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Abstract—Context is critical for reducing the uncertainty in object detection. However, context modeling is challenging because there

are often many different types of contextual information coexisting with different degrees of relevance to the detection of target

object(s) in different images. It is therefore crucial to devise a context model to automatically quantify and select the most effective

contextual information for assisting in detecting the target object. Nevertheless, the diversity of contextual information means that

learning a robust context model requires a larger training set than learning the target object appearance model, which may not be

available in practice. In this work, a novel context modeling framework is proposed without the need for any prior scene segmentation

or context annotation. We formulate a polar geometric context descriptor for representing multiple types of contextual information. In

order to quantify context, we propose a new maximum margin context (MMC) model to evaluate and measure the usefulness of

contextual information directly and explicitly through a discriminant context inference method. Furthermore, to address the problem of

context learning with limited data, we exploit the idea of transfer learning based on the observation that although two categories of

objects can have very different visual appearance, there can be similarity in their context and/or the way contextual information helps to

distinguish target objects from nontarget objects. To that end, two novel context transfer learning models are proposed which utilize

training samples from source object classes to improve the learning of the context model for a target object class based on a joint

maximum margin learning framework. Experiments are carried out on PASCAL VOC2005 and VOC2007 data sets, a luggage

detection data set extracted from the i-LIDS data set, and a vehicle detection data set extracted from outdoor surveillance footage. Our

results validate the effectiveness of the proposed models for quantifying and transferring contextual information, and demonstrate that

they outperform related alternative context models.

Index Terms—Context modeling, object detection, transfer learning.

Ç

1 INTRODUCTION

IT has long been acknowledged that visual context plays
an important role in visual perception of object [7], [3].

Consequently, there has been increasing interest in recent
years in developing computational models to improve
object detection in images by exploiting contextual informa-
tion [20], [13], [45], [25], [31], [28], [9], [48], [38], [24], [22].
These existing studies show that by fusing contextual
information with object appearance information, the un-
certainty in object detection can be reduced leading to more
accurate and robust detection, especially in images with
cluttered background, low object resolution, and severe
occlusions (see Fig. 1 for examples). In particular, a large
amount of false detections can be filtered out when
the object contextual information is examined, e.g., luggage
is normally carried by or in a vicinity of a person rather than
on a wall or train carriage (see Fig. 1a).

However, modeling visual context remains a challenging
problem and is largely unsolved mainly due to the following

reasons: 1) Diversity of contextual information—There are
many different types of context often coexisting with
different degrees of relevance to the detection of target
object(s) in different images. Adopting the terminology in
[25], objects in a visual scene can be put into two categories:
monolithic objects or “things” (e.g., cars and people) and
regions with homogeneous or repetitive patterns, or “stuffs”
(e.g., roads and sky). Consequently, there are Scene-Thing
[31], Stuff-Stuff [44], Thing-Thing [38], and Thing-Stuff [25]
contexts depending on what the target objects are and where
the context comes from. Most existing work focuses only on
one type of context and ignores the others. It remains
unclear how different types of contextual information can be
explored in a unified framework. 2) Ambiguity of con-

textual information—Contextual information can be am-
biguous and unreliable and thus may not always have a
positive effect on object detection. This is especially true in a
crowded public scene such as an underground train plat-
form, with constant movement and occlusion among multi-
ple objects. How to evaluate the usefulness and goodness of
different types of context in a robust and coherent manner is
crucial and has not been explicitly addressed. 3) Lack of data

for context learning—It is well known that visual object
detection is a hard problem because of the large intraclass
variation of object appearance; learning an object appear-
ance model thus often faces the problem of sparse training
data which can lead to model overfitting. However, the
problem of learning with limited training data is much more
acute for context learning because the variation of contextual
information and the variation of its degree of relevance to
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the detection of target object can be larger. For instance,

some objects, such as people, can appear everywhere and

certain contextual information (e.g., on top of a sofa) can be

more useful than others (e.g., on top of grass).
In this paper, the three aforementioned problems are

tackled by a novel context modeling framework with three
key components:

. A polar geometric descriptor for context represen-
tation—We formulate a polar geometric context
descriptor for representing multiple types of con-
textual information. This representation offers great-
er flexibility in capturing different types of context,
including Thing-Thing and Thing-Stuff context,
compared to existing representation methods most
of which focus on a single type of contextual
information. It avoids the tedious and unreliable
process of manual labeling of object context required
by most existing methods.

. A maximum margin context (MMC) model for
quantifying context—More does not necessarily
mean better as not all contextual information is
equally useful and reliable. To evaluate and measure
the relevance and usefulness of different contextual
information, we propose a context risk function and
formulate an MMC model which is a discriminant
context inference model designed to minimize the
risk of model misfitting and solve the problem of
fusing context information with object appearance
information.

. A context transfer learning model for context
learning with limited data—We exploit the idea of
transfer learning based on the observation that
although two categories of objects can have different
visual appearance, there can be similarity in their
context and/or the way contextual information
helps to disambiguate target objects from nontarget
objects. For instance, as shown in Fig. 2a, cars and
motorbikes can look quite different, but due to their
similar functionalities (transport tools for human),
there can be common contextual information that
has a similar effect on detecting cars and motorbikes
(e.g., roads underneath a candidate object). The

availability of a set of training images of cars can
thus be useful for learning a context model for
motorbikes and vice versa. It is also noted that even
for seemingly unrelated object categories, there can
be useful knowledge about the contextual informa-
tion that can be transferred across categories. For
example, people and bicycles, although often ap-
pearing together, have very different appearance, as
well as associated context (see Fig. 2b). However, it
is still possible to exploit the prior knowledge that
both can appear in very diverse environments
(indoors and outdoors), and thus context in general
may provide a similar level of assistance in detecting
both categories. In this paper, a novel context
transfer learning method is proposed which utilizes
training samples from object classes of source task to
improve the learning of the context model for a
target object class based on a joint maximum margin
learning framework. Specifically, two transfer max-
imum margin context (TMMC) models are devised.
The first model is applied for knowledge transfer
between objects that share similar context (e.g., cars
and motorbikes), the second for related objects with
different context benefiting from modeling context
in general (e.g., people and bicycles).

The effectiveness of our approach is evaluated using the
PASCAL Visual Object Classes (VOC) challenge 2005 data set
[15] and 2007 data set [16], a luggage detection data set
extracted from the UK Home Office i-LIDS database [27], and
a vehicle detection data set extracted from outdoor surveil-
lance footages. Our results demonstrate that the proposed
MMC context model improves the detection performance for
all object classes, and our TMMC model is capable of further
improving the performance of object detection by incorpor-
ating the transferrable contextual information extracted from
training data of object categories from source task when the
available target data are limited. In addition, it is also shown
that our context model clearly outperforms the related state-
of-the-art alternative context models, and the improvement
is especially significant in the more challenging i-LIDS
luggage and surveillance vehicle data sets.

2 RELATED WORK

Most existing context modeling works require manual
annotation/labeling of contextual information. Given both
the annotated target objects and contextual information,
one of the most widely used methods is to model the co-
occurrence of context and object. Torralba et al. [46],
Rabinovich et al. [38], and Felzenszwalb et al. [18] infer
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Fig. 1. Examples of improving object detection using contextual
information. The top row shows the detection results by an HOG
detector [12] without context modeling, and the second row shows the
results obtained by using the same detector with the proposed context
model. The green and red bounding boxes indicate false detections and
true detections, respectively.

