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Tracking people across multiple cameras with non-overlapping views is a challenging task, since their

observations are separated in time and space and their appearances may vary significantly. This paper

proposes a Bayesian model to solve the consistent labeling problem across multiple non-overlapping

camera views. Significantly different from related approaches, our model assumes neither people are well

segmented nor their trajectories across camera views are estimated. We formulate a spatial–temporal

probabilistic model in the hypothesis space that consists the potentially matched objects between the exit

field of view (FOV) of one camera and the entry FOV of another camera. A competitive major color

spectrum histogram representation (CMCSHR) for appearance matching between two objects is also

proposed. The proposed spatial–temporal and appearance models are unified by a maximum-a-posteriori

(MAP) Bayesian model. Based on this Bayesian model, when a detected new object corresponds to a group

hypothesis (more than one object), we further develop an online method for online correspondence

update using optimal graph matching (OGM) algorithm. Experimental results on three different real

scenarios validate the proposed Bayesian model approach and the CMCSHR method. The results also show

that the proposed approach is able to address the occlusion problem/group problem, i.e. finding the

corresponding individuals in another camera view for a group of people who walk together into the entry

FOV of a camera.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In visual surveillance, it is not possible to monitor a wide
interesting area using a single camera, because the field of view
(FOV) of one camera is finite and the scene structure limits the
visible area in one camera view [1]. Therefore, surveillance system
for wide areas has to be deployed in a network of cameras. One of
the major tasks of the camera network is to track objects across
multiple cameras.

Tracking across multi-camera with overlapping field of views
has been discussed in [2–8] by mainly using geometric information
such as planar ground homography and the axis of an object [2,5],
handoff table consisting of point correspondence between two
views [3], the limits of FOV of each camera as visible in the other
cameras [4], or appearance information [7,8].

However, in practice, it could be usually hard to completely
cover large areas with overlapping cameras views due to limited
resources. Thus, matching of moving objects across disjoint cam-
eras is now becoming more and more important for any
ll rights reserved.
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surveillance system. The task is challenging, since no continuous
information is provided in this case and in consequence the
observations of the same object can be widely separated in time
and space. To address these challenges, in this paper, we present a
unified Bayesian framework that solves the consistent labeling
problem of people across non-overlapping camera views.

1.1. Related work

Tracking objects across multiple cameras over disjoint views is
generally a consistent labeling problem, and existing methods are
mainly based on spatio-temporal cue, visual cue, or their
combination.

1.1.1. Spatial–temporal cue

Makris et al. [9] and Wang et al. [10] explore the spatio-temporal
relationship by modeling trajectories of objects based on the
activities information. Their work holds an assumption that
trajectories are likely to correspond to the same object if they
belong to the same activity. Similar work were also reported by
Rahimi and Darrell [11] and Kettnaker and Zabih [12]. Rahimi and
Darrell utilized location and velocity of an object observed by non-
overlapping camera views to recover the trajectory most
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compatible with the object dynamics [11]. Kettnaker and Zabih
[12] proposed to use the transition time of objects across cameras
for tracking. A Bayesian model was used to reconstruct the paths of
the objects across multiple cameras. Performances of these meth-
ods greatly depend on how well the objects actually follow the
estimated trajectory across camera views. Moreover, these meth-
ods need observe object correspondences over a long period of time
in order to train their models.

1.1.2. Visual cue

Without acquiring a complete trajectory, several other work aims
to perform consistent labeling across disjoint camera views using
visual cue [13,14,1,15,16]. In these methods, the appearance color
information of people is used. Visual cue, especially color, is always
largely affected by lighting variations. To alleviate this problem, an
illumination-tolerant appearance representation based on online
k-means color clustering algorithm is introduced in [13,14], which
can alleviate the typical illumination variations. They tracked people
based on a major color spectrum histogram representation
(MCSHR). In [1,15,16], the brightness transfer functions (BTFs) are
used to map an observed brightness value in one camera to the
corresponding observation in another camera. Once such a mapping
is known, the correspondence problem is reduced to the matching
of transformed histograms or appearance models. Other work
addresses a more general topic for consistent labeling people across
(disjoint) camera views called the person re-identification problem
[17–20]. In these work, more complex representations are used, such
as spatial graph [18], spatial co-occurrence matrix [17,20], boosted
features [19]. Due to the computational issue, they are not widely
used in tracking; however, color features are still widely used in
these work but not too many efforts are taken by [17–20] to alleviate
the effect of lighting variations.

1.1.3. Combining spatial–temporal and visual cues

Recently, spatio-temporal and visual cues are combined to infer
the correspondence. Gilbert and Bowden [21] combined color
information and the posterior probability distribution of spatio-
temporal links between cameras for modeling the correspondence
function. Javed et al. [22] modeled the inter-camera relationships in
terms of multivariate probability density of spatio-temporal vari-
ables (entry and exit locations, velocities, and transition times)
using kernel density estimation, and handle the appearance change
of an object using probabilistic principal component analysis in a
low dimensional BTFs subspace for appearance matching. Chen
et al. [23] extended these approaches by learning spatio-temporal
relationships and BTFs adaptively. In [23], the BTFs are computed
for each pair of cameras and used to track individuals across
multiple non-overlapping cameras. However, the BTFs are not
unique and vary from frame to frame depending on a large number
of parameters, including illumination, scene geometry, exposure
time, focal length, and aperture size of each camera. To this end, this
method needs a lot of data and time to learn the BTFs.

1.2. Our contributions

Though consistent labeling performance for non-overlapping
views has been enhanced by incorporation of spatio-temporal and
visual cues, existing methods require accurate segmentation of
each object or estimation of the trajectories of objects across
camera views, and occlusion (by people themselves) is still an issue
that has not been too much addressed. Also, robust appearance
matching against lighting variations is still an unsolved problem, as
lighting conditions would dramatically change between disjoint
camera views. To address these problems, we first formulate a
hypothesis space for each new object detected in the entry FOV of a
camera; and such a hypothesis space of a new detected object
consists of the hypotheses that contain a single object or a group
objects that leave the exit FOV of another camera in advance. And
one of the hypotheses would possibly correspond to that new
detected object. A Bayesian framework in the hypothesis space is
then established to explore spatio-temporal cue assisted by visual
cue to perform the consistent labeling for tracking people across
non-overlapping camera views, which can both enhance the
performance and cope with appearance and occlusion variations.

