
Smart Hashing Update for Fast Response

Qiang Yang, Longkai Huang, Wei-Shi Zheng*, and Yingbiao Ling
School of Information Science and Technology, Sun Yat-sen University, China

Guangdong Province Key Laboratory of Computational Science
mmmyqmmm@gmail.com,hlongkai@gmail.com,

wszheng@ieee.org(corresponding author),issLYB@mail.sysu.edu.cn

Abstract

Recent years have witnessed the growing popular-
ity of hash function learning for large-scale da-
ta search. Although most existing hashing-based
methods have achieved promising performance,
they are regarded as passive hashing and assume
that the labelled pairs are provided in advance. In
this paper, we consider updating a hashing mod-
el upon gradually increased labelled data in a fast
response to users, called smart hashing update
(SHU). In order to get a fast response to users, SHU
aims to select a small set of hash functions to re-
learn and only updates the corresponding hash bits
of all data points. More specifically, we put forward
two selection methods for performing efficient and
effective update. In order to reduce the response
time for acquiring a stable hashing code, we also
propose an accelerated method to further reduce in-
teractions between users and the computer. We e-
valuate our proposals on two benchmark data sets.
Our experimental results show it is not necessary
to update all hash bits in order to adapt the model
to new input data, and our model obtains better or
similar performance without sacrificing much ac-
curacy against the batch mode update.

1 Introduction
Recently, owing to the dramatically increasing in the scale
and dimension of real-world data, hashing has become an
important method for expediting similarity computation and
search, which has been applied to large-scale vision prob-
lems including objection recognition [Torralba et al., 2008a],
image retrieval [Xu et al., 2011], local descriptor compres-
sion [Strecha et al., 2012], image matching [Strecha et al.,
2012], etc. In many conditions, hashing using only dozen-
s of bits per image allows search into a collection of mil-
lions of images in a constant time [Torralba et al., 2008b;
Wang et al., 2012].

So far, hashing techniques are categorized into two group-
s: data independent and data dependent methods. Most
early exploration of hashing works uses random projec-
tions to construct randomized hash functions. One of the

most well-known representatives is Locality-Sensitive Hash-
ing (LSH) [Gionis et al., 1999]. Its variants have been
widely developed to accommodate more metrics including
`p distance for p ∈ (0, 2] [Datar et al., 2004], Mahara-
nees distance [Kulis et al., 2009], and kernel similarity [Li-
u et al., 2012]. LSH-based methods generally require long
codes to achieve good precision [Dasgupta et al., 2011;
Gorisse et al., 2012]. However, long codes result in low recall
rate since the collision probability that two codes fall into the
same hash bucket decreases exponentially as the code length
grows.

In contrast to the data independent hashing methods, data
dependent hashing has recently gotten attraction. Data de-
pendent hashing learns a compact set of hash bits for high-
dimensional data points, so that nearest neighbour search can
be accomplished in a constant computational complexity as
long as the neighbourhood of a point is well preserved in the
coding space. In addition, compact codes are especially ben-
eficial for saving storage particularly when the database is
very large. To design efficient and effective compact hash-
ing codes, a great number of methods have been developed
such as Spectral Hashing (SH) [Weiss et al., 2008], Anchor
Graph Hashing (AGH) [Liu et al., 2011], Binary Reconstruc-
tion Embedding (BRE) [Kulis and Darrell, 2009], etc. Usual-
ly, data dependent hashing methods are categorised into three
categories: unsupervised (e.g., [Weiss et al., 2008]), semi-
supervised(e.g., [Wang et al., 2012]), and supervised methods
(e.g., [Mu et al., 2010; Liu et al., 2012]).

The above works are considered as passive hashing learn-
ing in [Zhen and Yeung, 2012], which assumes labelled point
pairs are provided in advance. Since they conduct learning
once and for all, they cannot efficiently adapt to the change
of training data in order to tackle large scalability (e.g. large
scale image search problems). This is important for some
applications whenever (online) interaction between users and
system is needed in order to make system optimise to specif-
ic users’ requirement. In this paper, we consider proposing
smart ways to update an existing hashing learning model in
order to obtain a fast response to users’ feedback (i.e. the new
labelled data by users). More specifically, we assume a set of
hash functions are given, which are generated or learned from
an existing training set consisting of a small set of labelled da-
ta. Our objective is to select the most useful hash functions
to update so as to make the whole hashing model promptly



Figure 1: Smart Hashing update for Fast Response.

adapt to the new labelled data. In this work, we have intro-
duced two strategies to select those hash functions.