Fig. 2. Transferrable knowledge can be extracted and shared between
object categories. (a) Cars and motorbikes have similar contextual
information. (b) It is not the case for people and bicycles but context in
general provides a similar level of assistance in detection. In both cases,
transfer learning can help to address the problem of learning context
from limited data.



the semantic information about how a target object category
co-occurs frequently with other categories (e.g., a tennis ball
with a tennis bracket) or where the target objects tend to
appear (e.g., a TV in a living room). Besides co-occurrence
information, spatial relationship between objects and
context has also been explored for context modeling. The
spatial relationship is typically modeled using Markov
Random Field (MRF) or Conditionally Random Field (CRF)
[28], [9], [22], or other graphical models [24]. These models
incorporate the spatial support of target object against other
objects either from the same category or from different
categories and background, such as a boat on a river/sea or
a car on a road. Along a similar line, Hoiem et al. [26] and
Bao et al. [2] proposed to infer the interdependence of
object, 3D spatial geometry, and the orientation and
position of camera as context; and Galleguillos et al. [21]
inferred the contextual interactions at pixel, region, and
object levels and combined them together using a multi-
kernel learning algorithm [21], [47].

Although different context representation and models
have been adopted in these works, they all suffer from the
same drawback that laborious manual efforts are required
in order to either label contextual objects or parts of a scene
that can provide contextual support for the target object/
class, or specify the location and/or assign the spatial
relationship between target objects and context. In contrast,
our context model does not need any manual labeling of
contextual information or its spatial relationship with target
objects and thus is able to learn contextual information for
improving object detection in a more unsupervised way.
Moreover, many existing context learning works first learn
an object appearance model and a context model indepen-
dently and then fuse them together for detection [48], [36],
[37], [13]. On the contrary, our model quantifies contextual
information conditioned on the appearance model for a
target object category so that more effective and useful
contextual information can be selected explicitly to leverage
the detection performance.

Recently, Heitz and Koller [25] also investigated the use
of context in an unsupervised way in order to reduce the
cost of human annotation. The proposed Things and Stuff
(TAS) model in [25] first segments an image into parts and
then infers the relationship between these parts and the
target objects detected by a base detector in a Bayesian
framework using a graphical model. Compared to TAS, our
MMC model differs in that

1. we develop a discriminative rather than a generative
context model so that no prior manually defined
rules are required to describe the spatial relationship
between context and target objects;

2. our model is not limited to the Thing-Stuff context;
3. no global image segmentation is required which could

be unreliable especially for a cluttered scene; and
4. our model can be extended to perform transfer

learning for context learning given limited data.

To the best of our knowledge, this work is the first
attempt at context transfer learning. However, transfer
learning has been exploited extensively for learning a
detector by object appearance modeling using training data
of both target object category and source object categories.

The existing object transfer learning methods mainly fall
into three broad categories according to the relationship
between the target and source object categories: 1) cross-
domain but from the same categories [34], [35], [49], [14]
(e.g., detecting fastback sedan cars using hatchback sedan
cars as source data), 2) cross-category but relevant using
hierarchical category structure [52] (e.g., detecting giraffes
using other four-leg animals as source data), and 3) cross-
category and irrelevant [17], [5], [39] (e.g., detecting people
using motorbike as source data). Nevertheless, none of the
existing transfer learning techniques designed for object
appearance transfer learning can be applied directly to
the object context transfer learning problem. This is due to
the fundamental difference between the two problems: An
object appearance model is only concerned with the
appearance of a target object category, while to learn an
object context model, one must model both context and
object appearance with the emphasis on their relationship,
i.e., how different contextual information can assist in the
detection of the target object; in other words, a context
model is not just about context because context is defined
with respect to a target object and without the object
modeling context itself is meaningless. Correspondingly,
object appearance transfer learning aims to extract similar-
ity between the appearance of target object class and source
classes, while object context transfer learning is concerned
with extracting similarities between the ways in which
different contextual information can help to detect a target
object class and source object classes.

In summary, compared to existing context learning
approaches, the proposed framework has two major
advantages:

1. Our context model is able to explicitly and directly
quantify context by learning a context risk function,
which combines the prior detection confidence and
contextual information in a selective and discrimi-
nant framework.

2. Our context model can be learned with limited
training data due to a novel context transfer model
which utilizes data from related source object classes
even when they are visually very different from the
target object.

The maximum margin context model was first proposed
in our preliminary work [51]. In this paper, apart from
providing more detailed formulation and in-depth analysis
and evaluating the model using more extensive experi-
ments, the major difference between this paper and [51] is
the introduction of the new context transfer learning
methods. Our experiments suggest that with this context
transfer learning method, the MMC model can be better
learned given limited target object data, leading to further
improvement of detection performance. In addition, histo-
gram of oriented gradients (HOG) features rather than SIFT
features are used in this work for context feature extraction
which also improves the performance.

3 LEARNING A DISCRIMINANT CONTEXT MODEL FOR

QUANTIFYING CONTEXT

Assume we have training set images of a target object class
with the ground truth locations of the target objects in each
image known. First, a detector is learned to model the object

764 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012



appearance, which is called a base detector. In this paper, the
histogram of oriented gradients detector [12] is adopted, but
any sliding window-based object detector can be used.
Second, the base detector is applied to all the training images
to obtain a set of N candidate object windows (bounding
boxes), denoted as O ¼ fOigNi¼1, which yield the highest
scores among all candidate windows using the detector.
Without loss of generality, we let the first ‘ candidate
detections Op ¼ fOig‘i¼1 be true positive detections and
the last N � ‘ detections On ¼ fOigNi¼‘þ1 be false positive
ones. Let us denote the context corresponding to Oi by hi
and define Hp ¼ fhig‘i¼1 and Hn ¼ fhigNi¼‘þ1. We call Hp the
positive context set and Hn the negative context set.

For our detection problem, we wish to compute the
confidence of an object being the target object based on both
its appearance and its visual context. Specifically, given an
object Oi and its context hi, the confidence of a candidate
detection window containing an instance of the target object
class is computed as

DðOi;hiÞ ¼ DoðOiÞ �DcðhiÞ; ð1Þ

where DoðOiÞ is the prior detection confidence of an
object being the target class obtained based on the output
of the object appearance detector (base detector), DcðhiÞ is
the context score which is to be learned, and DðOi;hiÞ is
the posterior detection confidence which will be used to
make the decision on object detection using context. In
our work, DoðOiÞ is computed based on the detection
score of the base detector sið2 ð0; 1�Þ parameterized by �
as follows:

DoðOiÞ ¼ s�i : ð2Þ

In the above equation, � determines the weight on the prior
detection score si in computing the posterior detection
confidence DðOi;hiÞ. More specifically, the higher the value
of �, the more weight is given to the object appearance
model, which indicates that context in general is less useful
in detecting the target object class. The value of � will be
automatically estimated along with context quantification
through learning, as described later.

We wish to learn a context model such that the confidence
DðOi;hiÞ for true positive detections is higher than the false
positive detections in the training set so that it can be used
for detection in an unseen image. Before describing our
context model in detail, let us first describe how the context
for the ith candidate window hi is computed.