Moreover, by using the proposed Bayesian model, if a new
object detected in the entry FOV of a camera corresponds to a group
hypothesis in which the objects leave the exit FOV of another
camera before, the new object will be represented by the ensemble
of the labels of the objects in the group hypothesis. In this case, an
online update algorithm using optimal graph matching (OGM) is
developed to perform the consistent labeling between objects from
disjoint camera views.

For alleviating the lighting problem for appearance matching,
we extend the major color spectrum histogram representation
(MCSHR) [13] and propose the competitive major color spectrum
histogram representation (CMCSHR). CMCSHR differs from MCSHR
in that the major colors are learned by competitive clustering
algorithm in order to not only learn a more robust major colors but
also automatically determine the number of them. Compared to the
popular BTFs using for consistent labeling across camera views,
CMCSHR is much more robust to the change of lighting condition.

Though the Bayesian framework in our work and Calderara’s
approach [5] are similar, ours differs from Calderara’s approach in
that the objectives are totally different. Our framework is for
consistent labeling across non-overlapping camera view while
Calderara’s is for overlapping views. Consequently, our Bayesian
framework unifies spatial–temporal cue and visual appearance
cue, while Calderara’s utilizes geometric information. This results
in significantly different modeling. Moreover, our proposed model
has a first attempt to address the occlusion problem/group
problem, i.e. a group of people walking together into the entry
FOV of one camera can correctly correspond to the individuals in
another camera view.

In summary, this paper makes three main contributions. (1) The
Bayesian model is used to perform the consistent labeling across
non-overlapping camera views without accurate segmentation for
each individual object. (2) A new effective color feature represen-
tation namely CMCSHR for appearance matching is presented. (3)
An online algorithm using OGM method is proposed to deal with
the consistent labeling against the occlusion problem.

The rest of the paper is organized as follows. Section 2 presents
our Bayesian model for consistent labeling for tracking pedestrians
across non-overlapping camera views. Online update of correspon-
dence using the OGM method is presented in Section 3. Experi-
mental results are described in Section 4. Conclusions and
discussions are presented in Section 5.
2. A spatial–temporal Bayesian consistency labeling model

Suppose we have a surveillance system consists of K cameras C1,
C2,y,CK with non-overlapping views, and a topological network of
the cameras is built to connect cameras based on their temporal
extents. Each camera is a node on the network. In our system, we
assume that the connected path between each pair of cameras is
unique and deterministic. Let tex

i and ten
j be the exit and entry time

of an object moving at normal speed from exiting camera Ci to
entering camera Cj, respectively. Let T be a positive temporal
threshold. It is roughly the maximum transition time of objects
crossing the gap between adjacent cameras. If the time tex

i and
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ten
j satisfy below:

tj
enoti

exþT , ð1Þ

then camera Ci and camera Cj will be connected on the topological
network. In most situations, this constraint is reasonable. An
example that an object moves at normal speed along the arrow
direction can be found in Fig. 1. As shown in (a), the views of
cameras are disjoint. Their temporal relationship is as shown in (b).
The entry time ten

2 of camera C2 and the exit time tex
1 of camera C1

satisfy Eq. (1), so camera C1 and camera C2 are connected on the
network. The gap of ten

3 and ten
2 is smaller than T, whereas the gap of

ten
3 and ten

1 is larger than T, so camera C2 and camera C3 are also
connected, but camera C1 and camera C3 are not connected on the
network.

For the sake of clarity, suppose we have only two non-over-
lapping cameras C1 and C2, and if consistent labeling problem is
solved between any pair of cameras, extension to a number of
K cameras will be straightforward with a little modification. The
proposed approach is based on two non-overlapping camera views
as depicted in Fig. 2 and assume that a single based camera tracking
algorithm is already available. Let Onew be a new object that is
Fig. 1. An example of camera setup and their temporal relationship in multiple non-

overlapping camera views: (a) Camera setup. (b) Temporal relationship between

camera views. See text for details.
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Fig. 2. The Bayesian model approach for consistent la
detected in the entry field of camera C2. The consistent labeling is to
link the new object Onew entering camera C2 to the subset of N

potentially matched objects exiting camera C1, where it is assumed
that the N objects can be detected separately in camera C1. These
N objects must satisfy the following temporal constraints:

t2
en�Tmaxrt1

exrt2
en�Tmin, ð2Þ

where ten
1 is the exit time of a potentially matched object which

exits the FOV of camera C1, ten
2 is the entry time of the new object

Onew which enters the FOV of camera C2, Tmax and Tmin are the
maximum time interval and minimum time interval from exiting
camera C1 to entering camera C2 for an object, respectively. These
N objects are combined to form the hypothesis space G¼ fjkjk¼

1,2, . . . ,2N
�1g, in which each hypothesis includes a single object or

a group objects [5]. That is, the new object Onew possibly corre-
sponds to a single object or a group objects.

Once the hypothesis space G is formulated, similar to [5], a
maximum-a-posteriori (MAP) estimator is adopted to find the most
probable hypothesis ji as follows:

i¼ argmax
k

pðjkjOnewÞ ¼ argmax
k

pðOnewjjkÞpðjkÞ: ð3Þ

To compute the MAP, we must estimate the prior of each
hypothesis jk (i.e. pðjkÞ) and the likelihood of the new object Onew

given the hypothesis jk (i.e. pðOnewjjkÞ). In our study, the prior
computation is modeled with spatio-temporal cue, and a CMCSHR
method is proposed to compute the likelihood. Furthermore, we
present an online algorithm for update of correspondence using
OGM method in order to address the occlusion problem if the
detected new object Onew corresponds to a group hypothesis (more
than one object).

