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Semi-supervised Multi-view Discrete Hashing
for Fast Image Search

Chenghao Zhang and Wei-Shi Zheng

Abstract—Hashing is an important method for fast neighbor
search on large scale dataset in Hamming space. While most
research on hash models are focusing on single-view data, recently
the multi-view approaches with a majority of unsupervised multi-
view hash models have been considered. Despite of existence of
millions of unlabeled data samples, it is believed that labeling a
handful of data will remarkably improve the searching perfor-
mance. In this work, we propose a semi-supervised multi-view
hash model. Besides incorporating a portion of label information
into the model, the proposed multi-view model differs from
existing multi-view hash models in three-fold: 1) a composite
discrete hash learning modeling that is able to minimize the
loss jointly on multi-view features when using relaxation on
learning hashing codes, 2) exploring statistically uncorrelated
multi-view features for generating hash codes, and 3) a composite
locality preserving modeling for locally compact coding. Extensive
experiments have been conducted to show the effectiveness of the
proposed semi-supervised multi-view hash model as compared to
related multi-view hash models and semi-supervised hash models.

Keywords: Hash function learning, multi-view modeling,
fast search, semi-supervised methods

I. INTRODUCTION

Recently, with the explosion of information, fast nearest
neighbor search on huge dataset is becoming increasingly
important for many tasks, for example, object recognition [30],
linear classifier training [16], matching [3], retrieval [15], [29]
and video segmentation [21]. For this purpose, hash models
that learn binary embedding of data are attractive for achieving
fast similarity search in Hamming space.

Among the developed hash models, most of them are either
supervised hash models (e.g., binary reconstructive embedding
(BRE) [14], minimal loss hashing (MLH) [23], kernel-based
supervised hashing (KSH) [19], supervised discrete hashing
(SDH) [27]), or unsupervised hash models (e.g., spectral
hashing (SH) [35], k-means hashing (KMH) [7], anchor

This work was supported partially by NSFC (No.61522115, 61472456,
61573387, 61661130157, 61628212), Guangdong Natural Science Funds for
Distinguished Young Scholar under Grant S2013050014265, the GuangDong
Program (No.2015B010105005), the Guangdong Science and Technology
Planning Project (No.2016A010102012,2014B010118003), and Guangdong
Program for Support of Top-notch Young Professionals (No.2014T Q01X779).
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Dimitrios Tzovaras. (Corresponding author: Wei-
Shi Zheng)

Chenghao Zhang is with School of Data and Computer Science, Sun Yat-sen
University, Guangzhou, China; and is also with the Collaborative Innovation
Center of High Performance Computing, National University of Defense
Technology, Changsha 410073, China. Email: chenghaz@andrew.cmu.edu

Wei-Shi Zheng is with the School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China; and is also with the Key Laboratory
of Machine Intelligence and Advanced Computing (Sun Yat-sen University),
Ministry of Education, China. E-mail: wszheng@ieee.org.

graph hashing (AGH) [20], complementary projection hashing
(CPH) [9], and inductive hashing on manifolds (IHM) [28]).
Labeling quite a lot of data samples for learning large-
scale hashing is costly, while only learning hash function
on vast unlabeled data cannot explore discriminant informa-
tion in order to distinguish samples of different classes in
Hamming space.Therefore, learning hash function in a semi-
supervised way is a promising solution. Some methods have
been proposed, including semi-supervised hashing (SSH) [33],
semi-supervised bootstrap hashing (BT-SPLH) [36] and semi-
supervised constraints preserving hashing (SCPH) [32].

However, most existing hash models are single-view meth-
ods, which only consider one type of feature descriptor for
learning hash functions, so that they cannot process multi-view
data effectively. Nowadays, similarity search on multi-view
data is important. In practice, to make a more comprehensive
description, objects/images are always represented via several
different kinds of features, and each of them has its own
characteristics. It is desirable to incorporate these heterogenous
feature descriptors into hash function learning, leading to the
multi-view hashing approach. Multi-view anchor graph hash-
ing (MVAGH) [11] finds non-linear integrated binary codes
which are determined by a subset of eigenvectors. Sequential
spectral learning to hash with multiple representations (SU-
MVSH) [12] finds a hash function that is sequentially deter-
mined by solving successive maximization of local data vari-
ance subject to decorrelation constraints. Multi-view alignment
hashing (MAH) is an unsupervised method, which is based on
nonnegative matrix factorization and finds a compact represen-
tation that can uncover hidden semantics. Composite hashing
with multiple information sources (CHMIS) [38] integrates
information from several different sources into binary hashing
codes by adjusting the weights on each individual source
for maximizing the coding performance. Deep hashing with
multiple representations (DMVH) [10] utilizes deep neural
network for performing multi-view hashing. Deep multimodal
hashing with orthogonal regularization (DMHOR) [31] is also
based on deep learning and imposes orthogonal regularizer
between hash codes of different views/modalities. Recently,
learning bridging mapping for cross-modal hashing(LBMCH)
aims to learn heterogeneous Hamming spaces for different
modalities, but LBMCH connects them only for cross-modal
search [34].

A limitation of existing multi-view hash models is that
most of them are unsupervised methods. While unsupervised
hash models could be unsuitable for semantic fast search and
labeling on large-scale image dataset is costly, how to learn
hash functions on large-scale unlabeled image dataset provided
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with only a handful of labeled data samples still remains
largely unsolved. In this work, we aim to develop a multi-
view method for semi-supervised hashing. In principle, we
present a constrained composite discrete hashing learning on
multi-view data under semi-supervised setting. The novelties
include:

• The proposed semi-supervised composite discrete multi-
view hash modeling is able to minimize the loss jointly
when using relaxation on learning hashing codes and
meanwhile makes these hash codes more discriminant
by quantifying the regression loss on class label over a
portion of labeled samples.

• A statistically uncorrelated constraint between features of
different views is introduced in order to make different
views complementary to each other during the joint
discrete learning on multiple feature channels, so that
multi-view features collaborate more effectively.

• A composite multi-view locality preserving penalty is
modeled to make hash codes compact in Hamming space.

Our experiments will show the effectiveness of the proposed
approach as compared to the related semi-supervised hash
models and existing unsupervised multi-view hash models.

II. RELATED WORK ON MULTI-VIEW HASHING

In this section, we will briefly review several multi-view
hashing methods [38] [12] [11] [18] [31].

A. Composite Hashing with Multiple Information
Sources(CHMIS) [38]

Let x(i)
j be the ith view of the jth sample, j = 1, · · · , n,

where n is the number of samples. Composite Hashing learns
binary code on weighted features from different source in a
latent subspace. Its objective function is

min
B,{Wi}Ki=1,f

T (B, {Wi}Ki=1, f) (1)

s.t. BBT = I, fT1 = 1,B1 = 0,

where B means the hash code matrix for the input, Wi is the
projection matrix of the ith view, and f is a non-negative vector
which consists of weights ft, t = 1, · · · ,K that combine
features of different views. Then T (B,W̃, f) is defined as:

T (B, {Wi}Ki=1,f) = C1 · trace(BT
K∑
t=1

L̃(t)B) +

K∑
t=1

||Wt||2

+ C2

n∑
j=1

||bj −
K∑
i=1

fi ·WT
i x

(i)
j ||

2, C1, C2 ≥ 0,

(2)

where bj is the jth column of B, and L̃(t) is a Laplacian
matrix for the tth view. The first term means two binary codes
should be similar if they are nearby in any view in the input
space. The third term is to quantify the loss on binary operation
using the sign operation.

B. Sequential Spectral Learning to Hash with Multiple
Representations(SU-MVSH) [12]

SU-MVSH extends spectral hashing from single view to
multiple views by introducing a weighted similarity matrix S∗

and learning binary vector for each sample from each view:

arg min
{b(t)

i }ni=1

n∑
i=1

n∑
j=1

S∗ij
∑
t,t′

||b(t)
i − b

(t′)
j ||

2, (3)

where S∗ is the α-Average similarity matrix, and b
(t)
i is the

binary code vector for x
(t)
i , the tth view of the ith sample.