Our work is closely connected to active learning, which
aims to automatically/smartly select points for users to label
and update learning system based on existing and the new la-
belled data. Active hashing (AH) learning [Zhen and Yeung,
2012] is a recent active learning method for hashing. Compar-
ing to active learning, we assume those selected points have
already been labelled by users and we focus on the latter pro-
cedure for updating the learning system. Rather than conduct-
ing a batch mode update as in active learning (e.g. AH), we
select a small set of hash functions to update. Although the
selection idea is used in ours and active learning, they work
in different dimensions and can be combined in future for de-
veloping a complete active system for getting more scalable
for large scale computing.

Our proposal is not restricted to particular hashing learning
models and can be applied generally to supervised and semi-
supervised hash learning methods. In this work, we have ap-
plied proposed strategies to a supervised hashing model—
KSH [Liu et al., 2012] and a semi-supervised model—
S3PLH [Wang et al., 2012] in Sect. 3. We will empirical-
ly show our proposal is efficient, and low computational and
space complexity without sacrificing much accuracy.

2 Approach

2.1 Problem Statement

We aim to select a small set of hash functions to update in a
smart way in order to obtain a fast response (as shown in Fig-
ure 1) to users’ new labelled data without sacrificing much
accuracy. Suppose before each interaction with users, there
are r hash functions hk = sgn(wkx) (1 ≤ k ≤ r, wk stand-
s for the projection vector for the kth hash function) learned
from a small set of l labelled data χl = {x1, · · · , xl}, which
is a part of the big data set χn = {x1, · · · , xn}(n � l)
with the remaining (n − l) data points unlabelled. Then,
after each interaction, new labels for p unlabelled points
are assigned by users and the labelled set becomes χl+p =
{x1, · · · , xl, xl+1, · · · , xl+p}. Therefore, the labelled data
becomes (l + p) points. After each interaction, we would
update the notation by l← l + p.

2.2 Proposed Strategies
Due to large scalability for computation, updating all hash
functions as data increases becomes infeasible to gain a fast
response to a user (as shown in our experiments). Our main
idea is to develop a bit-wise hash update strategy in order
to update one bit or a small number of bits of hash codes
at a time, and we call it as Smart Hashing Update (SHU).
Algorithm 1 gives an overview of our solution. The challenge
of this idea is how to select hash bits to update, in other words,
how to select a set of hash functions to update.

Algorithm 1: Smart Hashing Update
Input: Training set χ = {xi ∈ Rd}ni=1, pairwise label matrix

S ∈ Rl×l on initial l labelled samples χl = {xi}li=1,
hashing method f , smart hashing update selection
strategy SHU , maximum interaction T , hash bit length
r, and the number t of hash functions to be updated.

Learn r hash functions on χl using hashing method f ;
for k = {1, . . . , T} do

1)obtain p new labelled data χp;
2)update χl and S, and l← l + p;;
3)obtain hash codes of all χl;
4)select t hash functions according to SHU ;
5)exclude the effect of the other (r − t) hash functions on
S and χl;
6)relearn the selected t hash functions on updated S and
χl;

end
Output: r hash functions {hk(x) = sgn(xTwk)}rk=1 and

hash codes for all data H = {coder(xi)}ni=1

In the following, from different perspectives, we mainly
propose two strategies for selecting hash bits to update. Be-
fore detailing our proposals, we describe random selection
principle first, which is a natural way for selection.

Random Selection
Random strategy selects t(1 ≤ t ≤ r) hash functions ran-
domly from r hash functions. Then based on the updated
data and similarity in each iteration, the t hash functions are
retrained or relearned. Although it is the simplest one, we
show in the experiment that such a random strategy is not
effective. More important, it is unstable, which means that
sometimes it may improve the performance and sometimes it
could also degrade the performance.

Consistency-based Selection
Hashing methods are to map similar data points onto the same
hash codes and make them fall into the same bucket. Relying
on this perspective, we propose a selection strategy that in-
vestigates the consistency of hashing codes of data from the
same class. We call it as consistency-based selection strategy.

Therefore, the core idea here is to select the t hash func-
tions which lead to in-consistent hashing coding within a
class. To be detail, let us suppose that there are c classes in
total, the hash bit length is r, and the number of data points is
n. In addition, the label information of labelled data is stored
in matrix L. Let hj(xi) indicate the jth hash code of point xi.



Since each hash bit has only two values, namely {1,−1}1, we
can just count the number of−1s and 1s for a specific class at
each hash bit. Let num(k, j,−1) and num(k, j, 1) stand for
the number of −1s and 1s of kth class at jth hash bit respec-
tively:

num(k, j,−1) =
∑l

i=1{hj(xi) = −1&&L(xi) = k}
num(k, j, 1) =

∑l
i=1{hj(xi) = 1&&L(xi) = k}

(1)

where l is the number of labelled points. Then, we define
Diff(k, j) which can indicate the number of data points of
class k whose jth hash bit differs from the majority of the
class as follows:

Diff(k, j) = min{num(k, j,−1), num(k, j, 1)} (2)

The consistency-based selection is thus to select t hash
functions according to the expectation of Diff(k, j) over
all classes. In this paper, we estimate the expectation
Diff mean below

Diff mean(j) = mean(Diff(:, j)) =
1

c

c∑
k=1

Diff(k, j) (3)

where Diff mean(j) is the mean value of the jth hash bit
in Diff(k, j) across all classes.