3.1 A Polar Geometric Context Descriptor

Given a candidate object window Oc, we use a polar
geometric structure [30] expanded from the centroid of the
candidate object (see Fig. 3) to explore and represent the
contextual information associated with the object detection
window. With r orientational and bþ 1 radial bins, the
context region centered around the candidate object is
divided into r � bþ 1 patches with a circle one at the center,
denoted by Ri, i ¼ 1; . . . ; ðr � bþ 1Þ. In this paper, b is set to
2 and r is set to 16. The size of the polar context region is
proportional to that of the candidate object window Oc.
Specifically, the lengths of the bins along the radial
direction are set to 0:5�, �, and 2�, respectively, from

inside toward outside of the region, where � is the
minimum of the height and width of the candidate
detection window Oc. As shown in Fig. 3, our polar context
region bins have two key characteristics: 1) It can
potentially represent many existing spatial relationships
between objects and their context used in the literature,
including inside, outside, left, right, up, down, coexistence.
2) The regions closer to the object are given bins with finer
scale. This makes perfect sense because, intuitively, the
closer the context is, the more relevant it is, from which
more information should be extracted.

The polar context region is represented using the Bag of
Words (BoW) method. To build the code book, the HOG
features [12] which are robust to partial occlusion and
image noise are extracted densely as described in [8]. These
features are invariant to scale and robust to changes in
illumination and noise. They are thus well suited to
representing our polar context region. More specifically,
given a training data set, HOG features are extracted from
each image and clustered into code words using K-means
with K set to 100 in this paper. Subsequently, for each bin in
the polar context region outside the detection window of
the candidate object, a normalized histogram vector [19] is
constructed, entries of which correspond to the probabilities
of the occurrences of visual words in that bin. These
histogram vectors are then concatenated together with the
context inside the detection window which is represented
using a single histogram vector to give the final context
descriptor for the object candidate, denoted as the context
associated with the object as described above by hi. The
high-order information of the interaction between the
context inside and outside of the detection window can
then be inferred by the proposed selective context model as
described in the next section.

Note that with the proposed polar geometric structure
for context modeling, context is always captured from
adjacent regions of candidate object, and the potentially
useful information in regions farther away may be
neglected. There are a number of reasons for choosing
the current setting: 1) For object detection in a surveillance
environment where the scene background is fixed but
objects presented in the scene are small, dynamic, and are
often in large numbers, the regions adjacent to each object
detection window are more relevant. Importantly, in this
case, including the regions farther away could have an
adverse effect as all candidate object windows will have
similar context in those regions which makes the task of
distinguishing true detections from false positives harder.
For instance, in the underground luggage detection exam-
ple shown in Fig. 1, the local contextual information (objects
next to luggage) is more useful than the global one (e.g.,
other objects on the train platform). 2) Increasing the context
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Fig. 3. Examples of the polar geometric structure for context modeling.
The target object classes are car (left image) and people (right image).



regions size will also lead to the increase of computational

cost during both training and testing. Nevertheless, it could

in general be beneficial to explore contextual information

from farther away regions when this information is not

overly noisy. This can be achieved by simply increasing the

context region size.
Our polar context descriptor differs from alternative

polar context descriptors [48], [36], which also describe the

context expanded from the center of the object, in that 1) the

Bag-of-Words method is employed for robustness against

noise; 2) pixels within context region need not be labeled;

and 3) context features are extracted more densely to cope

with low image resolution and noise in our method. In

contrast, only some predetermined sparse pixel locations

were considered for context feature extraction in [48], [36].

The proposed contextual descriptor is also related to a

number of existing descriptors for object appearance

representation, including the shape context descriptor [6],

the correlogram descriptor [42], the spatial pyramid

representation [23], [29], and the spatial-temporal descriptor

for describing pedestrian activity [10]. In particular, as in

most polar geometric structure-based descriptors, our

descriptor is inspired by the shape context work of Belongie

et al. [6]. The main difference here is that our descriptor is

designed for context representation. It is thus centered at

the candidate object location and captures contextual

information mainly from the surrounding area of an object.

Our context descriptor could incorporate the idea of

correlogram [42] to better capture the spatial co-occurrences

of features cross different bins, although this would lead to

an increase in computational cost. The works by Choi et al.

[10], [11] would be a natural way to extend our context

descriptor for modeling dynamic context for action/activity

recognition. The spatial pyramid matching approaches [23],

[29] which were originally formulated for object categoriza-

tion could be considered if we want to replace the exponent

X 2 distance kernel (to be detailed next) used in our

framework with a more sophisticated kernel.

3.2 Quantifying Context

Without relying on segmentation, our polar context region

contains useful contextual information which can help

object detection to different extents, as well as information

that is irrelevant to the detection task. Therefore, for

constructing a meaningful context model, these two types

of information must be separated. To that end, we introduce

a risk function to evaluate and measure the usefulness of

different contextual information represented using our

polar geometric context descriptor.
A context model is sought to utilize contextual informa-

tion to leverage the prior detection score obtained using the

base detector so that the posterior detection score of the true

positive detection is higher than the false positives.1

Specifically, the objective of context modeling is to mini-

mize the following risk function with the positive and

negative context sets Hp and Hn:

L ¼
X

hi2Hp

X
hj2Hn

�ðDðOi;hiÞ � DðOj;hjÞÞ; ð3Þ

where hi is the polar context descriptor corresponding to

true positive detection windows as described in Section 3.1,

hj is the context descriptor corresponding to the false

positives, and � is a Boolean function with �ðtrueÞ ¼ 1 and 0

otherwise. This risk function measures the rank information

between true positives and false positives. The smaller the

value of the risk function, the more confident the detection

would be for unseen data.
In order to compute the posterior detection scoreDðOi;hiÞ

defined in (1), we need to compute both DoðOiÞ and DcðhiÞ.
DoðOiÞ is obtained by (2), and we compute DcðhiÞ as

DcðhiÞ ¼ expffðhiÞg; ð4Þ

where fðhiÞ is a leverage function that outputs the

confidence score of the context descriptor hi, and the

higher the value of f , the more positive the contextual

information. We consider to learn the leverage function f

as a kernel linear function:

fðhiÞ ¼ wT’ðhiÞ þ b; ð5Þ

where ’ is a nonlinear mapping implicitly defined by

a Mercer kernel � such that ’ðhiÞT’ðhjÞ ¼ �ðhi;hjÞ. Kernel

trick is used here because the descriptor we introduce (i.e., a

histogram) is a distribution representation of high dimen-

sion; the exponent X2 distance kernel [19], which is a

Mercer kernel, can thus be used to measure the distance

between two discrete distributions. Note that the variable b

in (5) does not have any impact on the risk function up to

now, but it will be useful for learning a much better w in an

approximated way. This is because a more flexible solution

for w can be found by utilizing b at the training stage, as we

shall describe next (see (10)). Now, (3) becomes

L ¼
X

hi2Hp

X
hj2Hn

�ðs�i � expffðhiÞg � s�j � expffðhjÞgÞ: ð6Þ

The ideal case to minimize the risk function in (6) is to learn

a leverage function f fulfilling all the following constraints:

s�i � expffðhiÞg > s�j � expffðhjÞg; 8 hi 2 Hp;hj 2 Hn: ð7Þ

Directly solving this problem is hard if not impossible

and would also be a large-scale optimization problem. For

example, if #Hp ¼ 100 and #Hn ¼ 100, there will be 10,000

inequalities for consideration. Therefore, an approximate

solution is required. By taking logarithm on both sides of

(7), we approach the problem of minimizing the risk

function by investigating a solution constrained by a

margin � ð�0Þ as follows:

fðhiÞ þ log s�i � �; 8hi 2 Hp;

fðhjÞ þ log s�j � ��; 8hj 2 Hn:
ð8Þ

Ideally, the constraints in (7) would be satisfied if the

above constraints are valid. For approximation, we would

like to learn the function such that the margin � is as large

as possible. Therefore, we aim to find the optimal w, b, and

� such that � is maximized (or �� is minimized) as follows:
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1. Note that the detection score of the base detector for a false positive
detection window can be higher than that of a true positive window.