An α-Average similarity matrix means the α-divergence from
a set of distance matrices. To form S∗, the average distance
matrix D∗ is calculated by first minimizing the α-divergence
from view-specific distance matrices {D(1), ...,D(K)} [1],
[12], and then S∗ is formulated by:

S∗ij = exp{−D∗ij
2}. (4)

C. Multi-view anchor graph hashing(MVAGH) [11]

Multi-view anchor graph hashing is an unsupervised method
based on anchor graph hashing. In MVAGH, the similarity
between data points are measured by a set of anchor points.
MVAGH defines a multi-view anchor graph and uses it to
define multi-view similarity between data points. For xi and
xj , the similarity S∗ij is formulated by:

S∗ij =

K∑
k=1

M∑
m=1

p(x
(k)
j |µ

(k)
m )p(µ(k)

m |x
(k)
i ), (5)

where k is the view index of input data, m indicates the m-th

anchor point, p(x(k)
j |µ

(k)
m ) =

Z
(k)
jm∑N

j=1 Z
(k)
jm

and p(µ
(k)
m |x(k)

i ) =

Z
(k)
im . Z(k)

im is defined as:

Z
(k)
im =

k(x
(k)
i , µ

(k)
m )∑K

k=1

∑
j∈[i] k(x

(k)
i , µ

(k)
j )

, ∀m ∈ [i], (6)

where {µ(k)
j }Mj=1 is the kth views anchor points, [i] contains

the indices of the l-nearest anchors of x
(k)
i , and k(·, ·) is

kernel function. After defining the similarity matrix, MVAGH
performs the eigenvalue decomposition of matrix S∗ and
obtains its eigenvector matrix Ỹ, so that the binary code is
computed by sgn function: B = sgn(Ỹ)

D. Multi-view Alignment Hashing(MAH) [18]

Multi-view alignment hashing forms a regularized kernel
non-negativity matrix factorization (NMF) to find a semantic
representation of the joint probability distribution of data. The
objective function of MAH is:

arg min
U,B,αi

||
K∑
i=1

αiKi −UB||2 (7)

+ γ

n∑
i=1

αi · trace(BLiB
T ) + η||UTU− I||2,

s.t.

n∑
i=1

αi = 1, αi ≥ 0 for ∀i,
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where Li is the Laplacian matrix, U is the basis matrix of
NMF, B is the binary code matrix, and Ki is the kernel matrix
defined as below:

Ki(x
(i)
p ,x(i)

q ) = exp(
−||x(i)

p − x
(i)
q ||2

2τ2
),∀p, q. (8)

E. Deep Multimodal Hashing with Orthogonal Regulariza-
tion(DMHOR) [31]

Deep multimodal hashing with orthogonal regularization is
a multi-view hashing using deep learning method. It applies
deep learning to generate binary code by exploiting the intra-
modality and inter-modality correlations and incorporating
data from different views. The objective function to minimize
is formed below:

min
θ

L(Xv,Xt; θ) = L1 + γ||W(mv+1)
v W

(mt+1)T

t ||2 (9)

+

mv+1∑
l=1

αl||W(l)T
v W(l)

v − I||2 +
mt+1∑
l=1

βl||W(l)T
t W

(l)
t − I||2,

where L1 is the loss function on multimodal autoencoder
(MAE) and cross-modality autoencoder (CAE) [31], Xt and
Xi are the input from text and image, respectively, and W(l)

is the weight matrix for the l-th layer. The second term
of function imposes the orthogonal regularization on weight
matrix from different views of the same layer. The last two
terms guarantee the orthogonality in each view.

F. Extension of Unsupervised Multi-view Hash Models to
Semi-supervised Case

Although not directly reported in existing literatures, it is not
an obstacle to extend most of the above unsupervised multi-
view hash models for semi-supervised modeling. Most of the
unsupervised multi-view hash models define the similarity
between two samples, for example the S∗ij in MVAGH. Hence,
one can extend the definition of the similarity to integrate
label information. Taking MVAGH as an example, S∗ij can
be redefined in Eq. (10). The MGH [8] is a semi-supervised
extension of MVAGH in such a similar way with extra weight
learning on combination of similarity matrices from different
views. MAH can also be extended to the semi-supervised case
when Ki(x

(i)
p ,x

(i)
q ) is redefined in Eq. (11). However, we

show in our experiments that such a straightforward extension
is not effective as they do not measure the loss on semantic
search directly and do not explicitly quantify the relation
between the extracted features from different views during
semi-supervised learning.

III. APPROACH

A. A Composite Discrete Multi-view Hash Modeling

We present the proposed semi-supervised multi-view dis-
crete hash model (SSMDH) in this section. Suppose each
data sample consists of K views. Given n training samples
from L classes, we form K data matrices for each view
X =

{
X(i)

}
K
i=1, where X(i) is the ith view data matrix and

its jth column is the feature vector of the jth data sample

TABLE I
TERMS AND DEFINITION

symbols definition
n number of samples
K number of views of data sample
C classification matrix
Wi projection matrix for view i

S(i) similarity matrix for view i

X(i) data matrix of input view i

Y label matrix w.r.t X(i)

B` binary code matrix for labeled data
Bn` binary code matrix for unlabeled data

from this view. Suppose that data matrix X(i) consists of two
parts: X(i) = [X

(i)
` ,X

(i)
n` ], where the first ` columns form the

labeled matrix X
(i)
` , while the rest are unlabeled data samples.

Let Y be the label matrix corresponding to matrix X
(i)
` , where

its jth column is the label vector of the jth data sample. In
this work, each label vector is a L-dimensional binary vector
where the `th entry is one if it is from the `th class otherwise
it is zero. We list the terms and notations used in this section
in Table I

In order to capture neighborhood structure of the input data,
we use anchor graph to map input data into a neighborhood
model. For a single-view data sample x(i), we map it to
φi(x

(i)), a m-dimensional vector represented by m anchor
points. More specifically, a set of anchor points {a(i)t }t=1..m

are randomly selected for each view and use these points to
formulate φi(x(i)):

φi(x
(i)) = [exp

||x(i) − a
(i)
1 ||2

σ2
i

, ..., exp
||x(i) − a

(i)
m ||2

σ2
i

]T ,

(12)
where σ2

i is the standard variation of data of the ith view
Our proposal is to learn a hash function that is able to fuse

multiple view information to generate a binary code for fast
search in Hamming space under the semi-supervised setting.
In more details, we will learn a hash projection for each
view, where we denote the ith view hash projection as Wi.
And then, we predict the binary code b by fusing the feature
information from K views below:

b = sgn(

K∑
i=1

WT
i φi(x

(i))). (13)

We denote the output binary code matrix as B where its jth

column is the binary code of the jth data sample.

Multi-view Discrete Modeling. To facilitate learning pro-
jection Wi in Eq. (13), we will relax the sgn function in
the optimization objective function. However, the discrepancy
between the optimized binary code and the learned relaxed
code remains. Hence it is necessary to minimize the discrep-
ancy between the output binary code B and the predicted
approximate one

∑K
i=1 W

T
i φi(X

(i)) as follows:

min
B,{Wi}Ki=1

L = ||B−
K∑
i=1

WT
i φi(X

(i))||2. (14)



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

S∗ij =


∑K
k=1

∑M
m=1 p(x

(k)
j |µ

(k)
m )p(µ

(k)
m |x(k)

i ), if either x(k)
j or x(k)

i is unlabeled,
1, if both x

(k)
j and x

(k)
i are labeled from the same class,

0, if both x
(k)
j and x

(k)
i are labeled but from different classes

(10)

Ki(x
(i)
p ,x(i)

q ) =


exp(

−||x(i)
p −x

(i)
q ||

2

2τ2 ), if either x(i)
j or x(i)

i is unlabeled,
1, if both x

(i)
p and x

(i)
q are labeled from the same class,

0, if both x
(i)
p and x

(i)
q are labeled but from different classes

(11)

In our work, φi(X(i)) is a matrix, column of which is the
corresponding column of X(i) after the mapping φi(·).
Regression on Class Label Vectors. In Eq. (14), we optimize
the hash projection matrices Wi and the binary output B
together. Without any constraint on B, trivial solutions will be
gained. Since a handful of labeled data samples are available,
we ensure that the output binary codes corresponding to the
labeled data are suitable for semantic search. To this end, we
predict the class label vector ỹ for each labeled binary code
vector b by

ỹ = G(b) =
[
CT

1 b, ...,C
T
Lb
]T
, (15)

where L is the number of classes as mentioned. Let Ỹ =
CTB` be the predicted label matrix of all labeled data
samples, where B` is the portion of binary code matrix
corresponding to labeled data. We quantify the loss on the label
prediction between Y and Ỹ and seek optimal binary output
B` and weighting matrix C by the minimization problem
below:

min
B`,C

1

n`
||Y −CTB`||2 + θ||C||2, (16)

where θ is the regularization parameter.