As we wish that all similar data points should be mapped to
the same hash code for each bit, and thus we aim to minimize
Diff mean as follows

argmin
h∈H

Diff mean (4)

Then, this would suggest that we should update hash bits
which correspond to the largest Diff mean(j) and relearn
the corresponding hash functions. Algorithm 2 shows the
procedure of this strategy.

Algorithm 2: Consistency-based Selection Algorithm
Input: Hash codes H of l labelled data, a label matrix L

defined on the l data, the number of classes c, hash bit
length r, and the number t of hash bits to be updated.

for k = {1, . . . , c} do
for j = {1, . . . , r} do

Compute num(k, j,−1) and num(k, j, 1);
if num(k, j,−1) < num(k, j, 1) then

Diff(k, j) = num(k, j,−1);
else

Diff(k, j) = num(k, j, 1);
end

end
end
Diff mean(j) = 1

c

∑c
k=1Diff(k, j);

sort Diff mean;
obtain the indexes of t larger elements;
Output: t indexes of hash functions

1another hash codes are {0, 1}, but 0 and 1 hash codes can be
transferred into -1 and 1 codes through 2h− 1

Similarity-based Selection
In the previous section, we introduce the use of consistency
of hashing codes within a class for selecting hash functions to
update. It, however, does not explicitly measure the similarity
relations between either intra-class or inter-class data. Hence
for optimising those relations, we propose another selection
strategy called similarity-based selection.

We first define the similarity Sij between data below:

Sij =

{
1, xi and xj are similar
−1, xi and xj are not similar (5)

where two points from the same class are similar, the ones
from different classes are not similar, S is a similarity matrix
consisting of entries Sij .

It is expected the learned hash codes can preserve the sim-
ilarity among data points. One can evaluate the effect of
learned hash codes using the following objective function as
used in KSH [Liu et al., 2012]:

min
Hl∈{−1,1}l×r

Q =

∥∥∥∥1rHlH
T
l − S

∥∥∥∥2
F

. (6)

whereHl is a hash code matrix where each row stands for the
hash code of a labelled data.

Our idea to select the hash functions for update is to select
those who contribute less for preserving the similarity. In
order to do so, we define a residue similarity matrix when
the kth hash bit is not used as follows

Rk =
∥∥∥rS −Hk

r−1H
k
r−1

T
∥∥∥2
F

(7)

where Hk
r−1 is the hash code matrix of labelled data χl when

excluded the kth hash bit (i.e. the kth column ofHl is deleted)
and ‖.‖F is the Frobenius norm.
Rk suggests how much similarity is preserved when al-

l hash bits are used except the kth one. The larger Rk is,
the more contribution the kth hash bit makes to reconstruct-
ing S, which in other words has a great effect on the approx-
imation. Thus, the kth hash bit corresponding to the largest
Rk should remain unchanged, namely, we should choose the
hash bit corresponding to the smallest Rk for update. Hence,
our objective function for choosing hash bits to update comes
as follows

min
k∈{1,2,...,r}

Rk =
∥∥∥rS −Hk

r−1H
k
r−1

T
∥∥∥2
F

(8)

We also detail this strategy in Algorithm 3.
Unlike the random selection strategy, similarity-based se-

lection method prefers to select the bits to update which con-
tribute less to approximating S. Therefore, we can see that,
every time it minimises the distance between hash codes inner
products HlH

T
l and rS. Thus, this method is more stable and

reliable than random method. Additionally, compared with
consistency-based strategy, similarity-based strategy updates
the hash functions in order to make them more effective for
preserving the similarity between data.



Algorithm 3: Similarity-based Selection Algorithm
Input: Hash code matrix H of l labelled data, a pairwise

similarity matrix S defined on the l data, hash bit length
r, and the number t of hash bits to be updated.

for j = {1, . . . , r} do
Get the hash code matrix Hk

r−1 when excluding the jth bit;

R(j) =
∥∥∥rS −Hk

r−1H
k
r−1

T
∥∥∥2
F

;

end
obtain the indexes corresponding to t smallest R(j);
Output: t indexes of hash functions

2.3 Accelerated Hashing Update
Since at each update iteration of the above strategies we only
utilise the labelled data provided by users and the labelled
data points could still very few, this may limit the speed of
the algorithms to get a stable performance as shown in our
experiments, resulting in more interactions between users and
the system.