min ��
s:t: wT’ðhiÞ þ b � �� log s�i ; 8hi 2 Hp;

wT’ðhjÞ þ b � ��� log s�j ; 8hj 2 Hn;

� � 0:

ð9Þ

Note that without regularization, the margin � can be
made as large as possible by simply scaling w, b, and � in
the above criterion. In order to avoid this problem, for
nonnegative � and C, we introduce the following regular-
ized criterion:

fwt; bt; �tg ¼ arg min
w;b;� �

�� � �þ 1

2
ðkwk2 þ C2 � �2Þ þ 1

N

XN
i¼1

�i

s:t: wT’ðhiÞ þ b � �� �i � log s�i ; 8hi 2 Hp;

wT’ðhjÞ þ b � ��þ �j � log s�j ; 8hj 2 Hn;

� � 0; �i � 0; i ¼ 1; . . . ; N;

ð10Þ

where positive slack variables f�igNi¼1 are additionally
added to the margin � for each constraint because

completely satisfying all the constraints without the slack
variables in model (10) would be very difficult.

With the criterion above, learning our context model
becomes a constrained quadratic programming problem.
Next, we show that we can reformulate the problem so that
the popular SVM [43] technique can be used to find the
optimal solution. Let �0 ¼ C � � and define z ¼ ½wT �0�T and

 Cðhi; siÞ ¼ ½’ðhiÞT ; log si
C �

T ; (10) can be rewritten as

fzt; btg ¼ arg min
z;b;�
�� � �þ kzk

2

2
þ 1

N

XN
i¼1

�i

s:t: zT Cðhi; siÞ þ b � �� �i; 8hi 2 Hp;

zT Cðhj; sjÞ þ b � ��þ �j; 8hj 2 Hn;

� � 0; �i � 0; i ¼ 1; . . . ; N:

ð11Þ

Now, any SVM solver such as [43] can be used to learn the
model parameters w, b, and�. Note that with the formulation
above, a new Mercer kernel _� for  C can be defined as
_�ðfhi; sig; fhj; sjgÞ ¼ �ðhi;hjÞ þ C�2 � log si � log sj. In this
work, for the two free parameters C and �, we set C ¼ 1

and estimate the value of � using cross validation.
We refer the above model as the maximum margin context

model. It utilizes the prior detection results obtained by a
sliding window detector (si) and enables the model to
selectively learn useful discriminant context information so
that the confidence of those marginal true positive detec-
tions is maximized conditioned on the prior detection
confidence. After selecting and quantifying contextual

information using the MMC model, a posterior detection
confidence score for a candidate detection Oi in a test image
is computed as

DðOi;hiÞ ¼ DoðOiÞ �DcðhiÞ ¼ s�ti � expfwT
t ’ðhiÞ þ btg:

ð12Þ

Context-aware object detection can then be performed on a
test image by thresholding the posterior detection con-
fidence score for each candidate window.

It should be noted that, when a linear kernel is used, the
proposed MMC can be seen as a feature selector for the
simple concatenation of detection score and contextual
features. However, since the detection score and the
contextual features are lying in different spaces or mani-
folds, the linear kernel is not a suitable similarity measure-
ment for such kind of combination. Hence, the nonlinear
exponent X2 distance kernel is adopted to measure the
similarity between histogram-based contextual features.

Comments on �. Intuitively for different target object
classes, contextual information has different levels of
usefulness in disambiguating the target object class from
background and other object classes. For instance, context
is much more important for an object class with very
diverse appearance but always appearing with a fixed
surroundings than one that has uniform appearance but
can appear anywhere. As mentioned earlier, the value of �
in our MMC model, which is learned from data, indicates
how important context information in general is for
detecting the target object class. This is different from the
model parameter w, which corresponds to the relevant
importance of different high-order context information
with regard to each other. Specifically, � ¼ 0 means that
the prior probability would not have any effect on the
maximum margin model and should also be ignored in the
risk function and the posterior detection score. For � > 0,
the larger it is, the more important the prior detection
probability is and the less useful the contextual informa-
tion in general will be. In particular, a very large � value
will mean the contextual information is completely dis-
carded. Note that the value of � is not restricted to being
nonnegative. When � has a negative value, the smaller the
prior detection probability is, the larger the posterior
detection score expected. This is because si 2 ð0; 1� and
the leverage function fðhiÞ is always bounded by investi-
gating the dual problem formulated in (10). Although
theoretically possible, it is unlikely that a negative value of
� will be obtained in practice unless a poor base detector is
used which completely fails to capture the object appear-
ance information.

4 CONTEXT TRANSFER LEARNING

Compared with an object appearance model, a context
model requires much more data to learn due to the
diversity of contextual information. Context model is thus
more likely to suffer from model overfitting problem caused
by the limited availability of training data. In this section,
we formulate a novel context transfer learning model which
utilizes training samples from source object classes to
improve the proposed MMC model for a target object class
based on a joint maximum margin learning framework.
Specifically, two transfer maximum margin context models
are devised. The first model is applied for knowledge
transfer between objects that share similar context (e.g., cars
and motorbikes) and the second for related objects that have
different context but similar level of benefit from modeling
context in general (e.g., people and bicycles).

Let us first formally define the context transfer learning
problem. Assume we have a set of training samples for
context-aware detection of Q categories, where context
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samples from each category contain both positive and
negative context sets. Let fðhi; si; yi; 	iÞgNi¼1 be the training
data set, where hi is the associated contextual information
of candidate object window Oi, si is the corresponding
prior detection score (obtained using different base detec-
tors trained for different object categories), yi 2 fþ1;�1g is
the ground truth label of the contextual information (either
positive or negative), and 	i indicates the category label of
the candidate object Oi. For Q tasks of object detection, i.e.,
	i 2 f1; . . . ; q; . . . ; Qg, there are Nq candidate windows for
each task (category). Let the first category (q ¼ 1) be the
target object class and the rest be the source categories
(q > 1) which are used to facilitate the context quantifica-
tion for target class. We wish to develop two joint
maximum margin learning models for context transfer
learning based on the assumption on how contextual
information can be shared across the target and source
object categories.