Composite Locality Preserving. Since there is only limited
labeled data samples available, we further utilize unlabeled
data to make the hash bits more compact. In order to do so,
we evaluate the following composite local data variation:

L =
1

n2

n∑
r=1

n∑
t=1

S(r, t)
( K∑
i=1

WT
i (φi(x

(i)
r )− φi(x(i)

t ))
)

×
( K∑
i=1

WT
i (φi(x

(i)
r )− φi(x(i)

t ))
)T

=
1

n2

n∑
r=1

n∑
t=1

S(r, t)
( K∑
i=1

K∑
j=1

WT
i (φi(x

(i)
r )− φi(x(i)

t ))

× (φj(x
(j)
r )− φj(x(j)

t ))TWj

)
=

1

n2

K∑
i=1

K∑
j=1

WT
i

( n∑
r=1

n∑
t=1

S(r, t)(φi(x
(i)
r )− φi(x(i)

t ))

× (φj(x
(j)
r )− φj(x(j)

t ))T
)
Wj

=

K∑
i=1

K∑
j=1

WT
i LijWj

(17)

where

Lij =
1

n2

n∑
r=1

n∑
t=1

S(r, t)(φi(x
(i)
r )− φi(x(i)

t ))(φj(x
(j)
r )− φj(x(j)

t ))T

=
1

n2

n∑
r=1

n∑
t=1

{S(r, t)φi(x(i)
r )φj(x

(j)
r )T

− S(r, t)φi(x(i)
r )φj(x

(j)
t )T

− S(r, t)φi(x(i)
t )φj(x

(j)
r )T

+ S(r, t)φi(x
(i)
t )φj(x

(j)
t )T }

=
2

n2
φi(X

(i))(D− S)φj(X
(j))T ,

(18)

where D is a diagonal matrix with the diagonal terms Drr =∑
t S(r, t). For a labeled pair between the rth sample and the

tth sample, no matter from which view, the function S(r, t)
is defined as

S(r, t) =
{

1, if x(i)
r and x

(j)
t are from the same class for any i, j;

0, if x(i)
r and x

(j)
t are not from the same class for any i, j.

If one of the rth sample and the tth sample is unlabeled, we
formulate the function S(r, t) below:

S(r, t) =
1

K

K∑
i=1

exp(−||x(i)
r − x

(i)
t ||2/2σ2

i ). (19)

In order to minimize the composite local data variation, the
following is concerned, i.e.,

min
{Wi}Ki=1

trace(

K∑
i=1

K∑
j=1

WT
i LijWj). (20)

This minimization can be useful for locality preserving of data
when learning binary codes in Hamming space. Imposing the
locality preserving is popularly used in existing literatures [37]
[38]. The novelty here is to model it in a composite way
for multi-view data and integrate it to enhance the proposed
composite discrete multi-view hash model.
Extracting Statistically Uncorrelated View-specific Fea-
tures. For multi-view learning, we wish that features extracted
from different views should be complementary to each other
so as to preserve as much information as possible in Hamming
space. In order to do so, we investigate extracting statistically
decorrelated view features. That is, features extracted from
different views should be statistically uncorrelated. To that
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end, for i 6= j, we form the cross-covariance matrix between
view i and view j as follows:

E{(x(i),x(j)) | Wi, Wj}

{
WT

i (x
(i) − Ex(i))(x(j) − Ex(j))TWj

}
≈ 1

n

n∑
r=1

WT
i (x

(i)
r − u(i))(x(j)

r − u(j))TWj

=WT
i

{
1

n

n∑
r=1

(x(i)
r − u(i))(x(j)

r − u(j))T

}
Wj

=WT
i CovijWj ,

(21)

where Covij = 1
n

∑n
r=1(x

(i)
r − u(i))(x

(j)
r − u(j))T , and u(i)

is the data mean of the ith view.
Eq. (21) is to calculate the cross-correlation between two

types of view-specific feature vectors. For example, the entry
of the pth row and the qth column of matrix WT

i CovijWj

(i.e.,
(
WT

i CovijWj

)
pq

) measures the statistical correlation
between the pth entry of WT

i x
(i) and the qth entry of WT

j x
(j)

. And thus minimizing the following Eq. (22) would limit all
the statistical correlation between different entries of WT

i x
(i)

and of WT
j x

(j), and we call the matrix computed by Eq.
(21) as the cross-covariance matrix between view i and view
j. Hence, for this purpose, our objective is to minimize the
following:

min
{Wi}Ki=1

K∑
i=1

K∑
j 6=i

||WT
i CovijWj ||2. (22)

Objective Function. Finally, we combine Criteria (14), (16),
(20) and (21), and present our objective function for semi-
supervised multi-view discrete hash (SSMDH) model as fol-
lows:

min
B,C,{Wi}Ki=1

L =
1

n`
||Y −CTB`||2

+
v

n
||B−

K∑
i=1

WT
i φi(X

(i))||2

+
α

2

K∑
i=1

∑
j 6=i

||WT
i CovijWj ||2 (23)

+ β · trace
( K∑
i=1

K∑
j=1

WT
i LijWj

)
+ θ||C||2

s.t. Ỹ = CTB`, B ∈ {−1, 1}L∗n.

where v, α and β are the balance parameters on the binary
discrepancy loss, cross-view correlation loss, and composite
locality preserving loss, respectively. In the above, we split
the binary matrix B into two parts B = [B`, Bn`], and B` is
the one corresponding to label data. In the above criterion, we
learn all view-specific projection matrices Wi jointly rather
than separately, and our formulation enables a semi-supervised
composite discrete hashing on multi-view data. We show later
in our experiments that such a modeling would make clear
benefit for multi-view learning.
Discussion. The proposed semi-supervised multi-view discrete
hash is related to the supervised discrete hash (SDH) [27] on

Algorithm 1 SSMDH

Input:Training dataset {X(i)}, class label matrix Y, number
of anchor points in each view i, binary code length r, maximum
iteration number t, and Parameters α, v, θ
Output: Projection matrix {Wi}Ki=1. Binary code matrix B

1) Initialize binary code matrix B and anchor point set;
2) while not reaching maximum iteration do
3) Apply Eq.(24) to compute classification matrix C;
4) Apply Eq.(26) for each view to compute Wi;
5) Compute the joint binary codes by Eq.(31) and (30);
6) end
7) Apply Eq.(13) to compute B;

handling fully supervised data samples. Apart from extending
SDH from single-view modeling to multi-view joint learning
by composite modeling and developing a semi-supervised
model, we further propose to quantify the relation between
different views by extracting statistically uncorrelated view-
specific features and propose a composite locality preserving
criterion to constrain the local variation of hash codes. We
show that the unification of the composite modeling, statistical
uncorrelation between views, and composite locality preserv-
ing is important for semi-supervised multi-view learning in
our experiments (see Sec.IV-E).