In order to accelerate the interaction, we explore the useful-
ness of the unlabelled data around the labelled data provided
by users at each iteration. More specifically, we developed
K-nearest neighbours (KNN)[Coomans and Massart, 1982]
based on hashing update strategy as follows. For each se-
lected point xi labelled by users, we use Hamming distance
among the hash codes learned in last iteration to obtain theK
nearest neighbours for xi. In this work, we simply set K to
1, namely the nearest neighbour, as the nearest neighbour ob-
tained by Hamming distance is more likely to share the same
label as xi. Then for xi, we assume its nearest neighbour is
similar to xi and thus we can compute the similarity between
xi and its nearest neighbour using Eq. (5). In some aspect,
this can be viewed as deriving some pseudo labels for some
unlabelled data, resulting in a better learned model and thus
reducing interactions as shown in Sect.3. In this work, we
particularly develop an accelerated version for the similarity-
based selection strategy.

2.4 Update for the Selected Hash Functions
After selecting the t hash bits to update, we now detail how to
update them based on existing supervised or semi-supervised
hash models. In this paper, we particularly combine the pro-
posed strategy (SHU) with a supervised hashing model—
KSH [Liu et al., 2012] and a semi-supervised one—S3PLH
[Wang et al., 2012].

We first retain the residual unselected (r−t) hash functions
at the current round. Then, for the selected t hash functions,
we just describe hash update at one round. Since the unselect-
ed (r − t) bits remain unchanged, we just exclude the effects
that the residual (r − t) hash bits have on the similarity S
upon all labelled data after users’ action as follows:

St = rS −Hr−tH
T
r−t (9)

where Hr−t stands for the hash code matrix of current-
ly available labelled data excluding the t selected hash bits
and St represents the similarity that the selected t hash bits
should preserve. Then, we relearn the t hash functions sim-
ply through substituting the similarity matrix S in KSH and
S3PLH with our updated similarity matrix St.

3 Experiments
3.1 Datasets
We evaluate our methods on two benchmark data sets: M-
NIST2, and 20 Newsgroups3. On all data sets, we use the
ground-truth class labels to simulate users’ label information.
MNIST consists of 70K handwritten digit samples from dig-
it 0 to 9, each of which is an image of size 28 × 28 pixels
yielding a 784-dimensional vector. In experiment, the entire
dataset is randomly partitioned into two parts: a training data
set consisting of 69K samples and a testing set consisting of
1K samples. Newsgroups is a text dataset, which contains
18, 846 documents distributed across 20 categories. We ran-
domly selected 1K documents as the testing set and the rest
are used as the training set. In order to reduce the computa-
tional complexity, we first reduce the dimensionality of data
from 26,214 dimension to 1000 dimension by using PCA.

3.2 Protocols and Methods
Protocols
We evaluate the algorithms in terms of computational time
and accuracy. Therefore, we follow two protocols, name-
ly mean precision on all test data for evaluating accuracy
and average response time (namely the training time for each
update and the retrieval time, where the latter is the same
for all methods) for comparing computational time. For al-
l datasets, to perform real time search, we adopt Hamming
ranking and select the top 500 as nearest neighbours for e-
valuation, which is commonly followed in [Liu et al., 2012;
Xu et al., 2011]. In order to guarantee the stability, we run
each algorithm 10 times with random division of training and
testing sets. During all experiments, we fix the length of hash
bits to be 24. We run all methods on the windows server with
eight 3.4GHz Intel Core CPUs and 48GB memory.

Methods
We develop a set of smart hashing update (SHU) algorithms
by applying our strategies to a supervised algorithm—KSH
[Liu et al., 2012] and a semi-supervised algorithm—S3PLH
[Wang et al., 2012]. We detail the notations of these algo-
rithms as follows.

1) KSH based SHU. KSH based smart hashing update
(SHU) methods are based on the supervised algorithm—
KSH4 and only select a small subset of hash functions to
update. Based on different selection strategies, we devel-
op SHU-Rand-KSH, SHU-Con-KSH, and SHU-Sim-KSH,
which are based on random selection, consistency-based s-
election strategy and similarity-based strategy, respectively.
SHU-Sim-KNN-KSH is our accelerated method based on
similarity-based selection. Unless otherwise stated, we select
5 hash functions to update in SHU-Rand-KSH, SHU-Con-
KSH, SHU-Sim-KSH and SHU-Sim-KNN-KSH. In order to
compare these methods, we also compare the batch update
approach directly using KSH itself, denoted as BU-KSH.