4.1 TMMC-I: Transferring Discriminant Contextual
Information

Our first transfer MMC model assumes that the usefulness
of different discriminant contextual information is shared
between categories, that is, different categories can have
similar projection w in (5) which weights the usefulness of
higher order contextual information, while having different
prior importance weight �q on the detection confidence,
different margin �q, and constant bq. Similarly to (8), the
MMC context models for the target object category can thus
be learned using the following model with samples from
both the target and source categories as training data:

wT’ðhiÞ þ bq þ �q � log si � �q � �i; 8yi ¼ 1 & 	i ¼ q;
wT’ðhjÞ þ bq þ �q � log sj � ��q þ �j; 8yj ¼ �1 & 	j ¼ q:

ð13Þ

We then consider the following optimization problem,
which we call TMMC-I,

�
wt; b

t
q; �

t
q

�
¼ arg min

w;bq;�q;�q;�i

1

2
kwk2 þ

XQ
q¼1

�2
q

 !

þ 1

N

XN
i¼1

�i �



N

XQ
q¼1

Nq � �q

s:t: yiðwT’ðhiÞ þ bq þ �q log siÞ � �q � �i;
if 	i ¼ q; �i; �q � 0:

ð14Þ

To solve (14) by convex optimization, we first derive the
Lagrange equation of its optimization problem as follows:

f ¼ 1

2
kwk2 þ

XQ
q¼1

�2
q

 !
þ 1

N

XN
i¼1

�i �
�

N

XQ
q¼1

Nq � �q

�
XQ
q¼1

X
	i¼q

ciðyiðwT’ðhiÞ þ bq þ �q � log siÞ � �q þ �iÞ

�
XN
i¼1

�i�i �
XQ
q¼1

�q�q;

ð15Þ

where ci, �i, �i � 0. Note that

@f

@w
¼ 0 ) w ¼

XN
i¼1

ciyi’ðhiÞ; ð16Þ

@f

@�q
¼ 0 ) �q ¼

X
	i¼q

ciyi log si; ð17Þ

@f

@bq
¼ 0 )

X
	i¼q

ciyi ¼ 0; ð18Þ

@f

@�q
¼ 0 )

X
	i¼q

ci � �
Nq

N
; ð19Þ

@f

@�i
¼ 0 ) ci �

1

N
: ð20Þ

According to the dual and primal problem as well as the
Karush-Kuhn-Tucker (KKT) conditions [32], the dual pro-
blem of (14) can then be formulated as follows:

fctig ¼ arg max
ci
� 1

2

XN
i¼1

XN
j¼1

cicjyiyj�ðhi;hjÞ

� 1

2

XQ
q¼1

X
	i;	j¼q

cicjyiyj log si log sj

s:t:
X
	i¼q

ciyi ¼ 0; q ¼ 1; . . . ; Q

X
	i¼q

ci � 
 �
Nq

N
; 0 � ci �

1

N
:

ð21Þ

The optimal projection wt and weights �tq are determined by

wt ¼
XN
i¼1

ctiyi’ðhiÞ; �tq ¼
X
	i¼q

ctiyi log si: ð22Þ

4.2 TMMC-II: Transferring the Weight of Prior
Detection Score

The second context transfer model is designed for the case
where the target object category and the related source ones
could have little in common in both appearance and
context, but contextual information can provide similar
level of assistance in detection. As we discussed in the
previous section, the usefulness of contextual information
in general for a specific object class can also be indicated by
the learned model parameter �. This is because although �
is an importance weight on the prior detection confidence, it
is not independent of context information because it is
learned, not set manually, using both the detector scores
and context descriptors from both positive and negative
examples. Since the more important (trustworthy) the
context detector score is, the less important the context
information is for detection, the learned � value is an
indication of both the importance of detector score and the
importance of contextual information. The importance of
contextual information is thus also quantified by � during
the optimization of the context model in (10). In TMMC-II,
we aim to learn the maximum margin context with different
margin variables �q, different projections wq, and constant
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bq but with the same importance weight � on the prior
detection score for different categories as follows:

wT
q ’ðhiÞ þ bq þ � � log si � �q � �i; 8yi ¼ 1 & 	i ¼ q;

wT
q ’ðhjÞ þ bq þ � � log sj � ��q þ �j; 8yj ¼ �1 & 	j ¼ q:

ð23Þ

We then consider the following optimization function:

fwt
q; b

t
q; �tg ¼ arg min

wq ;bq;�;�q;�i

1

2

XQ
q¼1

kwqk2 þ �2

 !

þ 1

N

XN
i¼1

�i �



N

XQ
q¼1

Nq � �q

s:t: yi
�
wT
q ’ðhiÞ þ bq þ � log si

�
� �q � �i; if 	i ¼ q;

�i; �q � 0:

ð24Þ

Following a similar derivation as for TMMC-I, the dual
problem of (24) can be formulated as follows:

fctig ¼ arg max
ci
� 1

2

XQ
q¼1

X
	i;	j¼q

cicjyiyj�ðhi;hjÞ

� 1

2

XN
i¼1

XN
j¼1

cicjyiyj log si log sj

s:t:
X
	i¼q

ciyi ¼ 0; q ¼ 1; . . . ; Q

X
	i¼q

ci � 
 �
Nq

N
; 0 � ci �

1

N
:

ð25Þ

The optimal projections wt
q and weight �t are learned by

wt
q ¼

X
	i¼q

ctiyi’ðhiÞ; �t ¼
XN
i¼1

ctiyi log si: ð26Þ

In the above formulations for TMMC-I and TMMC-II, we
could obtain the MMC model parameters for allQ categories
jointly by solving a single optimization problem, which is
why our TMMC is a joint maximum margin learning
framework. Our TMMC model is also closely related to
the multitask learning [1]. However, note that there is one
free parameter 
 in our model which needs to be estimated
via cross validation. Since the model we are after is the one
for the target object category, 
 is estimated using the
training samples from the target category only. Therefore,
our TMMC model is different from the conventional
symmetric multitask learning which treats all tasks equally.
Nevertheless, there is sometimes no clear boundary
between transfer learning and general multitask learning.
According to [50], our context transfer models can be seen
as a kind of asymmetric multitask learning, which has a
target task among the learned tasks. Compared to existing
multitask learning methods, TMMC is specifically designed
for transferring the useful way/manner how contextual
information helps detect related source categories (tasks) for
object detection to target category (task), and thus is more
appropriate for solving the data sparsity problem for our
context transfer learning for target object detection. It is also
worth pointing out that there are different flavors of

transfer learning. Since TMMC aims to transfer useful
context information from related object categories for
improving the detection performance on target class, we
follow the terminology in [33] and consider our TMMC as
an inductive transfer learning method.

5 EXPERIMENTS

5.1 Data Sets and Settings

We evaluate the proposed context model and transfer
learning framework against alternative models using four
data sets: the PASCAL Visual Object Classes 2005 challenge
data set [15] and 2007 data set [16] for detecting a total of
10 different categories of objects, a subset of the UK Home
Office i-LIDS [27] called i-LIDS Luggage for detecting two
types of luggage (suitcases and bags) (see Fig. 10), and a
data set captured at an airport forecourt called Forecourt
Vehicle for detecting vehicles (including private cars, buses,
vans, and taxis) (see Fig. 11). Among these data sets, the
Forecourt Vehicle data set is a new data set captured by us.
The Forecourt Vehicle data set is mainly featured with low
resolution images taken from cameras mounted near and
far away from the forecourt of an airport at different times
of a day. Compared with the VOC2005 and VOC2007 data
sets, the i-LIDS Luggage and Forecourt Vehicle data sets are
much harder due to much more crowded scenes causing
more severe occlusion and lower image resolution with
smaller object size. In addition, the Forecourt Vehicle data
set suffers from challenging outdoor lighting and image
blurring caused by dirty camera lens.