2.1. Prior computation using spatio-temporal cue

The prior of a hypothesis indicates how likely it will happen.
Specifically, let O¼{O1,O2,y,ON} be the set of N objects that exit
camera C1. Then the hypothesis space of these N objects is
formulated by G¼ fjkjk¼ 1,2, . . . ,2N

�1g that contains all the
(2N
�1) possible subsets, including single object and groups. Since

the prior of the new object Onew is evaluated, no information about
Onew must be used. Usually, a uniform distribution in the hypoth-
esis space G is used for the prior computation of a given hypothesis
jk, that is, pðjkÞ ¼ p0 ¼ 1=jGj. However, it is known that only the
uniform distribution of the prior cannot provide any information
for the selection of MAP in Bayesian decision theory [25]. Intui-
tively, a hypothesis will gain higher prior value if the objects
composing the hypothesis enter the entry FOV of camera C2 almost
Spatio-temporal
cue Prior

evaluation

CSHR Likelihood
evaluation

 Correct
label 

pdate
GM 

MAP

beling across two non-overlapping camera views.



Table 1
An example of computing sk and the prior of each hypothesis.

Hypothesis sk value Prior value

j1 ¼ fO22g 2.2 0.0882

j2 ¼ fO23g 1.0 0.0821

j3 ¼ fO24g 1.0 0.0821

j4 ¼ fO25g 4.5 0.1000

j5 ¼ fO22 ,O23g �1.2 0.0708

j6 ¼ fO22 ,O24g �2.2 0.0657

j7 ¼ fO22 ,O25g �5.5 0.0488

j8 ¼ fO23 ,O24g 1.2 0.0831

j9 ¼ fO23 ,O25g �4.5 0.0539

j10 ¼ fO24 ,O25g �3.5 0.0590

j11 ¼ fO22 ,O23 ,O24g 1.3 0.0836

j12 ¼ fO22 ,O23 ,O25g �6.7 0.0426

j13 ¼ fO22 ,O24 ,O25g �6.7 0.0426

j14 ¼ fO23 ,O24 ,O25g �3.3 0.0600

j15 ¼ fO22 ,O23 ,O24 ,O25g �7.7 0.0375
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simultaneously (that is these objects can be considered as a whole
group), while the other objects in a different hypothesis enter the
entry FOV of C2 at very different time. On the other hand, a
hypothesis will gain lower prior if the objects composing the
hypothesis enter the entry FOV of camera C2 at different time but
some of them access the entry FOV of camera C2 with other objects
in a different hypothesis.

Based on the above consideration, similar to [24], we model the
prior by a combination of a uniform distribution and a probability
variant that biases the uniform distribution for each hypothesis
according to the spatio-temporal cue. The spatio-temporal cue is
modeled based on the constraint in Eq. (2) between the exit time of
these N objects and the entry time of Onew which is observed in the
entry FOV of camera C2. And also, let tj

1 be the exit time of camera C1

and tj
2 be the possible entry time of camera C2 when an object Oj

moves from camera C1 to camera C2. The tj
2 is evaluated as follows:

t2
j ¼ t1

j þ
d

vj
, ð4Þ

where d is the distance between the exit FOV of camera C1 and the entry
FOV of camera C2, vj is the velocity of the object Oj. The time tj

2 is used for
prior computation. The prior of a given hypothesis jk is evaluated by
assigning a value proportional to a score sk [5]. The score sk of the
hypothesis jk is determined by the time difference between objects
withinjk (within-hypothesis time difference) and the time difference
between any object injk and any object in other hypotheses (between-
hypothesis time difference). Accordingly, the scoresk of the hypothesis
jk is computed as the difference between the within-hypothesis time
difference and the between-hypothesis time difference. Specifically,
the within-hypothesis time difference is computed as follows:

Wtd ¼ max
fOa ,ObgAjk

jt2
a�t2

b j: ð5Þ

The between-hypothesis time difference is computed as follows:

Btd ¼ min
Oa Ajk ,Ob AG�fjkg,aab

jt2
a�t2

b j: ð6Þ

Then, similar to [24], the relative score associated to each
hypothesis is computed by sk ¼ Btd�Wtd. The score sk of a given
hypothesis jk is high, which indicates that the objects composing
the hypothesis enter the entry FOV of camera C2 almost simulta-
neously, while the other objects in a different hypothesis enter the
entry FOV of C2 at very different time. As discussed in the above
description, the hypothesisjk with higher scoresk will gain higher
Fig. 3. An example of the detection events occurring in camera C1 and C2. (a) A new object

in the exit FOV of camera C1. And the time of those objects exiting camera C1 and the t
prior. Therefore, we set the prior probability of each hypothesis in
the hypothesis space G as the combination of the uniform
distribution p0 ¼ 1=jGj and the probability variant DsðjkÞ that is
computed by assigning a value proportional to the score sk [24].
That is, the prior can be modeled by

pðjkÞ ¼ p0þDsðjkÞ, ð7Þ

with

DsðjkÞ ¼
1=ðjGjþ1Þ

maxi ¼ 1,...,jGjðsiÞ�mini ¼ 1,...,jGjðsiÞ
sk�

PjGj
i ¼ 1 si

jGj

 !
: ð8Þ

Note that pðjkÞ conforms to the definition of the probability,
because the probability variant DsðjkÞ satisfies DsðjkÞop0 andPjGj

k ¼ 1 DsðjkÞ ¼ 0 (described in Eq. (8)).
As an example shown in Fig. 3, a new object Onew is detected in

the entry FOV of camera C2. The four objects (O22, O23, O24, O25)
under the temporal constraint of Eq. (2) are retrieved in the exit
FOV of camera C1. The hypothesis space G is then formulated as
follows:

G¼ ffO22g,fO23g,fO24g,fO25g,fO22,O23g,fO22,O24g,fO22,O25g,

fO23,O24g,fO23,O25g,fO24,O25g,fO22,O23,O24g,fO22,O23,O25g,
fO22,O24,O25g,fO23,O24,O25g,fO22,O23,O24,O25gg:

Using the previously described prior model, the values reported in
Table 1 are obtained.
was detected in the entry FOV of camera C2. (b)–(e) Some objects have been detected

ime of the new object entered camera C2 satisfied Eq. (2).
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2.2. Likelihood computation based on CMCSHR