2) S3PLH based SHU. S3PLH based smart hashing
update (SHU) methods are based on the semi-supervised

2http://yann.lecun.com/exdb/mnist/
3http://qwone.com/∼jason/20Newsgroups/
4http://www.ee.columbia.edu/∼wliu/



0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

P
re

ci
si

on

Select 5 hash bits to update

 

 

BU−KSH
SHU−Rand−KSH
SHU−Sim−KSH
SHU−Con−KSH
SHU−Sim−KNN−KSH

(a) Precision of KSH based SHU

0 10 20 30 40
0

100

200

300

400

500

Number of iterations

R
es

po
ns

e 
tim

e

Select 5 hash bits to update

 

 
BU−KSH
SHU−Sim−KSH
SHU−Con−KSH
SHU−Sim−KNN−KSH

(b) Response time of KSH based SHU

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of iterations

P
re

ci
si

on

Select 5 hash bits to update

 

 

BU−S3PLH
SHU−Rand−S3PLH
SHU−Sim−S3PLH
SHU−Con−S3PLH
SHU−Sim−KNN−S3PLH

(c) Precision of S3PLH based SHU

0 10 20 30 40
5

10

15

20

25

30

35

40

Number of iterations

R
es

po
ns

e 
tim

e

Select 5 hash bits to update

 

 
BU−S3PLH
SHU−Sim−S3PLH
SHU−Con−S3PLH
SHU−Sim−KNN−S3PLH

(d) Response time of S3PLH based SHU

Figure 2: Precision (@top 500) and Response time comparison on MNIST, when 5 hash bits are selected to update. 2(a) and
2(b) show the performance of KSH based SHU, and 2(c) and 2(d) display the performance of S3PLH based SHU.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

Pr
ec

is
io

n

Select 5 hash bits to update

 

 

BU−KSH
SHU−Rand−KSH
SHU−Sim−KSH
SHU−Con−KSH
SHU−Sim−KNN−KSH

(a) Precision of KSH based SHU

0 10 20 30 40
0

100

200

300

400

500

600

Number of iterations

R
es

po
ns

e 
tim

e

Select 5 hash bits to update

 

 
BU−KSH
SHU−Sim−KSH
SHU−Con−KSH
SHU−Sim−KNN−KSH

(b) Response time of KSH based SHU

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations
Pr

ec
is

io
n

Select 5 hash bits to update

 

 
BU−S3PLH
SHU−Rand−S3PLH
SHU−Sim−S3PLH
SHU−Con−S3PLH
SHU−Sim−KNN−S3PLH

(c) Precision of S3PLH based SHU

0 10 20 30 40
0

5

10

15

20

25

30

Number of iterations

R
es

po
ns

e 
tim

e

Select 5 hash bits to update

 

 
BU−S3PLH
SHU−Sim−S3PLH
SHU−Con−S3PLH
SHU−Sim−KNN−S3PLH

(d) Response time of S3PLH based SHU

Figure 3: Precision (@top 500) and Response time comparison on NewsGroups, when choosing 5 hash bits to update. 3(a) and
3(b) show the performance of KSH based SHU, and 3(c) and 3(d) display the performance of S3PLH based SHU.

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

P
re

ci
si

on

 

 

BU−KSH
SHU−Sim−KSH=1
SHU−Sim−KSH=2
SHU−Sim−KSH=3
SHU−Sim−KSH=4
SHU−Sim−KSH=5
SHU−Sim−KSH=6

(a) Precision of SHU-Sim-KSH

0 10 20 30 40
0

100

200

300

400

500

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−KSH
SHU−Sim−KSH=1
SHU−Sim−KSH=2
SHU−Sim−KSH=3
SHU−Sim−KSH=4
SHU−Sim−KSH=5
SHU−Sim−KSH=6

(b) Response time of SHU-Sim-KSH

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

P
re

ci
si

on

 

 

BU−KSH
SHU−Sim−KNN−KSH=1
SHU−Sim−KNN−KSH=2
SHU−Sim−KNN−KSH=3
SHU−Sim−KNN−KSH=4
SHU−Sim−KNN−KSH=5
SHU−Sim−KNN−KSH=6

(c) Precision of SHU-Sim-KNN-KSH

0 10 20 30 40
0

100

200

300

400

500

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−KSH
SHU−Sim−KNN−KSH=1
SHU−Sim−KNN−KSH=2
SHU−Sim−KNN−KSH=3
SHU−Sim−KNN−KSH=4
SHU−Sim−KNN−KSH=5
SHU−Sim−KNN−KSH=6

(d) Response time of SHU-Sim-KNN-KSH

Figure 4: Precision (@top 500) and Response time comparison of SHU-Sim-KSH and SHU-Sim-KNN-KSH with different
number of hash bits to update on MNIST.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

P
re

ci
si

on

 

 

BU−KSH
SHU−Sim−KSH=1
SHU−Sim−KSH=2
SHU−Sim−KSH=3
SHU−Sim−KSH=4
SHU−Sim−KSH=5
SHU−Sim−KSH=6