B. Optimization

Since optimizing all variables simultaneously in Eq.(23) is
not convex, we present an alternating procedure for optimiza-
tion. That is for learning all variables B, Wi and C, we fix
other variables and optimize one single variable at one time,
and this is repeated for each variable. The overview of the
optimization procedure is presented in Algorithm 1.

1) Fixing B` and Optimizing C: If we fix B` in Eq.(23),
the optimization for C is independent of other terms in the
objective function except for the first and the last ones, so we
have:

C = (B`B`
T + n`θI)

−1B`Y
T . (24)

2) Fixing B and Optimizing Wi: Since the projection
matrix of each view is dependent on the others, for optimizing
projection matrix of the ith view, we fix B and all Wj(j 6=i)
except for Wi. Then the optimization for Wi is equivalent to
minimizing the function below:

O(Wi) = v||B||2 − 2v · trace(WT
i φi(X

(i))BT ) (25)

+ v · trace(φi(X(i))TWiW
T
i φj(X

(i)))

+ 2v
∑
j 6=i

trace(φi(X
(i))TWiW

T
j φj(X

(j)))

+ nα

K∑
j 6=i

trace(WT
i CovijWjW

T
j Cov

T
ijWi)

+ nβ · trace
(
WT

i LiiWi

)
+ 2nβ · trace

(∑
j 6=i

WT
i LijWj

)
.
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Wi can be computed by:

Wi =

(vφi(X
(i))φi(X

(i))T + nα

K∑
j 6=i

CovijWjW
T
j Cov

T
ij + nβLij)

−1

(vφi(X
(i))BT − v

∑
j 6=i

φi(X
(i))φj(X

(j))TWj − nβ
∑
j 6=i

LijWj).

(26)

3) Fixing other variables and Optimizing B: It is hard to
solve binary code by regularized least squares problem and
it is a NP hard question. In order to optimize B, we have
to optimize B` and Bn` separately. That is we only need to
minimize part of Eq.(23) as follow:

min
B

n

n`
||Y −CTB`||2 + v||B` −

K∑
i=1

WT
i φi(X

(i)
` )||2

+ v||Bn` −
K∑
i=1

WT
i φi(X

(i)
n` )||

2, (27)

where, as mentioned, X(i)
` is the labeled data matrix and X

(i)
n`

is the unlabeled data matrix.
We can rewrite Eq.(27) if we only optimize Bn` as follow:

min
Bn`

v(||Bn`||2 − 2tr(BT
n`P) + ||P||2) (28)

s.t. P =

K∑
i=1

WT
i φi(X

(i)).

That is equal to addressing the following maximization prob-
lem:

max
Bn`

2v · tr(BT
n`P) (29)

s.t. P =

K∑
i=1

WT
i φi(X

(i)).

Eq.(29) can be easily computed if we fix other columns of
Bn` and optimize the ith column bi at a time:

bi = sgn(pi), (30)

where pi is the ith column of P.
Meanwhile, B` in Eq.(27) can be optimized bit by bit by

using discrete cyclic coordinate descent(DCC) [27]. Let zTi be
the ith row of B`, and then it can be optimized by:

zi = sgn(qi −
n

n`
BT
`,−iC−iv), (31)

where B`,−i is the matrix B` excluding zi, qTi is the ith row
of Q where Q = n

n`
CY + v

∑K
i=1 W

T
i φi(X

(i)) and vT is
the ith row of C, and C−i is C excluding the ith row.

IV. EXPERIMENTS

In our work, we mainly performed the experimental analysis
on three widely used datasets. We evaluated our method and
compared with related multi-view hash models and several
state-of-the-art semi-supervised hash models.

A. Datasets and Settings

The three widely employed datasets for main experimental
analysis are introduced below.
CIFAR-10 [13] . It consists of 60000 32x32 color images from
10 classes. There are 6000 images for each class, and each
image has only one class label. In our experiment, we selected
59000 images to form the training set and 1000 images for
testing. The training set was used to learn hash function
and construct hash look-up table. To form multi-view data, a
512-dimensional GIST [24] descriptor and a 496-dimensional
HOG [5] descriptor were extracted from each image. For
verifying the performance of semi-supervised multi-view hash
models, we randomly selected 4k labeled data from training set
and the remained were treated as unlabeled data samples. For
SSH and SCPH, we randomly generated similar and dissimilar
constraints from the labeled data that we selected.
WIKI [25]. It consists of 2866 documents provided by
Wikipedia. Each document contains an image and is also
annotated with 10 semantic labels. Two documents were
considered similar if they shared common label. For each
document, there are a 128-dimensional SIFT [22] descriptor
and a 10-dimensional LDA [2] feature. 80% samples of the
dataset were randomly selected to form the training set and the
remained formed the testing set. For verifying the performance
of semi-supervised multi-view hash models, 200 labeled data
samples were used and the rest were considered as unlabeled
data. For SSH and SCPH, we generated similar and dissimilar
constraints from the labeled data that we selected.
NUS-WIDE [4]. It is a widely used dataset that contains
269648 images from Flickr. The dataset is constituted of 81
ground-truth concepts and each image is labeled by at least one
concept, and multiple concept can be assigned to each image.
We randomly selected 180k images from 10 largest concept.
Besides, each image was represented by a 500-dimensional
bag of words feature based on SIFT [22] descriptor, and each
text was represented by 1000-dimensional tag vector. Two
images were considered as matched if they shared at least
one of the concept. The training set contains 175k samples,
and the rest were used to form the testing set. For verifying
the performance of semi-supervised multi-view hash models,
we randomly selected 10k labeled data from the training set
and the rest training data samples were treated as unlabeled.

An extra dataset called “ILSVRC-150K” will be employed
and introduced later for a further experimental analysis on
the scalability of the proposed method over many classes and
under imbalanced case.
Default Parameter Setting. The default values of the pa-
rameters in Criterion (23) were set below in our experiments:
v = 0.1, α = 4, β = 5, θ = 0.1. We will report the importance
of parameter values in Sec. IV-E3.

B. Evaluation Criteria

To evaluate the performance of different algorithms, we
reported several measurements: precision, recall, and mean
average precision(MAP). The evaluation criteria are defined
as follows:
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Fig. 1. MAP comparison with unsupervised multi-view hash models with different code lengths.
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Fig. 2. Precision-100 comparison with unsupervised multi-view hash models with different code lengths.

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WIKI

SSMDH

MAH

MVAGH

CHMIS

SU-MVSH

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CIFAR-10

SSMDH

MAH

MVAGH

CHMIS

SU-MVSH

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NUS-WIDE

SSMDH

MAH

MVAGH

CHMIS

SU-MVSH

Fig. 3. Precision Recall Curves comparison with unsupervised multi-view hash models with different code lengths.

Precision-Recall. Precision and Recall are defined as below

Precison =
tp

tp+ fp
(32)

Recall =
tp

tp+ fn
(33)

where tp is the number of similar points, fp is the number of
non-similar points and fn is the number of similar points that
are not retrieved.

MAP. MAP has a good stability to evaluate the performance
of Hamming ranking. It is defined as follows:

mAP =
1

Q

Q∑
i=1

AP (qi) (34)

AP (q) =
1

M

R∑
r=1

Pq(r)µ(r) (35)

where Q is the number of queries and Pq is the precision
for query q when the top rth neighbors returned, µ(r) is an
indication function which is 1 when the rth result has the same
class label with q and otherwise 0, M is the number of true
neighbors of query q, and R is the size of dataset.
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Fig. 4. MAP comparison with semi-supervised hash models with different code lengths.

Code length

16 32 48 64 80 96

P
re

 1
0

0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
CIFAR-10

SSMDH

MGH

SCPH

BT-NSPLH

SSH

MAH-S

CHMIS-S

Code length

8 16 24 32 40 48

P
re

 1
0

0

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
WIKI

SSMDH

MGH

SCPH

BT-NSPLH

SSH

MAH-S

CHMIS-S

Code length

16 32 48 64 80 96

P
re

 1
0

0

0.3

0.35

0.4

0.45

0.5

0.55

0.6
NUS-WIDE

SSMDH

MGH

SCPH

BT-NSPLH

SSH

MAH-S

CHMIS-S

Fig. 5. Precision-100 comparison with semi-supervised hash models with different code lengths.
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Fig. 6. Precision-Recall Curves comparison with semi-supervised hash models with different code lengths.