The likelihood pðOnewjjkÞ indicates the probability of the existence
of Onew in camera C2 if the hypothesis jk is held. Since we are dealing
with the tracking problem across non-overlapping camera views,
geometric information which is always adopted for the overlapping
case is not suitable here [24,5]. We then wish to use the appearance
information and particularly focus on color information which is the
most useful and effective feature for the tracking problem. However,
color is always largely affected by lighting. Recently, Madden et al. [13]
introduced the Major Color Spectrum Histogram Representation
(MCSHR) for tracking people across disjoint camera views. In their
method, an illumination-tolerant appearance representation is pro-
posed, which is capable of coping with the typical illumination changes
occurring in surveillance scenarios, but its weakness is that the
performance is greatly affected by the amount of major colors should
be exploited and the initial set of major color clusters which is critically
important. And it is also computationally expensive to obtain the
major colors by MCSHR. In view of this, we modify MCSHR and propose
the Competitive Major Color Spectrum Histogram Representation
(CMCSHR) in which competitive clustering technique is utilized in
order to efficiently compute more stable major color and simulta-
neously determine the amount of many major colors should be set. In
the following, we first introduce MCSHR in brief, then describe the
proposed CMCSHR, and finally present the likelihood computation.

2.2.1. MCSHR

In the Major Color Spectrum Histogram Representation (MCSHR)
introduced by Madden et al. [13], a distance between any two color
pixels is firstly defined in the RGB space. The major colors of an object
are obtained based on an online k-means clustering algorithm.

Suppose there exists M major colors in object A which can be
represented as:

MCSHRðAÞ ¼ fCA1
,CA2

, . . . ,CAM
g, ð9Þ

with their frequencies calculated by normalizing the major colors
histogram as follows:

pðAÞ ¼ fpðA1Þ,pðA2Þ, . . . ,pðAMÞg: ð10Þ

Similarly, object B can be represented over N major colors by the
MCSHRðBÞ ¼ fCB1

,CB2
, . . . ,CBN

g and p(B)¼{p(B1),p(B2),y,p(BN)}. In
order to define the similarity between two objects, for each CAi

,
the most similar color in object B is denoted as CBj jAi

with the similar
constraint dðCBj jAi

,CAi
Þol. To obtain the CBj jAi

in object B, a subset of
MCSHR(B) of object B in which the colors are considered to be close
enough to CAi

is firstly defined as

MCSHRuðBÞ ¼ fCBu1 ,CBu2 , . . . ,CBuK g, ð11Þ

with CBuk AMCSHRðBÞ and dðCBuk ,CAi
Þol,k¼ 1,2, . . . ,K , where l is a

given threshold. Accordingly, the frequency set of the major colors
in MCSHRuðBÞ is fpðBu1Þ,pðBu2Þ, . . . ,pðBuK Þg, which is a subset of {p(B1),
p(B2), y, p(BN)}. Then, CBj jAi

is defined as

CBj jAi
: j¼ argmin

k ¼ 1,...,K
fdðCBuk ,CAi

Þg: ð12Þ

The frequency of major color CBj jAi
in object B is computed as

follows:

pðBjjAiÞ ¼ pðBujÞ: ð13Þ

The similarity between object A and object B in the direction from
A to B is then given by

SimðA,BÞ ¼
XM
i ¼ 1

SimðCAi
,CBj jAi

Þ

¼
XM
i ¼ 1

minfpðAiÞ,pðBjjAiÞg: ð14Þ
Because histogram intersection [26] is not scale invariant, the
major color histograms of objects should be scaled/normalized to
be the same size.

2.2.2. Proposed CMCSHR

In the RGB space, there are about 16.8 million colors. It is very
difficult to compare two objects based on so many possible colors.
Although Madden et al. [13] introduced a color distance, the color
distance between red and green is the same as the one between red
and blue. And the brightness of the same object is the major
difference between two non-overlapping views. To overcome these
drawbacks, we use the hue and saturation as the feature vectors.
Also, the performance of MCSHR is greatly affected by the initial set
of major color clusters. It would be an important issue if we do not
have enough prior knowledge on it. In order to automatically
determine the number of major colors, we develop a Competitive
Learning based Major Color Spectrum Histogram Representation
(CMCSHR). The rest part of this section then details these two
developments.

HS-distance. Hue which is invariant to brightness for a given RGB
color space is formulated as follows [18]:

H¼ arccos
logðRÞ�logðGÞ

logðRÞþ logðGÞ�2logðBÞ
ð15Þ

and saturation is as follows [27]:

S¼ 1�
3

ðRþGþBÞ
½minðR,G,BÞ�: ð16Þ

Then we normalize H and S and compute the color distance [13] as
follows:

dðC1,C2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1�H2Þ

2
þðS1�S2Þ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1þS2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2þS2
2

q , ð17Þ

where C1 and C2 represent the hue and saturation vectors for the
two pixels.

Competitive major colors. The k-means clustering algorithm [28]
would lead to a poor clustering performance if the exact number of
clusters is not properly set. In our experiments, it is also hard (if not
impossible) to know the exact color number of an object. And also,
different objects would have different color numbers. There are
many clustering algorithms [29–32] that can automatically select
the correct cluster numbers, and compared to other algorithms, the
Rival Penalization Controlled Competitive Learning (RPCCL) clus-
tering algorithm [29] can converge very fast. For a surveillance
system, real-time tracking is very important. In view of this, we use
the RPCCL algorithm for color clustering. In the following, we will
detail the iterative procedure (steps 1 and 2) for learning compe-
titive major colors using RPCCL and a short introduction of RPCCL is
also given in Appendix A.

Step 1: Randomly take k pixels from the object as the seed
points, denoted as {mj}

k
j¼1, and the object’s pixels are scanned in

row-major order. For each pixel pi¼(pi
H,pi

S)T from the object, where
pi

H and pi
S are the hue and saturation value of the pixel pi,

respectively, we define its role indicator as follows:

IðjjpiÞ ¼

1 if j¼ cðpiÞ,

�1 if j¼ rðpiÞ,

0 otherwise,

8><
>: ð18Þ

with

cðpiÞ ¼ argmin
j

gjdðpi,mjÞ

¼ argmin
j

gj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpH

i �mH
j Þ

2
þðpS

i�mS
j Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpH

i Þ
2
þðpS

i Þ
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH

j Þ
2
þðmS

j Þ
2

q , ð19Þ
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rðpiÞ ¼ argmingjdðpi,mjÞ

ja cðpiÞ

¼ argmin
ja cðpiÞ

gj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpH

i �mH
j Þ

2
þðpS

i�mS
j Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpH

i Þ
2
þðpS

i Þ
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH

j Þ
2
þðmS

j Þ
2

q , ð20Þ

where gj ¼ nj=
Pk

r ¼ 1 nr is the relative winning frequency of the
seed point mj in the past, and nj is the cumulative number of the
occurrences of IðjjpiÞ ¼ 1 in the past.