. PASCAL VOC. The PASCAL VOC2005 data set
includes four object categories: car, motorbike,
people, and bicycle [15]. All four categories were
used in our experiments. Among the PASCAL
VOC2007 object categories, six categories that are
different from the four in VOC2005 data set were
chosen. They include airplane, bus, cat, cow, horse,
and train. The setting of the experiments for our
MMC model was the same as that in [25]. That is, an
HOG detector [12] was first learned as a base
detector and applied to the training set to get a set
of candidate detection windows with associated
prior detection scores, based on which the MMC
context model was then learned.

. i-LIDS luggage. For i-LIDS, we selected 1,045 image
frames of an image size of 640� 480 from the i-LIDS
underground scenario, with 656 for training and the
rest for testing. For context model training on i-LIDS
for luggage detection, we first trained a pair of HOG
luggage detectors using 540 positive samples for
each of the two types of luggage (suitcases and
bags), and 7,278 and 5,047 negative samples for the
two detectors, respectively. Separate i-LIDS testing
image frames consisting of 1,170 true luggage
instances were selected with ground truth manually
annotated for performance evaluation.

. Forecourt vehicle. For the Forecourt Vehicle data
set,2 we selected 275 image frames of 720� 576,
from which 104 images were used for training. For
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context model training on the Forecourt Vehicle
data set for vehicle detection, we first trained an
HOG vehicle detector using 1,038 vehicle images
and 2,300 background (nonvehicle) images. The
context model was then evaluated on a separate
testing set consisting of 1,583 true vehicle instances
from the 171 testing images.

The parameter � in the MMC and TMMC models was

estimated by fivefold cross validation in a candidate set

f� ¼ 2j 2 ½0:01 : 0:01 : 1�g. The threshold of the overlap rate

between the correct object detection bounding box and the

ground truth one was set to 0.5 according to the PASCAL

VOC protocol [15]. We evaluate the detection performance

by average precision rate and precision-recall curves [15].

5.2 Evaluation of Context Models

5.2.1 MMC versus No Context (HOG) and Using Only

Context

Our MMC model utilizes both the object appearance

information (via the base detector score) and contextual

information for both fusion and contextual information

selection. To evaluate its effectiveness, we first compare its

performance with the base detector (HOG) without context

modeling and a detector learned using only contextual

information represented by our proposed contextual

descriptor (termed Context Only). Specifically, for the latter,

we train an SVM classifier using the positive context set Hp

and the negative context set Hn without utilizing the prior

detection score of the base detector.
The results for the PASCAL VOC2005 data set are

presented in Table 1 and Fig. 4, while the results for the

PASCAL VOC2007 data set can be seen in Table 2 and Fig. 5.

For PASCAL VOC2005 data set, it is evident from Table 1

and Fig. 4 that by modeling context, MMC significantly

improves the detection performance of the base detector

especially on car, motorbike, and people. For PASCAL

VOC2007, Table 2 and Fig. 5 show that even bigger

improvements are obtained for all six classes except

airplane using our MMC model over the base detector

without context modeling. It is noted that in the case of

airplane, the candidate detection windows produced by the

base detector tend to include a large proportion of back-

ground. This is because, since the airplane shape is not

rectangular, the annotated training samples of airplane in

rectangular boxes contain lots of context information

(mostly sky). As a result, context information has already

been utilized by the base detector. MMC as well as other

context models are thus unlikely to offer significant help.
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Fig. 4. Precision-recall curves for the detection of four object categories in PASCAL VOC2005.

Fig. 5. Precision-recall curves for the detection of four object categories in PASCAL VOC2007.

TABLE 1
Average Precision Rates on PASCAL VOC2005

TABLE 2
Average Precision Rates on PASCAL VOC2007



Tables 1 and 2 also show the result of the Context Only
detector. It is observed that although, for a number of object
classes (e.g., motorbike in VOC2005 and Horse in
VOC2007), better performance over the base HOG detector
can be obtained using context only, its performance is much
weaker compared to MMC. Overall, the results show that
without combining with the prior detection score for
context evaluation and selection, the contextual information
itself is not reliable enough for detection. This is because
contextual information inevitably contains irrelevant infor-
mation for detecting the target object category, and without
utilizing the prior detection score, the most discriminant
context could not be identified.

The comparative results on two visual surveillance data
sets, i.e., the i-LIDS Luggage and Forecourt Vehicle data sets
are shown in Tables 3 and 4, respectively, in the form of
average precision rate and Figs. 6 and 7 in terms of
precision-recall curve. The results show that for these more
challenging data sets, the improvement of our MMC model
over detection using base detector only and context only is
more significant compared with most object categories in
the two PASCAL VOC data sets. This suggests that
contextual information is more useful for disambiguating
the target objects from background and other objects for
these two data sets. This is mainly due to the fact that there
is less distinctive appearance information extractable for the
target object categories in i-LIDS and Forecourt because of
the low image resolution and lack of color and texture
information in the case of luggage. As a consequence, the
contextual information is more useful, which also explains
why the context only detector outperforms the base detector
for both i-LIDS Luggage and Forecourt Vehicle detection.

5.2.2 MMC versus TAS

We compared MMC with a state-of-the-art context model
TAS [25] which is closely related to our model in that both
do not require annotation of contextual information. The
results of MMC against the best reported results of TAS on
the PASCAL VOC2005 and VOC2007 data sets are shown in
Tables 1 and 2, respectively. The results of TAS on PASCAL
VOC2005 have been reported in [25]. In our experiments,
we reran the TAS model provided by the authors.3 Note
that TAS is an EM-based method thus sensitive to
initialization. Our results using TAS (see the blue-dashed
plots in Figs. 4 and 5) are either very similar or slightly

better (e.g., motorbike) than those originally reported in
[25]. To test TAS on PASCAL VOC2007, we segmented each
image frame using the superpixel technique [40] and
represented each region using 44 features (color, shape,
energy responses) similar to the ones used in [25], [4], and
then we ran the TAS model provided by the authors several
times and the best results are shown, where the model
parameters were set according to the values given by the
authors in their code available on the web. The results show
that MMC outperforms TAS on the detection of 8 out of
10 categories in the two data sets.

In particular, MMC improved the detection of people
with a fairly large margin (a 4.22 percent increase in the
average precision rate). As acknowledged by the authors
in [25], the TAS model struggles with people detection in
PASCAL VOC2005. This can be caused by two factors.
First, as people appear more randomly compared to other
rigid objects such as cars on a road, the contextual
information for people is more ambiguous and uncertain
than the other three object classes. Without measuring the
risk of using contextual information for detection expli-
citly, the existing context models such as TAS could not
utilize effectively the ambiguous contextual information
for object detection improvement. Second, the TAS model
focuses on Thing-Stuff context, i.e., the context between
people and the background regions. The useful contextual
information between people and other objects could be
thus ignored (e.g., luggage and people). In contrast, our
model is able to utilize any contextual information that is
relevant and captured by the polar context descriptor
regardless the type of the context. The performance of
MMC is also much superior to TAS on the detection of
bus, cat, cow, train, and horse in the VOC2007 data set and
almost equal to TAS on airplane.