We reported the experiments on datasets CIFAR-10 and
NUS-WIDE by varying the bits from 16 to 96, and 8 to 48
bits for dataset WIKI since WIKI only contains thousands of
training samples. All experiments were independently run 10
times, and the average results were reported. All experiments
were all run on a workstation with 24 Intel(R) Xeon(R) E5-
2620@2.0GHz CPUs, 96GB RAM and 64-bit Ubuntu system,
and all methods were evaluated under the same measurement.

C. Comparison with Unsupervised Multi-view Hash Models

We first mainly compared several state-of-the-art unsu-
pervised multi-view hashing algorithms: (1) MAH [18], (2)

MVAGH [11], (3) CHMIS [38], and (4) SU-MVSH [12].
For all compared methods, we implemented them using the
recommended parameters provided by authors.

We reported the results in Figures 1, 2 and 3, and our
method achieved the best performance on three datasets. For
example, on CIFAR-10, our model achieved 44.7% on MAP
when the code length was 64 bits while the second highest
MAP was 34.2%. It is reasonable since a set of labeled data
was used for our multi-view modeling in the experiments, and
indeed the results suggest using a small set of labeled data can
improve the accuracy of fast search a lot. We also compared
MAH visually on the retrieved images in Figure 12. The results
showed that our results were more likely to be similar to
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Fig. 9. Illustration of the effect of trade-off parameter β on the search performance (MAP).

the query ones. For the comparison with DMHOR [31], we
compared SSMDH with it on WIKI, since only results on
WIKI under the same setting were reported in [31]. On WIKI,
the MAP of DMHOR is 0.3424, 0.489, and 0.5268 when the
code length is 8, 16, and 32, respectively; in comparison, the
MAP of the proposed SSMDH is 0.5182, 0.5711, and 0.5812
when the code length is 8, 16, and 32, respectively. It suggested
that SSMDH performed much better when the code length is
small.

D. Comparison with Semi-supervised Hash Models

We compared with several state-of-the-art semi-supervised
hash methods, including SSH [33], BT-NSPLH [36],

SCPH [32] and MGH [8]. We evaluated the “MAP vs. Code
Length”, “Precision 100 vs. Code Length”, and “Precision
vs. Recall” of each method on three datasets. For comparing
with single-view semi-supervised hash models, we reported
their results on the concatenation of “HOG” and “GIST”, or
the concatenation of “IMG” and “TXT”. The results were
shown in Figures 4, 5 and 6. They showed that our approach
was clearly better than the compared methods. On “MAP
vs. Code Length”, the proposed method always outperformed
the second best about 10% MAP rates; on “Precision 100
vs. Code Length”, a similar margin was also observed; on
“Precision vs. Recall”, the precision of the proposed method
degraded much less when the recall rate increased. On dataset
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NUS-WIDE, MGH reached the second best accuracy since
it used multi-view data to generate a multi-graph solution to
optimize weights between different views/modalities on semi-
supervised hashing. In addition, we found out that although
SCPH, SSH, and BT-NSPLH have already directly incorpo-
rated the similar pairs and non-similar pairs into the modeling,
SSH has lower performance due to the quantization error
when converting into binary code, and BT-NSPLH ignores
quantization error of the overwhelming majority unlabeled
data points. We also compared with SSH visually about
the retrieved images in Figure 12. The results showed that
our results were more accurate. Even though an inaccurate
retrieved image (a “bird”) for the query (a “plane”) was
observed when using our proposed SSMDH, their appearances
are very similar.

TABLE II
EVALUATION ON PROPOSED SSMDH: MAP ON CIFAR-10

SSMDH GIST HOG Naive Fusion
16 bits 0.3919 0.3632 0.3543 0.3575
32 bits 0.4102 0.3801 0.3892 0.3847
48 bits 0.4349 0.3905 0.3902 0.3921
64 bits 0.4479 0.3909 0.3924 0.3930
80 bits 0.4574 0.3980 0.3965 0.3992

TABLE III
EVALUATION ON PROPOSED SSMDH: MAP ON WIKI

SSMDH IMG(SIFT) TXT Naive Fusion
8 bits 0.5182 0.2524 0.4273 0.3075
16 bits 0.5711 0.2623 0.5054 0.4495
24 bits 0.5757 0.2618 0.5281 0.4405
32 bits 0.5812 0.2621 0.5317 0.4503
40 bits 0.5839 0.2629 0.5319 0.4543

TABLE IV
EVALUATION ON PROPOSED SSMDH: MAP ON NUS-WIDE

SSMDH IMG(SIFT) TXT Naive Fusion
16 bits 0.4844 0.4334 0.4726 0.4586
32 bits 0.5031 0.4547 0.4619 0.4644
48 bits 0.5271 0.4691 0.4664 0.4749
64 bits 0.5384 0.4752 0.4649 0.4723
80 bits 0.5393 0.4710 0.4683 0.4772

For more analysis, we also generalized the unsupervised
multi-view hash model MAH and CHMIS to their semi-
supervised cases, denoted by MAH-S and CHMIS-S, respec-
tively. The results were also shown in Figures 4, 5 and 6.
MAH performed the second best in the last section, and we
compared CHMIS-S since CHMIS also estimates hash codes
in a composite manner. MAH-S (CHMIS-S) was formed by
re-defining the matrix K(the similarity matrix S), where the
entry is 1 when two labeled samples are from the same
class, 0 when two labeled samples are from different classes,
and keeps the same as the case in MAH (CHMIS) in the
other cases. Although MAH always performed as a second
best unsupervised multi-view hash model, the straightforward
semi-supervised extension MAH-S is not effective. In despite
of sharing composite modeling between CHMIS and our
proposed model, the semi-supervised extension CHIMIS-S did

not perform well. On one hand, it is because MAH does not
consider the relation of hash codes extracted between different
views, while our proposed model does; and on the other hand,
we propose a composite discrete hash model which is able to
minimize the loss when using relaxation on learning hashing
codes.

In summary, our method is more effective than the compared
semi-supervised methods in the aspect of using multi-view
data. Our results show that 1) a multi-view semi-supervised
modeling is better than a single-view based, and 2) a joint
multi-view quantification on “HOG” and “GIST” is more ef-
fective than simple concatenation of “HOG” and “GIST”. Note
that even though compared to our degraded semi-supervised
multi-view discrete hashing on single view1 in Tables II, III
and IV, our degraded model still performed better overall. In
addition, the performance of some straightforward extension
of unsupervised multi-view methods is inferior to ours clearly.

E. More Evaluation on the Proposed Model

1) The Effect of Using Multi-view Data: We firstly directly
evaluated our semi-supervised hashing when learned on each
view (i.e., the “GIST”, “HOG”, “TXT”) in Tables II, III and
IV. That is we performed our model on each view when setting
α = 0. The results indicate that a clear improvement would
be gained when multi-view information is used and learned
jointly.

Secondly, we evaluated our joint multi-view learning. A
naive way to perform semi-supervised multi-view hash model
is to perform the semi-supervised hashing on each view and
fuse them together. That is Eq. (23) would become

min
B,C,{Wi}Ki=1

K∑
i=1

1

n`
||Y −CTBi,`||2

+
v

n
||Bi −WT

i φi(X
(i))||2

+ β · trace
( K∑
i=1

WT
i LiiWi

)
+ θ||C||2,

(36)

where Bi is the hash code matrix of the ith view and Bi,`

is the corresponding labeled portion. In the above, we model
the local data variation in each view separately and set α = 0,
and finally the prediction model Eq. (13) is used for generating
hash codes. We call this the naive semi-supervised multi-view
hash model, denoted as “Naive Fusion”. In comparison, our
proposed model is a joint learning model of different views.
We reported the comparison results in Tables II, III, and IV.
The results suggest that a joint modeling is better than learning
different views separately.