(a) Precision of SHU-Sim-KSH

0 10 20 30 40
0

100

200

300

400

500

600

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−KSH
SHU−Sim−KSH=1
SHU−Sim−KSH=2
SHU−Sim−KSH=3
SHU−Sim−KSH=4
SHU−Sim−KSH=5
SHU−Sim−KSH=6

(b) Response time of SHU-Sim-KSH

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

P
re

ci
si

on

 

 

BU−KSH
SHU−Sim−KNN−KSH=1
SHU−Sim−KNN−KSH=2
SHU−Sim−KNN−KSH=3
SHU−Sim−KNN−KSH=4
SHU−Sim−KNN−KSH=5
SHU−Sim−KNN−KSH=6

(c) Precision of SHU-Sim-KNN-KSH

0 10 20 30 40
0

100

200

300

400

500

600

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−KSH
SHU−Sim−KNN−KSH=1
SHU−Sim−KNN−KSH=2
SHU−Sim−KNN−KSH=3
SHU−Sim−KNN−KSH=4
SHU−Sim−KNN−KSH=5
SHU−Sim−KNN−KSH=6

(d) Response time of SHU-Sim-KNN-KSH

Figure 5: Precision (@top 500) and Response time comparison of SHU-Sim-KSH and SHU-Sim-KNN-KSH with different
number of hash bits to update on NewsGroups.



0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

Number of iterations

P
re

ci
si

on

 

 

BU−S3PLH
SHU−Sim−S3PLH=1
SHU−Sim−S3PLH=2
SHU−Sim−S3PLH=3
SHU−Sim−S3PLH=4
SHU−Sim−S3PLH=5
SHU−Sim−S3PLH=6

(a) Precision of SHU-Sim-S3PLH

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−S3PLH
SHU−Sim−S3PLH=1
SHU−Sim−S3PLH=2
SHU−Sim−S3PLH=3
SHU−Sim−S3PLH=4
SHU−Sim−S3PLH=5
SHU−Sim−S3PLH=6

(b) Response time of SHU-Sim-S3PLH

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of iterations

P
re

ci
si

on

 

 

BU−S3PLH
SHU−Sim−KNN−S3PLH=1
SHU−Sim−KNN−S3PLH=2
SHU−Sim−KNN−S3PLH=3
SHU−Sim−KNN−S3PLH=4
SHU−Sim−KNN−S3PLH=5
SHU−Sim−KNN−S3PLH=6

(c) Precision of SHU-Sim-KNN-S3PLH

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Number of iterations

R
es

po
ns

e 
tim

e

 

 
BU−S3PLH
SHU−Sim−KNN−S3PLH=1
SHU−Sim−KNN−S3PLH=2
SHU−Sim−KNN−S3PLH=3
SHU−Sim−KNN−S3PLH=4
SHU−Sim−KNN−S3PLH=5
SHU−Sim−KNN−S3PLH=6

(d) Response time of SHU-Sim-KNN-S3PLH

Figure 6: Precision (@top 500) and Response time comparison of SHU-Sim-S3PLH and SHU-Sim-KNN-S3PLH with different
number of hash bits to update on MNIST.

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

Number of iterations

Pr
ec

is
io

n

 

 
BU−S3PLH
SHU−Sim−S3PLH=1
SHU−Sim−S3PLH=2
SHU−Sim−S3PLH=3
SHU−Sim−S3PLH=4
SHU−Sim−S3PLH=5
SHU−Sim−S3PLH=6

(a) Precision of SHU-Sim-S3PLH

0 10 20 30 40
0

5

10

15

20

25

30

Number of iterations

Re
sp

on
se

 ti
m

e

 

 
BU−S3PLH
SHU−Sim−S3PLH=1
SHU−Sim−S3PLH=2
SHU−Sim−S3PLH=3
SHU−Sim−S3PLH=4
SHU−Sim−S3PLH=5
SHU−Sim−S3PLH=6

(b) Response time of SHU-Sim-S3PLH

0 10 20 30 40 50

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of iterations

Pr
ec

isi
on

 

 

BU−S3PLH
SHU−Sim−KNN−S3PLH=1
SHU−Sim−KNN−S3PLH=2
SHU−Sim−KNN−S3PLH=3
SHU−Sim−KNN−S3PLH=4
SHU−Sim−KNN−S3PLH=5
SHU−Sim−KNN−S3PLH=6

(c) Precision of SHU-Sim-KNN-S3PLH

0 10 20 30 40
0

5

10

15

20

25

30

Number of iterations

Re
sp

on
se

 tim
e

 

 
BU−S3PLH
SHU−Sim−KNN−S3PLH=1
SHU−Sim−KNN−S3PLH=2
SHU−Sim−KNN−S3PLH=3
SHU−Sim−KNN−S3PLH=4
SHU−Sim−KNN−S3PLH=5
SHU−Sim−KNN−S3PLH=6