Note that MMC achieves lower average precision rate
than TAS on bicycle. The bicycle class is unique with no
clear boundary between the object and background (one can
see the background through a bicycle). In this case,
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Fig. 6. Precision-recall curves for luggage detection on i-LIDS data set.

Fig. 7. Precision-recall curves for vehicle detection on the Forecourt
Vehicle data set.

TABLE 3
Average Precision Rate

on Luggage Detection on i-LIDS

TABLE 4
Average Precision Rate

on the Forecourt Vehicle Data Set

3. http://ai.stanford.edu/~gaheitz/Research/TAS/.



alternative models such as TAS with scene segmentation
may be less affected, although segmentation itself is
challenging in a cluttered scene.

We also implemented TAS for luggage detection using
the i-LIDS data set and vehicle detection using the
Forecourt data set. We performed TAS on i-LIDS and
Forecourt Vehicle data sets as similarly done on PASCAL
VOC2007. The results are shown in Tables 3, 4, Figs. 6 and 7.
As can be clearly seen, MMC outperforms TAS on both data
sets with a significant margin. In particular, the detection
performance of luggage using TAS is worse than that of an
HOG detector which was also used as the base detector in
TAS. This again demonstrates that without any segmenta-
tion of a whole image, more effective context information
can be learned when contextual information is evaluated
and selected explicitly and directly. In addition, it demon-
strates the benefit of utilizing multiple types of context.

5.2.3 MMC versus HOG+Context

One of the existing context modeling strategies is to learn a
context only detector and an object appearance-based
detector independently and then fuse these two information
by multiplying the two detector scores to compute the final
detector score [45], [36], [37], [13]. It essentially performs
naive score level fusion of context and object appearance. It
assumes that the context and object are independent and
treats them equally during learning, rather than inferring
the most useful and reliable contextual information condi-
tioned on the prior object detection score as our method
does. Directly comparing with [45], [36], [37], [13] is unfair
because different context only detector and object appear-
ance detector were used. We thus use the same HOG
detector as the appearance-based object detector and fuse
its score with that of our context only detector using our
polar context descriptors for context representation
(termed the HOG+Context model). The difference in
performance thus is solely due to the different context
modeling strategies adopted. The results in Tables 1, 2, 3,
and 4 show that, overall, fusing the inferred contextual

information conditioned on the prior detection score, whose
importance weight is automatically estimated, is more
effective than direct and blind fusion using HOG+Context.
In particular, the results of MMC is either markedly better
than or similar to those of HOG+Context. A closer
examination reveals that the advantage of performing
context selection is more apparent when the contextual
information is more diverse, e.g., the context for the cat,
people, and bicycle categories. In this case, the explicit and
direct evaluation of contextual information becomes more
critical. Blindly fusing contextual information with appear-
ance information with equal weight assigned to each is thus
less likely to assist in detection and may even have an
adverse effect, as in the case of bicycle in the PASCAL
VOC2005 data set (see Table 1). On the contrary, if
contextual information is relatively more dominant than
object appearance, either because the object always appears
within a certain context or the object appearance is more
diverse, a blind fusion of context and appearance could give
comparable results. This is expected because when context
is more dominant, context selection becomes less critical.
Examples of these object categories include, e.g., i-LIDS
luggage, bus, cow, horse, etc. For these object classes, the
Context Only detector also performs stronger than the basic
appearance only detector as can be seen in Tables 1, 2, 3,
and 4.

5.2.4 Examples of Reducing False Positive Detections

Using Context

We now show some visual examples to illustrate the benefit
of our MMC model on reducing false positive detections.
Figs. 8, 9, 10, and 11 give some typical examples of false
positive removal in PASCAL VOC2005, VOC2007, i-LIDS,
and Forecourt, respectively. For all methods, we illustrate
the detection results when the recall rate is at 0.3 for
PASCAL VOC2005 and Forecourt and 0.1 for PASCAL
VOC2007 and i-LIDS. It is evident from these examples that
our MMC model is more capable of removing false positives
while keeping true positives compared to both TAS and
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Fig. 8. Examples of object detections using HOG, TAS, and MMC models on PASCAL VOC2005. The two side columns on the left side are for
people detection, the middle two are for car detection, and the two on the right side are for motorbike detection. The following setting of illustration
applies to Figs. 8, 9, 10, and 11: The first row corresponds to results from HOG without threshold, the second, third, and fourth rows correspond to
HOG, TAS, and MMC with threshold, respectively. The red bounding box indicates true positive detections and the green one is for false positives.



HOG. More specifically, without context modeling, HOG
often cannot differentiate true positives and false positives.
Although both TAS and MMC can filter out false positive
detections, MMC is more effective. Particularly, it is noted
that TAS tends to either remove both false positive and true
positives or preserves more false positives, in particular in
the case of luggage detection in i-LIDS. Again, this is
because the crucial contextual information between luggage
and other objects (people in this case) could not be
effectively captured by TAS. Fig. 12 shows some examples
of failed detections by all three models. This is mainly due to
a drastic illumination condition that is not captured in the
training data and severe occlusion.

Our results (Tables 1, 2, 3, and 4) show that, in some
categories, our method only achieves limited improvement
over alternative methods. For instance, the performance of
MMC and HOG+Context can be close and HOG+Context
even fares slightly better in a few cases. As we discussed
earlier, this is because when the contextual information is

relatively dominant, context selection becomes less critical
and a blind fusion could be equally effective. However, it is
worth pointing out that one of the main strengths of MMC is
that it yields consistent improvement over detection without
context over all tested object categories and regardless of the
usefulness of context, due to its ability to select context. In
contrast, for some categories in PASCAL VOC2005 and
VOC2007, particularly those with very diverse context, the
TAS and HOG+Context models failed to improve the
detection performance even with context modeled (e.g.,
people for TAS and bicycle for HOG+Context). Overall, our
experiments suggest that the performance of those alter-
native models is much less stable.

5.3 Evaluation of Context Transfer Learning Models

We compare the two proposed context transfer learning
models (TMMC-I and TMMC-II) with our MMC model to
evaluate the effectiveness of transferring contextual informa-
tion from source object categories to a target object category
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Fig. 9. Examples of object detections using HOG, TAS, and MMC models on PASCAL VOC2007. The two columns on the left side are for train
detection, the middle two are for horse detection, and the two on the right side are for cat detection.

Fig. 10. Examples of object detections using HOG, TAS, and MMC models for luggage detection on i-LIDS.



when the target data are limited. Specifically, among the five
object categories in the three data sets used in our
experiments that consist of limited target data (people, car,
motorbike, and bicycle in PASCAL VOC2005, and vehicle in
Forecourt), we select one as the target category and another
as an source category and perform detection using both
TMMC-I and TMMC-II. The performance is then compared
with that obtained by our MMC model using the target
category data only. The results of the two transfer learning
models are shown in Tables 5 and 6, respectively.