2) The Effect of Amount of Labeled Data: To further
demonstrate the effectiveness and extension of our method,
we evaluated the MAP against the number of labeled samples
used in our semi-supervised hash model. The results were
showed in Figure 7. On CIFAR-10 and WIKI, the performance
of our method increased when more labeled data samples
were used. For example, on CIFAR-10, the MAP was 0.43

1For implementation of our method on single view, we set K = 1, α = 1
in the Criterion 23.
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TABLE V
MAP EVALUATION ON CIFAR-10(CNN+HOG+GIST)

Code Length 16 32 48 64 80 96
SSMDH 0.5918 0.6040 0.6351 0.6461 0.6471 0.6483

MAH 0.5303 0.5467 0.5820 0.5924 0.5943 0.5961
MVAGH 0.3421 0.3915 0.3991 0.4038 0.4091 0.4131
CHMIS 0.3044 0.3623 0.3870 0.3896 0.3904 0.3910

SU-MVSH 0.2758 0.2754 0.2743 0.2731 0.2720 0.2727
MGH 0.1744 0.1805 0.2141 0.2219 0.2240 0.2255
SCPH 0.3952 0.3849 0.3753 0.3431 0.2716 0.2701

BT-NSPLH 0.2083 0.2157 0.2320 0.2405 0.2423 0.2431
SSH 0.1939 0.2048 0.2257 0.2333 0.2361 0.2380

MAH-S 0.3520 0.4097 0.4148 0.4281 0.4342 0.4388
CHMIS-S 0.2838 0.2873 0.2893 0.2901 0.2909 0.2915

when 4k training samples were used and it was 0.5 when
10k training samples were used. As shown by the figures,
the MAP increased slightly when more than 15k training
samples were used. Similar observation was found on WIKI.
On NUS-WIDE, the performance disturbance happened when
more labeled data samples were used. This might be because
NUS-WIDE consists of multi-label data, and sometimes using
more data samples will increase the diversity of labels of data.
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Fig. 10. MAP results against joint variation of α and β on WIKI.
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Fig. 11. Number of training data of each class on ILSVRC-150K in the
imbalanced setting.

3) The Effect of Parameters: We evaluated the influence of
two main parameters α and β of the proposed model on three
datasets. When studying one parameter, the others were fixed
as default values.
Parameter α: Figure 8 showed the MAP of SSMDH against
parameter α from 0 to 9. We found that the performance
increased when α was less than 4 on CIFAR-10. The result
also showed that the best α for these three datasets was
sightly different. On CIFAR-10 the best α value was 4, while

TABLE VI
MAP EVALUATION ON NUS-WIDE(CNN+SIFT+TXT)

Code Length 16 32 48 64 80 96
SSMDH 0.6383 0.6671 0.6895 0.6987 0.7073 0.7129

MAH 0.5845 0.6149 0.6382 0.6502 0.6614 0.6687
MVAGH 0.5649 0.5893 0.5990 0.6032 0.6067 0.6091
CHMIS 0.4458 0.4531 0.4562 0.4580 0.4588 0.4592

SU-MVSH 0.4281 0.4366 0.4398 0.4403 0.4389 0.4371
MGH 0.5431 0.5586 0.5548 0.5560 0.5563 0.5567
SCPH 0.5459 0.5340 0.5295 0.5248 0.5224 0.5209

BT-NSPLH 0.5146 0.5263 0.5279 0.5281 0.5284 0.5283
SSH 0.4739 0.4752 0.4756 0.4760 0.4762 0.4758

MAH-S 0.5714 0.5925 0.6003 0.6041 0.6068 0.6072
CHMIS-S 0.4618 0.4780 0.4825 0.4841 0.4862 0.4867

on WIKI the best α value was 3. Generally speaking, we
can set α between 3 and 5 for learning. The results also
suggested that lowest MAP results were always obtained
when the extracted features from different views were not
decorrelated, and this showed the effectiveness of the statistical
uncorrelation modeling.

Parameter β: Figure 9 showed the MAP of SSMDH against
parameter β from 0 to 9. As shown, when β was 0, the
performance was much lower than the ones when β > 0. It
verified that making hash codes more compact by minimizing
composite local data variation. In addition, a recommended β
from the results is 4.

Finally, by taking WIKI dataset as example, we examined
the effect of both parameters jointly in Figure 10. The results
suggested the performance of our method was relatively reli-
able when not setting α = 0 and β = 0, and the recommended
setting is still around α = 3 and β = 4.

F. Indepth Analysis

When Using Deep Features: We took CIFAR-10 and NUS-
WIDE as examples to show below. For evaluation, we further
employed the features extracted by CNN as the third view of
the data and integrated it into our multi-view framework. The
results are reported in Tables V and VI. Indeed, compared to
Figures 1 and 4, the performance of some methods can be
improved a lot when using deep features, and especially the
proposed SSMDH gains 20% MAP rates more on CIFAR-10.
The improvement of our method when using deep features
is more clear than the others. The results again suggest
that the proposed multi-view strategy is effective in utilizing
multi-view features. The results also show that our proposed
semi-supervised multi-view hash model still outperforms the
compared semi-supervised and unsupervised multi-view hash
models.

Searching on Many Classes: While the employed datasets
in the previous experiments are popular for evaluation of
hashing methods, the number of classes in those datasets is
limited. To show the evaluation of SSMDH on fast search over
many classes, by following [17], we formed a subset consists
of 1000 classes, which are very diverse and from different
categories, where the training set consists of 150k data samples
(150 images per class) and the labeled data set consists of 10k
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Fig. 12. Comparisons of some retrieval results among SSMDH, MAH and SSH on CIFAR-10. On each row, the left are the query, and the right are retrieved
images ranked from left to right.

TABLE VII
MAP EVALUATION ON ILSVRC-150K

Code Length 32 64 96 128 160
SSMDH 0.1120 0.2027 0.2418 0.2460 0.2571

MAH 0.0897 0.1082 0.1124 0.1206 0.1258
MVAGH 0.0734 0.0859 0.0980 0.1064 0.1113
CHMIS 0.0342 0.0358 0.0366 0.0378 0.0375

SU-MVSH 0.0298 0.0303 0.0312 0.0316 0.0321
MGH 0.0699 0.0733 0.0758 0.0772 0.0778
SCPH 0.0645 0.0691 0.0739 0.0765 0.0773

BT-NSPLH 0.0378 0.0407 0.0454 0.0467 0.0479
SSH 0.0143 0.0159 0.0167 0.0171 0.0173

MAH-S 0.0972 0.1211 0.1259 0.1283 0.1301
CHMIS-S 0.0349 0.0368 0.0387 0.0392 0.0397

data samples (10 images per class). We denote this subset as
“ILSVRC-150K”. We extracted 17 and 18 layer features of
VGG net in our experiment to form multi-view features. For
single view methods, we concatenated layers 17 and 18 to
form the feature representation. In our experiment, 1000 data
samples were selected to form the testing dataset and the rest
were considered as the training samples. The MAP results
and the Precision-50 results in Tables VII and VIII show that
our method also performed better than the compared ones on
ILSVRC-150K.

