It provides a

potentially wide application of the algorithm.

Although we have driven an iterative scheme for

the solution, however, experiment results show much

improvement of our approach comparing with well-

known learning methods on pre-image problem.

3. Applications

Pre-image learning could provide wide applications.

We herein present two applications, namely the

illumination normalization and face image denoising.

All experiments are based on YALEB [7] database. It

has 10 persons with 9 different poses. Each pose of

each person owns 65 faces with different illumination

conditions that are always divided into 5 subsets [7].

We select face images from all persons with all poses

in the first 4 subsets, totally 4050 images, to evaluate

the performance of the algorithms. All images are

aligned with the size . The gray value of pixel11292 ×

of images is finally stretched ranging from 0 to 1. The

parameters in the proposed algorithm are manually and

experimentally set to get better performance.

3.1. Illumination Normalization

For illumination normalization, as aforementioned

in section 2, we define the positive class holds face

images with nice illumination while the negative class

holds face images with bad one. In the experiment, we

let the positive class be all images of all persons with

different poses in the subset 1. Technically speaking,

faces with bad illumination could be simulated. For

convenience, the negative class is produced from the

subset 5 (Fig. 1), where 7 images of each pose of each

person are randomly selected. Therefore the total size

of the positive class and negative class are 630

respectively. For all algorithms, the kernel principal

component subspace is produced from all images in

subset 1 that holds the face images with nice

illumination with 95% energy maintained. As declared,

we do not restrict samples in the positive class or

negative class to be out of the samples for training to

produce the kernel principal component subspace.

Utilizing the kernel trick, each testing image in

subsets 2~4 is first projected onto the kernel principal

component subspace to attenuate illumination. Then

t
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Table 1. Average recognition accuracy ( )510=c

Method Subset2 Subset3 Subset4

WSL 99.81% 89.63% 48.73%

DC [4] 99.35% 76.02% 30.79%

LSDM [2] 99.44% 81.20% 37.22%Figure 1. Examples (images are resized to present)

(a) positive class (b) negative class



pre-image learning algorithms are used to learn the

pre-image of that projection respectively. In the

experiment, we set in the RBF kernel and set510=c

= =50, = =0.00001. The reason why and+θ −θ +η −η +η

are small is because and should be−η +×ηc −×ηc

appropriately small in (7). And 30 neighbors are used

to find the pre-image in distance constraint method.

Fig. 2 shows some results of the pre-images.

Table 1 gives the average recognition rate on the

reconstructed pre-images of different subsets

respectively. For each subset, the recognition rate is

obtained by averaging the recognition rates over all

poses in this subset. For the recognition of each pose,

LDA [6] is implemented where all the first three faces

of the same pose from subset 1 are used for training,

since they are original images under almost normal

illumination condition without any transformation.

We see that, in subsets 3~4, WSL achieves notable

improvement against the compared pre-image learning

algorithms. For subset 3, the recognition rates of the

other two algorithms sharply reduce. The illumination

condition in subset 4 is quite challenging. Though all

algorithms do not achieve satisfied results, WSL still

gets significant improvement against the others. Note

that KPCA is not a specific algorithm for illumination

normalization. Moreover our learning does not depend

on any physical model and any information of the

shape of the face. However, it may be an interesting

task to improve KPCA for illumination normalization.

3.2. Face Image Denoising

First, the positive class is the same as that in section

3.1. Secondly we produce 1890 (=7 9 10 3) noisy× × ×
face images by producing 3 different noisy images

from each face image in subset 1, where the noise type

is Gaussian with mean 0 and random variance falling

in (0,0.5] (Fig. 3). Thirdly the negative class is

established by selecting 630 noisy images produced,

where each noisy image has one-one correspondence

with its original image in the positive class. Then the

other 1260 images are tested for denoising. Note that

all noisy images are also linearly stretched to full range

of pixel values of [0, 1] before the experiments.

For all algorithms, the kernel principal component

subspace is developed the same as the previous

application. And all testing noisy images are projected

onto the kernel principal component subspace for

denoising. Then the pre-images of the projections are

found by the algorithms respectively. In the

experiment the parameter settings are: for , set510=c

=0.00002 and =0.00001; for , set+η −η 410=c

=0.0002 and =0.0001. Tables 2~3 show the+η −η

mean square error (MSE) between the denoised images

and the original images. The notations in the tables are

explained as: “WSL( )” means that = = and0n +θ −θ 0n

“DC( )” indicates that the number of neighbors used0n

is set to be using distance constraint [4]. Due to the0n

limited length, table 3 only gives main results. Fig. 4

shows some denoised images. Apparently, WSL and

DC are able to get more excellent improvement than

LSDM. It also coincides with [4] that reported DC was

(a) Original Faces with Illumination

(b) Distance Constraint [4]

(c) Least Square Distance Minimization [2]

(d) Weakly Supervised Learning

Figure 2. Illustration of illumination normalization of subset 3 (images have been resized to present and )510=c

Figure 3. Illustration of noisy faces



superior to LSDM for denoising. Here we also find

interesting results that WSL would become better if

and are set to be small, while DC would fail if+θ −θ

the number of neighbors set is quite small. This is also

intuitive in the extreme case that DC is unstable if only

one neighbor is used. Hence, WSL achieves the best.

4. Further Discussion

Parameters. Parameters in WSL have their own

meanings. Basically, and , which indicate how+θ −θ

many local nearest positive and negative samples

would be considered, could actually be treated as

regularization parameters. As or becomes large,+θ −θ

the information of the positive or negative class

becomes global, vice versa becomes local. This is well

observed during the denoising experiment. As more

neighbors are considered, the denoised image would

become smoother, but may be away from the original

image. That is why for denoising fewer neighbors are

suggested. However, for illumination, since the

reflection of illumination is more challenging and

more complex than noise, here Gaussian noise, hence a

properly large value of and should be+θ −θ

significant for the performance. Besides and ,+θ −θ

values of and are also important and they have+η −η

been discussed in section 2. If and become zero−η −θ

and the positive class is set to be all training samples,

then WSL could be understood as a locality preserving

constraint. We believe adaptive estimations of them

would further enhance the performance of WSL.

Prior knowledge. Prior knowledge is important and

could be simulated. So it may be possible to achieve as

better performance as given more prior information.

5. Conclusion and Future Work

This paper proposes a novel alternative approach

for the pre-image learning in kernel methods, namely

weakly supervised learning. Rather than only finding a

purely approximate solution in past, we integrate

weakly supervised information to find a solution that is

appropriate for the application and also approximate.

Therefore, this paper actually suggests a way to

integrate prior information into pre-image learning in

kernel methods. Our feature work would attempt to

find a non-iterative scheme for the idea of WSL.
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