Step 2: Update the winner mcði:e:; IðcjpiÞ ¼ 1Þ and its rival
mrði:e:; IðrjpiÞ ¼�1Þ only by

mnew
u ¼mold

u þDmu, u¼ c,r, ð21Þ

with

Dmc ¼ acðpi�mcÞ, ð22Þ

Dmr ¼�acprðpiÞðpi�mrÞ, ð23Þ

prðpiÞ ¼
minðjmc�mrj,jmc�pijÞ

jmc�mr j
, ð24Þ

where ac is the learning rate. For this pixel, the closest cluster
center mc is computed and the pixel assigned to it. Since cluster
centers {mj}

k
j¼1 are moved, iterations are necessary until all pixel

assignments and cluster centers stabilize. We call the set of these
clustered colors the competitive major colors.
2.2.3. Likelihood computation

After learning competitive major colors using CMCSHR, we first
adopt the similarity metric as described in [13] to compute the distance
between two objects. Accordingly, the fitness measure dOk-Onew

from
the object Ok in camera C1 to Onew in camera C2 is defined as the
similarity of object Ok and object Onew in the direction from Ok to Onew,
that is,

dOk-Onew
¼ SimðOk,OnewÞ

¼
XM
i ¼ 1

SimðCOki
,COnew j jOki

Þ

¼
XM
i ¼ 1

minfpðOkiÞ,pðOnewjjOkiÞg, ð25Þ

with

COnew j jOki
: j¼ argmin

n
fdðCOnewn

,COki
ÞjdðCOnewn

,COki
Þolg, ð26Þ

where COki
and pðOkiÞ are the ith major color and its frequency in object

Ok, COnewn
is the nth major color in object Onew and COnew j jOki

denotes the
jth major color in object Onew is the most similar color to COki

given a
threshold l, pðOnewjjOkiÞ is the frequency of COnew j jOki

.
Similarly, the reversed fitness measure dOnew-Ok

is defined as the
similarity between object Onew and object Ok in the direction from
Onew to Ok, that is,

dOnew-Ok
¼ SimðOnew,OkÞ

¼
XM
i ¼ 1

SimðCOnew i
,COkj jOnew i

Þ

¼
XM
i ¼ 1

minfpðOnewiÞ,pðOkjjOnew iÞg: ð27Þ

Then for the likelihood (similarity/confidence measurement)
computation, we adopt the forward and backward contributions as
described in [24]. The forward contribution is calculated by
computing the fitness measure (described in Eq. (25)) from all
the objects composing the given hypothesis jk in camera C1 to the
new object Onew in camera C2:

pforwardðOnewjjkÞp
X

Om Ajk

dOm-Onew
: ð28Þ

Similarly, the backward contribution is computed by the
reversed fitness measurement (described in Eq. (27)) from the
new object Onew in camera C2 to all the objects composing the given
hypothesis jk in camera C1:

pbackwardðOnewjjkÞp
X

Om Ajk

dOnew-Om
: ð29Þ

In order to obtain a more accurate matching, we adopt the strategy
in [24] to compute the likelihood by pðOnewjjkÞ ¼maxfpforward,
pbackwardg, so that a more accurate similarity is used for matching.

3. An online update of correspondence using optimal graph
matching

If the detected new object Onew in the entry FOV of camera C2

corresponds to a single object in another camera C1, we naturally
perform the consistent labeling between the two objects. However, if
Onew in camera C2 corresponds to a group hypothesis which contains
mðm41Þ objects in camera C1, the Onew is assigned the ensemble of the
labels of these m objects associated to the group hypothesis. In this case,
we will track Onew in camera C2 until it splits into nðn41Þ objects. In our
experiment, the Particle Filter [33] is used to perform tracking in a
single camera view. Then, the n split objects can be labeled with the
labels of the m objects using the optimal graph matching (OGM)
algorithm. Fig. 4 shows the online update process using OGM.

OGM is a classical problem in graph theory. Let G¼{X, Y, E} be a
bipartite graph, where X¼{x1,x2,y,xn} denotes the set of the objects in
camera C2 after the group object Onew splits, Y¼{y1,y2,y,ym} is the set of
the objects associated to the group hypothesis of Onew in camera C1,
V ¼ X [ Y is the vertex set, and E¼{eij} is the edge set. The weight wij of
the edge eij measures the similarity between object xi and object yj. The
similarity between two objects is calculated by the proposed CMCSHR.
A matching M of G is a subset of the edges with the property that no two
edges of M share the same nodes and OGM is to find the matching M

that has the largest total weight [34]. Given the weighted bipartite
graph G, the Kuhn–Munkres algorithm [35] is employed to solve the
OGM problem.

In practice, the scenario of group split can be complicated
sometimes. In the following, we further discuss two cases, which
are definitely challenging scenarios, and provide our initial solution
to these hard problems.

Scenario 1. In our system, after the group object Onew splits into n

objects, we will first check whether m is equal to n. If it is, the
consistent labeling is established between the n split objects in
camera C2 and the m objects in camera C1.

Sometimes, the group object Onew which consists of m objects does
not completely split into the exact m objects, that is, nom after the
splitting. Let M¼ fe1j1

,e2j2
, . . . ,enjn

gdenote the matched edge set which
is obtained using the OGM algorithm on the graph G¼{X,Y,E}, where eiji

represents the edge between the split object xi in C2 and the single
object yji in C1 in graph G. Y1 ¼ fyj1 ,yj2

, . . . ,yjn g is the subset of the vertex
set Y and represents the n matched objects in C1. In this case, there are
still m�n single objects in C1 which are not matched, that is, there must
exist some split objects in C2 still containing more than one object. In
order to identify the group objects after the splitting of group object
Onew, we propose to perform the following operations:
�
 We first remove the matched vertex subset Y1 in vertex set Y;
that is, Y u¼ Y�Y1, and we have Gu¼ fX,Y u,Eug, where Eu is the
subset of the edge set E, and also is the edge set of the graph Gu

after deleting the Y1.
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�
 Next, in the graph Gu, we select the top m�n largest weight value
edges to determine which split objects are still group objects
and relabel them as group.