When Samples are Imbalanced over Many Classes. For
evaluation, we kept on conducting experiment on ILSVRC-
150K. Since the training set of ILSVRC-150K is balanced,
to make the training set imbalanced, we randomly selected
50k samples from the training set used in the balanced case
to form the imbalanced training dataset and the same 10k
samples as used in the balanced case to form the labeled
dataset. The random selection made the amount of training
samples of different classes imbalanced. The distribution of the
number of training samples in each class is shown in Figure
11. The MAP results and the Precision-50 results are shown in
Table IX and X. As shown, compared to Tables VII and VIII

TABLE VIII
PRECISION-50 EVALUATION ON ILSVRC-150K

Code Length 32 64 96 128 160
SSMDH 0.2373 0.2662 0.2810 0.2935 0.3033

MAH 0.2024 0.2278 0.2409 0.2446 0.2492
MVAGH 0.1825 0.2074 0.2138 0.2170 0.2199
CHMIS 0.0782 0.0846 0.0878 0.0894 0.0925

SU-MVSH 0.0565 0.0603 0.0637 0.0658 0.0664
MGH 0.1737 0.1940 0.2013 0.2046 0.2058
SCPH 0.1479 0.1627 0.1801 0.1856 0.1879

BT-NSPLH 0.0541 0.0657 0.0687 0.0693 0.0706
SSH 0.0138 0.0142 0.0145 0.0145 0.0144

MAH-S 0.2295 0.2604 0.2786 0.2850 0.2881
CHMIS-S 0.0392 0.0451 0.0468 0.0470 0.0465

TABLE IX
MAP EVALUATION ON IMBALANCED ILSVRC-150K

Code Length 32 64 96 128 160
SSMDH 0.1017 0.1916 0.2439 0.2655 0.2710

MAH 0.0901 0.1357 0.1422 0.1460 0.1473
MVAGH 0.0741 0.0949 0.1018 0.1040 0.1199
CHMIS 0.0287 0.0301 0.0325 0.0379 0.0404

SU-MVSH 0.0254 0.0331 0.0380 0.0392 0.0408
MGH 0.0534 0.0668 0.0722 0.0760 0.0752
SCPH 0.0514 0.0659 0.0723 0.0737 0.0745

BT-NSPLH 0.0328 0.0377 0.0391 0.0403 0.0410
SSH 0.0124 0.0129 0.0134 0.0138 0.0136

MAH-S 0.0954 0.1236 0.1259 0.1301 0.1306
CHMIS-S 0.0299 0.0307 0.0316 0.0331 0.0338

which report the results when sample distribution is balanced,
SSMDH performed more stably in the imbalanced case.
Comparison with Classifier-based Hashing. Recently, classi-
fier based hashing draws attention [26]. Its main idea is to learn
a classifier model based on the available labeled data samples,
use it to predict a probability vector for each query, and then
apply one-hot strategy or Locality Sensitive Hashing(LSH)
to encode a short length binary code [26], where one-hot
can encode a log2m length code and m is the number of
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TABLE X
PRECISION-50 EVALUATION ON IMBALANCED ILSVRC-150K

Code Length 32 64 96 128 160
SSMDH 0.2315 0.2648 0.2791 0.2900 0.3002

MAH 0.1832 0.1956 0.2027 0.2065 0.2077
MVAGH 0.1734 0.1886 0.2013 0.2091 0.2126
CHMIS 0.0592 0.0630 0.0679 0.0701 0.0724

SU-MVSH 0.0476 0.0493 0.0512 0.0528 0.0547
MGH 0.1640 0.1802 0.1935 0.1989 0.2017
SCPH 0.1326 0.1543 0.1674 0.1731 0.1778

BT-NSPLH 0.0347 0.0383 0.0406 0.0411 0.0427
SSH 0.0102 0.0124 0.0131 0.0134 0.0136

MAH-S 0.1873 0.1994 0.2108 0.2176 0.2204
CHMIS-S 0.0658 0.0670 0.0684 0.0692 0.0698

classes. We followed Jegou et al.’s work [26] to infer hash
code from a classifier output. For CIFAR-10 and WIKI, we
infer the hash code based on the multi-class logistic regression
method [26]; for NUS-WIDE, a multi-label classifier [6] was
used, since NUS-WIDE is a multi-label database; and for
ILSVRC-150K, we applied the Multi-class SVM classifier due
to the difficulty of learning a stable logistic regression model
with large number of classes (1000 classes) and very limited
labeled samples (only 10 labeled samples for each class). Note
that for CIFAR-10 and NUS-WIDE, we used the same feature
as used in Table V and Table VI in the main manuscript,
respectively. The results are shown in Table XI. Indeed, the
“Classifier+ONE-HOT” is useful (especially on NUS-WIDE
and WIKI), and it outperformed many our compared methods
in Figure 4 and Tables V and VI. But, the results also suggest
that our proposed SSMDH can still perform better on CIFAR-
10 and ILSVRC-150K, and perform comparably on WIKI and
NUS-WIDE.

Transfer case. In order to see how well a hash model learned
on a set of classes can be used to conduct fast search on
another separate set of new classes, we followed Jegou et al.’s
work [26] to split dataset into two parts without class overlap:
train75 and train25/test25, where train75 indicates the training
set to train the hash models and train25/test25 is the gallery
image set/query image set. We only conducted experiments on
CIFAR-10 and ILSVRC-150K, since WIKI is too small (only
2866 samples) and it is hard to find two sets of classes without
sample overlap due to the fact that each sample in NUS-
WIDE belongs to several classes under a multi-label setting.
For CIFAR-10, the train75 consists of data of 7 classes, and the
data samples of the rest 3 classes form the train25/test25. For
ILSVRC-150k, the train75 consists of data of 750 classes, and
data samples of the rest 250 classes form the train25/test25.
For each dataset, the test25 consists of 1000 query samples
and the others form the train25. The MAP results are shown
in Table XII below. The results suggest the proposed SSMDH
still outperformed the compared methods under the transfer
setting. Note that the MAP results in Table XII are larger than
the ones reported in other tables, and it is because less classes
are set to search in the testing stage under the transfer setting.

TABLE XI
MAP EVALUATION ON CLASSIFIER-BASED HASHING

Database Method Code Length MAP
Classifier+ONE-HOT 4 0.4235

CIFAR-10 Classifier+LSH 64 0.4542
SSMDH 64 0.6461

Classifier+ONE-HOT 4 0.5938
WIKI Classifier+LSH 16 0.5816

SSMDH 16 0.5711
Classifier+ONE-HOT 4 0.6570

NUS-WIDE Classifier+LSH 64 0.6394
SSMDH 64 0.6987

Classifier+ONE-HOT 10 0.0536
ILSVRC-150K Classifier+LSH 64 0.0482

SSMDH 64 0.2027

TABLE XII
MAP EVALUATION ON TRANSFER CASE

Database CIFAR-10 ILSVRC-150K
Code Length 32 64 96 32 64 96

SSMDH 0.7200 0.7214 0.7227 0.4065 0.4144 0.4225
MAH 0.6684 0.6732 0.6741 0.3253 0.3382 0.3402

MVAGH 0.6706 0.6683 0.6620 0.3447 0.3581 0.3639
CHMIS 0.4526 0.4569 0.4611 0.1841 0.1878 0.1890

SU-MVSH 0.4024 0.4110 0.4123 0.1394 0.1386 0.1381
MGH 0.4418 0.4450 0.4456 0.3062 0.3104 0.3149
SCPH 0.5315 0.5247 0.5174 0.2859 0.2900 0.2923

BT-NSPLH 0.4727 0.4739 0.4746 0.1455 0.1527 0.1540
SSH 0.4312 0.4427 0.4475 0.0942 0.0955 0.0959

MAH-S 0.6869 0.6904 0.6918 0.3438 0.3511 0.3537
CHMIS-S 0.4635 0.4658 0.4666 0.2003 0.2015 0.2019

V. CONCLUSION

We have proposed a semi-supervised composite multi-view
discrete hash (SSMDH) model. SSMDH minimizes the loss
jointly when using relaxation on learning hashing codes for
similarity search on multi-view data, and meanwhile it in-
creases the discriminant ability of the learned hash codes by
reducing regression loss on a portion of labeled samples. In
this development, all view-specific transformations are learned
jointly over multi-view data, while reducing the statistical
correlation between them and imposing composite locality
preserving constraint on hash codes. In summary, through
extensive experiments we find that:

1) A composite discrete hash model on multi-view data
performs more effectively than learning discrete hash
model for each view independently;

2) The proposed strategy of extracting features on
multi-view data for hash model is more effective than
the existing multi-view modeling for hashing under
the semi-supervised setting;

3) It is empirically found that straightforward extension
of some effective unsupervised multi-view hash mod-
els does not suit the semi-supervised hashing very
well.