(d) Response time of SHU-Sim-KNN-S3PLH

Figure 7: Precision (@top 500) and Response time comparison of SHU-Sim-S3PLH and SHU-Sim-KNN-S3PLH with different
number of hash bits to update on NewsGroups.

algorithm—S3PLH5 and only select a small subset of hash
functions to update. Similar to KSH based SHU, based on
different selection strategies, we develop SHU-Rand-S3PLH,
SHU-Con-S3PLH, and SHU-Sim-S3PLH, which are based
on random selection, consistency-based selection strategy
and similarity-based strategy, respectively. SHU-Sim-KNN-
S3PLH is our accelerated method based on similarity-based
selection. Likewise, in order to compare these methods,
we also compare the batch update approach directly using
S3PLH itself, denoted as BU-S3PLH.

3.3 Results on Datasets
We compare all related methods described above on two
datasets: MNIST and NewsGroups. Figures 2(a), 2(c), 3(a)
and 3(c) show the accuracy performance of different algo-
rithms based on supervised KSH and semi-supervised S3PLH
hashing algorithms respectively when selecting 5 hash func-
tions to update. Figures 2(b), 2(d), 3(b) and 3(d) provide the
response time for different techniques. From the results, we
can draw the following:

1. Our proposed SHU-Con-KSH, SHU-Sim-KSH, SHU-
Con-S3PLH and SHU-Sim-S3PLH can greatly approxi-
mate the performance of batch based methods: BU-KSH
and BU-S3PLH respectively. Note that all our methods
take much less time than the batch based ones. For SHU-
Sim and SHU-Con based methods, they only take 1/5
time or so of baseline methods. All these four methods
perform better than the random strategy and this shows
that random strategy is not an optimal way and some-
times it is not stable as shown in Figure 3(c).

5http://www.cs.ust.hk/∼dyyeung/paper/publist.html#journal

2. Regarding the accelerated methods—SHU-Sim-KNN
based methods, namely SHU-Sim-KNN-KSH and SHU-
Sim-KNN-S3PLH, they get two advantages: (1) com-
pared with the SHU-Con and SHU-Sim based methods,
it largely reduces the number of interactions and gets
very similar accuracy or even better as shown in Fig-
ures 2(c) and 3(c), although a little more time is taken
for computation for each iteration; (2) compared with
batch based methods, it is experimentally confident that
it always gets better performance after a few interaction-
s, and thus it can take much less time if it stops earlier.
This is more obvious on the Newsgroups dataset. Our
accelerated algorithm indeed outperforms all the oth-
er methods, especially much better than baseline meth-
ods, obtaining 5% and 10% higher precision than BU-
KSH and BU-S3PLH respectively on MNIST dataset.
On NewsGroups dataset, the performance is much better
and gains nearly 5% and 20% higher than BU-KSH and
BU-S3PLH respectively. This suggests the unlabelled
data around the labelled data provided by users are in-
formative to help obtain improvement. Although the ac-
celerated methods take more time after a certain amount
of interactions as shown in Figures 2(b), 2(d), 3(b) and
3(d), they don’t need to take more than 10 interactions
to gain better and more stable performance than batch
based methods. This means that our accelerated meth-
ods can stop earlier and thus spend much less as a result,
which is significantly useful for reducing the interaction
between systems and users.

3. Combining Figure 2 and 3, we can apparently see that
similarity-based selection strategy outperforms slight-
ly better than consistency-based selection. The reason
is that similarity-based approach does the selection for



optimising the relations between data, which consider
distinguishing intra-class and inter-class hash codes and
cannot be processed by the consistency-based one, albeit
both are supervised approaches.

In order to see the effect of the parameter t, namely the
number of hash functions to update, we also report the per-
formance in this aspect. Due to limitation of the length of
the paper, we mainly present the performance of two algo-
rithms: SHU-Sim based and SHU-Sim-KNN based method-
s in Figures 4 ∼ 7. We first introduce the denotation here.
For example SHU-Sim-KNN-KSH=3 means three hash bit-
s (t=3) are selected to update in each interaction for method
SHU-Sim-KNN-KSH. Figures 4 and 5 show the results of our
algorithms based on a supervised algorithm on MNIST and
NewsGroups, respectively. We can see that the more hash
functions used to update, the better the performance is, but
when it is more than 3, the performance tends to be stable
and converge in most cases, and little improvement is gained
as the number of hash functions to update increases.

In addition, as shown in Figures 4(b), 5(b), 6(b) and 7(b),
when the number of selected hash bits increases, the response
time only increases a little for SHU-Sim based methods;
while for our accelerated methods, the response time increas-
es a little severely as long as the number of selected hash
bits to update t increases. However, from Figures 4(a), 4(c),
5(a), and 5(c), the number of interactions that our algorithms
need to obtain stable performance decreases when t increas-
es. Hence, there would be tradeoff between the number of
selected hash bits to update and the response time.