The above operations are based on the assumption that
the similarity between correct matched non-occluded objects is
larger than the one between a non-occluded individual and a group
object in which the individual is involved and may be partial-
occluded, and the similarity value of the latter case is larger than
the similarity values of other matching cases. Based on this
assumption, the first matched n objects in C1 should contain all
individuals and some objects in group objects after split. By
removing these first n matched nodes in the vertex set Y in G,
the next highest matched m�n objects are likely to be part of each
group object amid the n split patterns, and therefore the group
objects after the splitting can be located. Since each of them is still a
group object, we go on using our online matching algorithm to
handle it.

Fig. 5 illustrates a synthetic example of the consistent
labeling process. In this figure, the split objects x1 and x2 are,
respectively, labeled as 1 and 4 using OGM algorithm after the first
splitting. Since n(¼2) is less than m(¼4), there must exist some
split objects (here x1 and x2) still containing more than one object.
We then remove the matched vertex subset Y1¼{y1,y4} (the two
vertices have been matched) in the graph G and then we have
Gu¼ fX,Y u,Eug as the graph after the operation. Next, we select the
top m�n (4�2¼2) largest weight value edges (the edges with
weight value 0.7) in the graph Gu, and x1, x2 are relabeled as {1,2}
and {3,4}, respectively. After the second splitting, the consistent
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Fig. 4. Illustration of online update
labeling is established between the n¼4 split objects and the m¼4
objects.

A real example of the online update of correspondence
using OGM between the m¼2 single objects of the group hypoth-
esis in camera C1 and the n¼2 objects obtained after Onew’s splitting
in camera C2 is illustrated in Fig. 6. Other real examples in which
Onew is assigned the ensemble of the labels of three single objects of
the hypothesis in camera C1 are illustrated in Figs. 7 and 8.
Furthermore, the consistent labeling process is shown in
Fig. 7(e) and (f).

Scenario 2. If Onew which corresponds to a group hypothesis in
camera C1 never splits in camera C2, Onew is assigned the ensemble
of the labels of the m objects in the group hypothesis in the next
tracking process. When this Onew exits camera C2, the m objects in
camera C1 are considered to simultaneously exit camera C2, and the
system keeps the record of the m individual objects in the group
object Onew . After Onew exits camera C2, if Onew splits between C2 and
C3 and the split objects are detected in the entry FOV of camera C3,
the hypothesis space of each of the split objects is formed by the m

objects in Onew and any other objects if they satisfy the temporal
constraint in Eq. (2) with the object Onew. Fig. 9 shows an example in
which Onew is assigned the ensemble of the labels of three single
objects of the hypothesis in camera C1. In Fig. 9(b), two split objects
are obtained after the first splitting and one of them is labeled with
{59,61}. In Fig. 9(c), the split object with label {59,61} never splits
again when it exits this camera. In this case, the objects with label
59 and 61 in camera C1 are considered to simultaneously exit
camera C2. And the objects with label 59 and 61 in camera C1 are
used to perform the consistent labeling between camera C2 and C3.
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Fig. 6. (a) Onew detected in the entry FOV of camera C2. It was a group hypothesis assigned label {16,17}. (b) Onew was split into two objects which were labeled with 16 and 17,

respectively. (c) Two objects with label 16 and 17 were detected in the exit FOV of camera C1. (d) The correspondence was achieved by using CMCSHR and OGM. (e) The

CMCSHR of the objects in (d).
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4. Experimental results

4.1. Experiment settings

In this section, we report the experimental results of the
proposed approach in three different disjoint multi-camera view
scenarios. In each experiment, the single camera object detection is
based on the background subtraction proposed in [36] and object
tracking from each camera is based on the Particle Filter as
described in [33]. In the training phase, the known correspondence
information is used to compute the spatio-temporal features
(inter-camera distance and inter-camera time interval distribu-
tion). In the testing phase, the correspondences are computed using
the proposed approach.

The three disjoint multi-camera view scenarios differ from
each other in terms of distance between two cameras, scene
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Fig. 7. (a) A new object was detected in the entry FOV of camera C2. It was a group object consisted of three people. (b) Onew split into two objects which were labeled with 3 and

{1,2}, respectively. (c) The split object with label {1,2} again split into two objects which were labeled with 1 and 2, respectively. (d) Three objects exiting camera C1 were

obtained. (e) The consistent labeling process is shown after the first splitting. (f) The consistent labeling was performed after the object with label {1,2} split.
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illumination conditions, and the environment setting such as
indoor and outdoor settings. In scenario 1, the distance between
two cameras is large, while in scenario 3, illumination conditions
are very different in the two cameras. They are introduced in the
following and Table 2 gives a brief summation.

Scenario 1. Experiment on scenario 1 was conducted with two
cameras, namely camera C1 and camera C2, in an outdoor setting.
The camera topology is shown in Fig. 10(a). Training was performed
on a 30 min sequence. The cameras were mounted approximately
40 m apart. The inter-camera time interval distribution for a person
by walking from exiting camera C1 to entering camera C2 is shown
in Fig. 10(b). It shows that the time interval from exiting camera C1

to entering camera C2 is almost between 25 and 45 s, and most
people take about 35 s to walk through the distance. Fig. 11 shows
some tracking instances for the testing sequence in scenario 1. In
this phase, a total of 36 transitions across the cameras were
recorded.