Recall that the two models are designed for transferring
contextual information when it is shared between the target
and source categories in two different ways. In particular,
TMMC-I should be used when the objects have similar
context, i.e., likely to appear in similar environment or next
to similar objects due to, e.g., similarity in functionality.
TMMC-II, on the other hand, should be deployed when the
objects have different context but their detections have a
similar level of benefit from context, e.g., both are likely to
appear in specific (albeit different) context or very diverse
context. Tables 5 and 6 show that for different target and
source pairs, different performance was achieved. Specifi-
cally, we have the following findings:

. The result in Table 5 suggests that when the target
and source objects share similar context, TMMC-I
does the job it was designed for, that is, improving
the detection performance by utilizing contextual
information from source object categories. For in-
stance, for car and motorbike, the AP rate is increased
by 7 percent when car is the target category and
6 percent with motorbike as the target category.

. It is interesting to note that when people is the target
category, its detection can benefit from transferring
context from various other object categories, includ-
ing car, bicycle, and motorbike using TMMC-I. But
the same cannot be said when it is the other way
around, i.e., people as source category. For example,
the people detection performance is increased by
about 3 percent when car is the source category,
while the detection of car is decreased by about
4 percent (called negative transfer) when people is
used as the source data. This could be because
people often appear next to car, bicycle, or motor-
bike so they do share context. However, people also
appear in much more diverse contexts, e.g., on a
sofa. Therefore, the context of car, bicycle, or
motorbike can be considered as a subset of that of
people. Consequently, it is not a problem to transfer
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Fig. 11. Examples of object detections using HOG, TAS, and MMC models for vehicle detection on the Forecourt data set.

Fig. 12. Examples of failed detections. The first, second, and third rows
correspond to results of HOG, TAS, and MMC with threshold,
respectively. The green bounding box shows false positive detections.

TABLE 5
Evaluation of the Effectiveness of TMMC-I

The results of our MMC model without transfer learning are in brackets
for comparison.



the context of car, bicycle, or motorbike to people,
but the effect can be adverse if the opposite is done,
e.g., a car rarely appears on top of a sofa.

. As expected, TMMC-II improves the detection
performance when the usefulness of context for the
target and source categories is similar. For instance,
people and bicycle not only share similar context but
also similar weight of context. The detection of
people is thus improved using both TMMC-I and
TMMC-II. However, when the assumption made for
TMMC-II does not hold, negative transfer is ob-
served. For instance, car and motorbike share similar
context but the context for motorbike could be more
diverse than car probably due to its smaller size,
resulting in negative transfer between them using
TMMC-II. However, since TMMC-I is able to select
the most common high-order contextual information
shared between cars and motorbikes, TMMC-I is
more effective in this case. Similarly, transferring
context weighting from people to car or motorbike
would not help, as shown in Table 6.

6 DISCUSSIONS AND CONCLUSION

In this paper, we argue that contextual information should
be quantified and selected explicitly before combining it
with object appearance information for detection. To that
end, we introduced a context risk function and formulated a
maximum margin context model to quantify the contextual
information of a candidate object, which is modeled by an
object-centered polar geometric context descriptor. In order
to overcome the problem of lack of training context samples
for context learning, we further proposed two transfer
maximum margin context models under a joint maximum
margin learning framework for context transfer learning.
Compared to the state-of-the-art context models, the
proposed MMC model utilizes a novel context risk function
on measuring the goodness of context in order to selectively
employ context for more robust object detection. The
proposed MMC model also differs from existing models
that utilize graph-based context information mining in that
our MMC model directly addresses the maximization of the
confidence of true positive detections defined by the context
risk function, while a graph model addresses indirectly by
classification without any knowledge or measurement on
the rank information between true and false positive
detections. Moreover, our MMC model does not require
any prior image segmentation and labeling of image
patches. More importantly, our TMMC models are able to
transfer the useful related contextual information from

other source categories in order to further reduce the
ambiguity of context for target object detection. The
effectiveness of the proposed models has been validated
using both public benchmark data sets and data sets
extracted from surveillance videos of busy public spaces.

It is worth pointing out that although, in this work,
contextual information is represented by the proposed polar
geometric context descriptor in order to capture multiple
types of context, the MMC model is not restricted to any
context representation. Due to the context selection ability,
one may consider integrating different context representa-
tions combined with PGCD in the proposed MMC frame-
work. For instance, our context descriptor may not be
suitable enough to capture Scene-Thing context due to its
object centered nature. However, a Scene-Thing context
representation such as the one in [31] can be easily
combined with our descriptor and selected in the same
MMC model. Similarly, the HOG feature used in our
descriptor sometimes may not be good enough for captur-
ing “Stuff” context (e.g., sky, road). One could thus combine
HOG features with color features to better represent both
Thing-Thing and Thing-Stuff context. In addition, a
potential improvement of the proposed method is to exploit
contextural information from farther away regions. How-
ever, care also needs be taken when the farther away
regions are nonstationary and distractive, or overly clut-
tered and noisy, e.g., in a crowded public scene, resulting in
diminished benefit while increasing the computational cost.

One of the key contributions of this work is that for the
first time, a context transfer learning model is developed to
address the overfitting problem caused by lack of training
data for context learning. Our experiments show both the
potential of the proposed models and a limitation of the
current models, that is, one has to use prior knowledge to
select manually a suitable model to apply given the
available training object categories. Overcoming this limita-
tion by automatically selecting source categories is neces-
sary for applying the proposed method to address a large-
scale object detection problem when the number of object
categories can be over thousands. This, however, is a very
challenging problem. In particular, when an unsuitable
model is applied, negative transfer learning which leads to
unsatisfactory detection performance can happen. This is
not a unique problem. Existing popular transfer learning
methods for object appearance learning [34], [35], [49], [14],
[52] also rely on prior knowledge to manually select suitable
source object categories in order to avoid negative transfer.
Although there are unsupervised methods that are applic-
able using any object categories as source data [17], [5], [39],
as pointed out in [33], the problem of unsupervised transfer
learning with negative transfer prevention given any
auxiliary data is far from being solved. Developing such a
method for context transfer could be even more challen-
ging. This is because, as we explained in the related work,
there are fundamental differences between object appear-
ance and context transfer learning and none of these
methods can thus be directly used for our problem. One
obvious option is to detect and minimize negative transfer
learning via cross validation. However, the very reason for
using transfer learning is because of the lack of training data
which will pose challenges for using cross validation to
avoid negative transfer. Among the few existing unsuper-
vised transfer learning work, the idea in self-taught learning
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TABLE 6
Evaluation of the Effectiveness of TMMC-II

The results of our MMC model without transfer learning are in brackets
for comparison.



[39] can be considered which infers the sparse coding for
target contextual information over source context anchors.
However, how this kind of sparse coding can be derived
optimally for assisting object detection without negative
transfer still needs more investigation. Another possible
solution is to directly measure the similarity between
different categories in order to identify whether certain
aspects of the context of the two categories can be shared.
Nevertheless, the challenge is about which or what
technique should be selected or developed to compute the
similarity and how the similarity score can be integrated
into the TMMC models. Again, it is more straightforward to
find out whether two object categories are related in their
appearance. For instance, one could perform attribute
correlation by mining tags of Fickr images [41]. However,
to infer the relationship automatically between the contexts
of two object categories is much harder. We believe that
context transfer remains an open problem and we wish that
this work will help to attract more interests on this problem
from the computer vision community.
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