4 Conclusion and Future Work
We have proposed smart strategies for updating hash func-
tions in order to get a fast response to users’ feedback through
labelling new data. Our proposed strategies are not limited to
certain hashing methods and can be applied to supervised and
semi-supervised hashing methods. Particularly, we have ap-
plied them to two state-of-the art models and have developed
KSH based and S3PLH based smart hashing update method-
s. Our experiments demonstrate that our proposals achieve
better performance in both accuracy and computational time.

Obviously, based on our proposed algorithm, much extra
work can be done, for instance, figuring out the optimal num-
ber of hash bits to update. And we will do these in future.

Acknowledgements
This research was supported by the National Natural
Science of Foundation of China (No.61102111), the
NSFC-GuangDong (U1135001), Foundation of China
and Royal Society of Edinburgh (NSFCRSE) join-
t project (No.61211130123), Specialized Research
Fund for the Doctoral Program of Higher Education
(No.20110171120051), Guangdong Natural Science
Foundation (No.S2012010009926), the Fundamental Re-
search Funds for the Central Universities (No.12lgpy28,
2012350003161455) and the Guangdong Provincial Govern-
ment of China through the Computational Science Innovative
Research Team program.

References
[Coomans and Massart, 1982] D. Coomans and D.L. Mas-

sart. Alternative k-nearest neighbour rules in supervised
pattern recognition. Analytica Chimica Acta, 136(0):15 –
27, 1982.

[Dasgupta et al., 2011] A. Dasgupta, R. Kumar, and T. Sar-
los. Fast locality-sensitive hashing. In ACM SIGKDD,
pages 1073–1081, 2011.

[Datar et al., 2004] N. Datar, M.and Immorlica, P. Indyk,
and V.S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In SCG, pages 253–262,
2004.

[Gionis et al., 1999] A. Gionis, P. Indyk, and R. Motwani.
Similarity search in high dimensions via hashing. In VLD-
B, pages 518–529, 1999.

[Gorisse et al., 2012] D. Gorisse, M. Cord, and F. Precioso.
Locality-sensitive hashing for chi2 distance. TPAMI,
34(2):402 –409, feb. 2012.

[Kulis and Darrell, 2009] B. Kulis and T. Darrell. Learning
to hash with binary reconstructive embeddings. In NIPS,
pages 1042–1050, 2009.

[Kulis et al., 2009] B. Kulis, P. Jain, and K. Grauman. Fast
similarity search for learned metrics. PAMI, 31(12):2143
–2157, dec. 2009.

[Liu et al., 2011] W. Liu, J. Wang, S. Kumar, and S.F.
Chang. Hashing with graphs. In ICML, pages 1–8, 2011.

[Liu et al., 2012] W. Liu, J. Wang, R.G. Ji, Y.G. Jiang, and
S.F. Chang. Supervised hashing with kernels. In CVPR,
pages 2074 –2081, june 2012.

[Mu et al., 2010] Yadong Mu, Jialie Shen, and Shuicheng
Yan. Weakly-supervised hashing in kernel space. In
CVPR, pages 3344 –3351, june 2010.

[Strecha et al., 2012] C. Strecha, A.M. Bronstein, M.M.
Bronstein, and P. Fua. Ldahash: Improved matching with
smaller descriptors. PAMI, 34(1):66 –78, jan. 2012.

[Torralba et al., 2008a] A. Torralba, R. Fergus, and W.T.
Freeman. 80 million tiny images: A large data set
for nonparametric object and scene recognition. PAMI,
30(11):1958 –1970, nov. 2008.

[Torralba et al., 2008b] A. Torralba, R. Fergus, and Y. Weiss.
Small codes and large image databases for recognition. In
CVPR, pages 1 –8, june 2008.

[Wang et al., 2012] Jun Wang, S. Kumar, and Shih-Fu
Chang. Semi-supervised hashing for large-scale search.
PAMI, 34(12):2393 –2406, dec. 2012.

[Weiss et al., 2008] Y. Weiss, A. Torralba, and R. Fergus.
Spectral hashing. In NIPS, pages 1753–1760, 2008.

[Xu et al., 2011] H. Xu, J.D. Wang, Z. Li, G. Zeng, S.P. Li,
and N.G.Yu. Complementary hashing for approximate n-
earest neighbor search. In ICCV, pages 1631 –1638, nov.
2011.

[Zhen and Yeung, 2012] Yi Zhen and Dit-Yan Yeung. Active
hashing and its application to image and text retrieval. Da-
ta Mining and Knowledge Discovery, pages 1–20, 2012.