Scenario 2. It consists of two cameras, namely camera C1 and
camera C2, as shown in Fig. 12. Training was done on a 24 min
sequence. In this scenario (scenario 2), the cameras were mounted
approximately 23 m apart. The time interval from exiting camera
C1 to entering camera C2 is between 16 and 21 s, and most people
take about 18 s to walk through the distance. Fig. 13 shows some
tracking instances for a testing sequence in which 46 transi-
tions were detected across the cameras. Another testing seq-
uence was captured at the different time. Fig. 8 shows an instance
of this sequence. In this sequence, 16 transitions were detected
across the cameras. Hence, a total of 62 transitions for the two
testing sequences were detected across the cameras in this
scenario.

Scenario 3. In scenario 3, two cameras C1 and C2 were used for an
indoor/outdoor setup. Camera C1 was placed outdoor while camera
C2 was placed indoor. The placement of the cameras along with
their fields of view is shown in Fig. 14. The scene viewed by camera
C1 is a hall in which it is a covered area under shade, whereas
camera C2 monitored the area that is very dim (as shown in Fig. 15).
It can be seen from Fig. 15 that there is a significant difference
between the global illumination of the two scenes. Training was
done on a 25 min sequence. In this scenario, the cameras were
mounted approximately 23 m apart. The time interval from exiting
camera C1 to entering camera C2 is between 16 and 21 s for people
to walk through the distance. Fig. 15 shows some tracking instances
for the testing sequence in scenario 3. From Fig. 15, it can be seen
that two people with the same color clothes from exiting camera C1



Table 2
Minimum time interval (Tmin), maximum time interval (Tmax) estimated from

training data, and total transitions used to test different methods.

Distance

between two

cameras (m)

Tmin (s) Tmax (s) Total

transitions

(#)

Scenario 1 40 25 45 36

Scenario 2 23 16 21 62

Scenario 3 23 16 21 39

CameraCamera

20

al

Fig. 8. (a) Onew detected in the entry FOV of camera C2. It was a group hypothesis assigned the ensemble of three labels. (b) Onew split into two objects which were labeled with

48 and {49,50}, respectively. (c) The split object with label {49,50} again split into two objects which were labeled with 49 and 50, respectively. (d) Three objects exiting camera

C1 were obtained.

Fig. 9. (a) Onew detected in the entry FOV of camera C2. It was a group hypothesis assigned the ensemble of three labels {59,60,61}. (b) Onew split into two objects which were

labeled with 60 and {59,61}, respectively. (c) The split object with label {59,61} does not split when it exited this camera. (d) Three objects exiting camera C1 were obtained.
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to entering camera C2 are assigned correct labels. In this testing
phase, a total of 39 transitions across the cameras were recorded.
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Fig. 10. (a) Camera configuration for the first experiment (scenario 1). (b) The

histogram of the inter-camera time interval (learned from training data). Note that

most people take almost 35 s to walk from camera C1 to camera C2; the minimum

time is about 25 s and the maximum time is about 45 s.
4.2. Results

4.2.1. Evaluation of the proposed model

Among the different testing sequences analyzed, all transitions
have been manually annotated to obtain the ground truth. By
observing the three actual scenarios in the testing phase, the results
from our proposed Bayesian model are reported in Table 3. A visual
summary of these results is shown in Fig. 16. Moreover, we analyze
the effects of different ingredients in our model, namely the time
information, the proposed CMCSHR and the Bayesian model. As
shown in Fig. 16, we compare (i) only using time model, (ii) only
using the proposed CMCSHR, and (iii) the proposed Bayesian model
(Criterion (3)). It shows that the combination of spatio-temporal
and appearance information using our Bayesian model is better
than only using one of them for all scenarios.

In our proposed model, the consistent labeling is to link the new
object Onew detected in the entry FOV of camera C2 to the subset of
N potentially matched objects exiting the exit FOV of camera C1.
The N objects must satisfy the temporal constraint in Eq. (2).
However, if a person passes across two cameras at an unusual speed,
such as running or walking in a very slow speed, the consistent
labeling operation will fail. Fig. 17 shows an incorrect correspon-
dence example in which a person ran across the two cameras.

We also further evaluate the proposed CMCSHR by comparing it
with MCSHR and BTF.
CMCSHR vs. MCSHR: To demonstrate the superiority of the
proposed CMCSHR over MCSHR, Fig. 18 shows the comparison
between only using CMCSHR and only using MCSHR. The results



Fig. 12. Camera setup for scenario 2.

Fig. 11. Frames extracted from the testing phase of scenario 1. A person was assigned a correct label as it moved across two camera views. A person was detected in the entry

FOV of camera C2 in (a) and (c), and people which satisfied Eq. (2) have been detected in the exit FOV of camera C1 in (b) and (d).

G. Lian et al. / Pattern Recognition 44 (2011) 1121–1136 1131
show that CMCSHR obtains around 6% more correct matching rate.
In order to show the advantages of using hue and saturation as
features rather than RGB features and using competitive clustering
technique rather than Kmeans, we compare RGB/HS+Kmeans with
RGB/HS+RPCCL within the framework of our proposed Bayesian
model in all three scenarios. As shown in Fig. 19, CMCSHR performs
the best, and this suggests that the effect of object appearance
variation is reduced by using hue and saturation as features and
more effective major color clusters are estimated by using RPCCL
clustering algorithm.

CMCSHR vs. CBTF: In order to show that our proposed
CMCSHR method is effective, we compare the CMCSHR
method with the Cumulative Brightness Transfer Function (CBTF)
approach [15]. In [15], instead of computing a BTF for each pair
of training objects, an accumulation of the brightness values
of the whole training set is obtained before the BTF computation.
Fig. 20 shows that CMCSHR obtains an approximate 7%
matching rate improvement as compared to the CBTF in all
scenarios.
4.2.2. Proposed Bayesian model vs. Javed’s model

To show our proposed Bayesian model is more effective in using
spatio-temporal and appearance information for tracking people
across non-overlapping camera views, we compare our Bayesian
model with a most related work namely Javed’s model approach
[22]. In [22], the spatio-temporal and appearance cues are integrated
to constrain correspondences using BTFs, which is similar to ours.
Fig. 21 shows the BTFs taken from our three real scenarios between
the exit FOV of camera C1 and the entry FOV of camera C2. The
comparison results are presented in Fig. 22, and clearly show that
our Bayesian model method performs better. Besides, as shown later,
our method can deal with the consistent labeling under occlusions
which occurs in the entry FOV of camera C2. However, Javed’s
approach needs accurate segmentation of the objects into indivi-
duals before it performs the consistent labeling between camera
views. For example, as shown later, when a new object consisting of
two people was detected in the entry FOV of camera C2, the new
object can correctly correspond to a hypothesis which contains the
two individual people detected in the exit FOV of camera C1 using
our Bayesian model method; while, in this case, Javed’s approach
cannot make any correspondence between the new object and the
two people.