In the future, since incorporating deep features would clearly
and sometimes significantly improve the performance of the
proposed semi-supervised multi-view hashing, it would be
interesting to investigate whether a completely end-to-end
semi-supervised multi-view model would gain much more
improvement.



IEEE TRANSACTIONS ON IMAGE PROCESSING 14

ACKNOWLEDGMENTS

The authors would like to thank reviewers’ constructive
comments on improving the manuscript.

REFERENCES

[1] S.-i. Amari. Integration of stochastic models by minimizing α-
divergence. Neural Computation, 19(10):2780–2796, 2007.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[3] M. M. B. P. F. Christoph Strecha, Alexander M Bronstein. Ldahash:
Improved matching with smaller descriptors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(1):66–78.

[4] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: a
real-world web image database from national university of singapore. In
Proceedings of the ACM international conference on image and video
retrieval.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 1, pages 886–893, 2005.

[6] A. Elisseeff and J. Weston. A kernel method for multi-labelled
classification. 2001.

[7] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-preserving
quantization method for learning binary compact codes. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2938–
2945, 2013.

[8] P. L. M. W. H. L. Jian Cheng, Cong Leng. Semi-supervised multi-
graph hashing for scalable similarity search. Computer Vision and Image
Understanding, 124:12–21, 2014.

[9] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, and X. Li. Comple-
mentary projection hashing. In Proceedings of the IEEE International
Conference on Computer Vision, pages 257–264, 2013.

[10] Y. Kang, S. Kim, and S. Choi. Deep learning to hash with multiple
representations. In IEEE International Conference on Data Mining,
pages 930–935, 2012.

[11] S. Kim and S. Choi. Multi-view anchor graph hashing. In IEEE
International Conference on Acoustics, Speech and Signal Processing,
pages 3123–3127, 2013.

[12] S. Kim, Y. Kang, and S. Choi. Sequential spectral learning to hash with
multiple representations. In European Conference on Computer Vision,
pages 538–551. 2012.

[13] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, Toronto, 2009.

[14] B. Kulis and T. Darrell. Learning to hash with binary reconstructive
embeddings. In Advances in neural information processing systems,
pages 1042–1050, 2009.

[15] B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned
metrics. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(12):2143–2157, 2009.

[16] X. Li, G. Lin, C. Shen, A. Van den Hengel, and A. Dick. Learning
hash functions using column generation. In Proceedings of The 30th
International Conference on Machine Learning, pages 142–150, 2013.

[17] H. Liu, R. Wang, S. Shan, and X. Chen. Dual purpose hashing. arXiv
preprint arXiv:1607.05529, 2016.

[18] L. Liu, M. Yu, and L. Shao. Multiview alignment hashing for efficient
image search. IEEE Transactions on Image Processing, 24(3):956–966,
2015.

[19] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing
with kernels. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2074–2081, 2012.

[20] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In
Proceedings of the 28th international conference on machine learning,
pages 1–8, 2011.

[21] X. Liu, D. Tao, M. Song, Y. Ruan, C. Chen, and J. Bu. Weakly
supervised multiclass video segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 57–64,
2014.

[22] D. G. Lowe. Object recognition from local scale-invariant features.
In The proceedings of the seventh IEEE international conference on
Computer vision, volume 2, pages 1150–1157, 1999.

[23] M. Norouzi and D. M. Blei. Minimal loss hashing for compact binary
codes. In Proceedings of the 28th international conference on machine
learning, pages 353–360, 2011.

[24] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International journal of computer
vision, 42(3):145–175, 2001.

[25] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanck-
riet, R. Levy, and N. Vasconcelos. A new approach to cross-modal
multimedia retrieval. In Proceedings of the international conference on
Multimedia, pages 251–260, 2010.

[26] A. Sablayrolles, M. Douze, H. Jégou, and N. Usunier. How should we
evaluate supervised hashing? CoRR, abs/1609.06753, 2016.

[27] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete hashing.
In IEEE Conference on Computer Vision and Pattern Recognition, pages
37–45, 2015.

[28] F. Shen, C. Shen, Q. Shi, A. Hengel, and Z. Tang. Inductive hashing on
manifolds. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1562–1569, 2013.

[29] D. Song, W. Liu, D. A. Meyer, D. Tao, and R. Ji. Rank preserving
hashing for rapid image search. In Data Compression Conference, pages
353–362, 2015.

[30] D. Song, W. Liu, T. Zhou, D. Tao, and D. A. Meyer. Efficient robust
conditional random fields. IEEE Transactions on Image Processing,
24(10):3124–3136, 2015.

[31] D. Wang, P. Cui, M. Ou, and W. Zhu. Deep multimodal hashing with
orthogonal regularization. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 2291–2297, 2015.

[32] D. Wang, X. Gao, and X. Wang. Semi-supervised constraints preserving
hashing. Neurocomputing, 167:230–242, 2015.

[33] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
scalable image retrieval. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3424–3431, 2010.

[34] Y. Wang, X. Lin, L. Wu, W. Zhang, and Q. Zhang. Lbmch: Learning
bridging mapping for cross-modal hashing. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 999–1002. ACM, 2015.

[35] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in
neural information processing systems, pages 1753–1760, 2009.

[36] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu. Semi-supervised nonlinear
hashing using bootstrap sequential projection learning. IEEE Transac-
tions on Knowledge and Data Engineering, 25(6):1380–1393, 2013.

[37] Y. H. P. N. H. Z. Xiaofei He, Shuicheng Yan. Face recognition using
laplacianfaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(3):328–340, 2005.

[38] D. Zhang, F. Wang, and L. Si. Composite hashing with multiple infor-
mation sources. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages
225–234, 2011.

Chenghao Zhang received the B.S. degree in com-
puter science from Sun Yat-sen University in 2016.
He is pursuing M.S. degree in Carnegie Mellon
University and Sun Yat-sen University. His current
research insterests include large-scale machine learn-
ing algorithms and action recognition on Austim
children behavior analysis.

Wei-Shi Zheng received the PhD degree in applied
mathematics from Sun Yat-sen University in 2008.
He is a Professor with Sun Yat-Sen University. He
has been a postdoctoral researcher on the EU FP7
SAMURAI Project with Queen Mary University
of London. His recent research interests include
person re-identification, action/activity recognition,
and large-scale machine learning algorithms. He
has joined Microsoft Research Asia Young Faculty
Visiting Programme. He has outstanding reviewer
award in ECCV 2016. He is a recipient of the

Excellent Young Scientists Fund of the National Natural Science Foundation
of China, and a recipient of Royal Society-Newton Advanced Fellowship.


	Introduction
	Related Work on Multi-view Hashing
	Composite Hashing with Multiple Information Sources(CHMIS) zhang2011composite
	Sequential Spectral Learning to Hash with Multiple Representations(SU-MVSH) kim2012sequential
	Multi-view anchor graph hashing(MVAGH) kim2013multi
	Multi-view Alignment Hashing(MAH) liu2015multiview
	Deep Multimodal Hashing with Orthogonal Regularization(DMHOR) wang2015deep
	Extension of Unsupervised Multi-view Hash Models to Semi-supervised Case

	Approach
	A Composite Discrete Multi-view Hash Modeling
	Optimization
	Fixing B and Optimizing C
	Fixing B and Optimizing Wi
	Fixing other variables and Optimizing B


	Experiments
	Datasets and Settings
	Evaluation Criteria
	Comparison with Unsupervised Multi-view Hash Models
	Comparison with Semi-supervised Hash Models
	More Evaluation on the Proposed Model
	The Effect of Using Multi-view Data
	The Effect of Amount of Labeled Data
	The Effect of Parameters

	Indepth Analysis

	Conclusion
	References
	Biographies
	Chenghao Zhang
	Wei-Shi Zheng