4.2.3. Consistent labeling against occlusions

Theoretically, our proposed method can deal with the occlusion
which occurs a few people entering the entry FOV of camera C2

almost simultaneously. In Eq. (3), a MAP estimator is adopted to
find the most probable hypothesis ji. Two or more people who are
occluded each other in the entry FOV of camera C2 are treated as a
detected new object. According to the prior and likelihood com-
putation, a hypothesis formed by all these people who compose the
new object should have higher prior and likelihood. So this
hypothesis is the most probable hypothesis. To demonstrate that
our proposed method can deal with the occlusions, we conducted



Fig. 14. Camera setup for scenario 3. It is an indoor/outdoor scenario. Camera C1 was

placed outdoor and camera C2 was indoor.

Fig. 15. Frames extracted from the testing phase of scenario 3. (a) and (c) show that

camera C2 views an area which is very dim, whereas (b) and (d) show that the scene

viewed by camera C1 is a hall where it is a covered area under shade. Therefore, the

observed color information of the same person is completely different in the two

views. Note that two people with the same color clothes from exiting camera C1 to

entering camera C2 were assigned the correct label. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Table 3
Matching accuracy.

Total number (#) Correct number (#) Accuracy (%)

Scenario 1 36 32 88.89

Scenario 2 62 57 91.94

Scenario 3 39 34 87.18
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Fig. 16. Evaluation of the effects of different ingredients in our model. (1) Only using

time model, (2) only using our proposed CMCSHR, and (3) using our proposed

Bayesian model. The results show that the combination of spatio-temporal and

appearance information using our Bayesian model is better than only using one of

them for all scenarios.

Fig. 17. An example of incorrect correspondence. It is because a person who ran

across the two camera views.

Fig. 13. Frames extracted from the testing phase of scenario 2. A person was assigned a correct label as it moved across two camera views. The first row shows that a person was

detected in the entry FOV of camera C2, the second row shows that people which satisfied Eq. (2) have been detected in the exit FOV of camera C1.
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an experiment that two people entered the entry FOV of camera C2

almost simultaneously and one was occluded by the other. The
experimental results at different occlusion percentages using the
training and testing sequences in our three real scenarios are
presented in Table 4. In this table, the correct correspondence is
defined as the detected new object correctly corresponding to the
hypothesis; that is the detected new object is exactly formed by the
two people of this hypothesis, where the different occlusion
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Fig. 19. Tracking accuracy: comparing RGB/HS+Kmeans with RGB/HS+RPCCL

within our proposed Bayesian framework. The results show that CMCSHR

(HS+RPPCL) performs the best.
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Fig. 20. A comparison of the tracking accuracy between the CMCSHR method and

the CBTF approach.
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Fig. 21. (a) The transfer functions for three color channels from the exit FOV of camera

C1 to the entry FOV of camera C2 in scenario 1. (b) The transfer functions in scenario 2.

(c) The transfer functions in scenario 3. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Tracking accuracy: comparison between only using CMCSHR and only

using MCSHR.
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percentages were manually evaluated. Our results show that for
different occlusion percentages our model achieves almost the
same results. Fig. 23 shows some correct correspondence instances
under occlusions. But if one person is completely occluded by
another, the hypothesis formed by one person rather the two
people has higher MAP. Fig. 24 shows an example of complete
occlusion. In this figure, person 36 was completely occluded by
person 35 in the entry FOV of camera C2. The experimental result
shows that the detected new object incorrectly corresponded to
person 35, while the correct one should be the hypothesis formed
by person 35 and person 36.
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5. Conclusions and discussions

In this paper, we present a Bayesian model to solve the
consistent labeling problem across multiple non-overlapping cam-
era views. The Bayesian model unifies the spatio-temporal cue in
terms of time of exit/entry, velocities of objects, and distance
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Fig. 22. Comparison of tracking accuracy for each of the three scenarios using our

Bayesian model and Javed’s approach in [22].

Table 4
Matching accuracy under different occlusion percentage.

Total number Correct number Accuracy (%)

10% occluded 9 8 88.9

20% occluded 10 10 100

30% occluded 10 9 90

40% occluded 8 8 100

50% occluded 8 7 87.5

60% occluded 7 7 100

70% occluded 7 7 100

80% occluded 8 8 100

90% occluded 9 8 88.9

Completely occluded 1 0 0

Fig. 23. Two instances of correct correspondence under occlusions. (a) and (b) show the

scenario 3.

Fig. 24. An example of incorrect correspondence. It was caused by the new object (label 3

person 36 was completely occluded by person 35.
between entry field and exit field of two cameras and the visual
appearance cue in terms of the proposed CMCSHR method. Our
model neither requires each object is separated nor the trajectory
of each object is estimated. An online algorithm for update of
correspondence using OGM method is presented to perform the
consistent labeling for the occlusion problem/group problem
(i.e. the detected new object in the entry FOV of camera C2 corres-
ponds to a group hypothesis (more than one object)). Experiments
on three different realistic scenarios validate the proposed
approach and particularly show that the proposed formulation is
able to deal with the consistent labeling against occlusion which
occurs when a few people enter the entry FOV of camera C2 almost
simultaneously.

Although an online algorithm using OGM method is proposed
to deal with the consistent labeling against occlusions, our pro-
posed algorithm still has some limitations. Specifically, the match-
ing between two objects in the algorithm is based on the similarity
of their major colors. Hence, if Onew is a group object and its
group hypothesis consists of people who wear completely the
same uniform, the matching result between two objects after
splitting will be uncertain. In this case, other features can be
employed to solve this problem. Also, we should acknowledge that
the success of our OGM based algorithm relies on the matching
method such as CMCSHR, and hence if an incorrect matching
is estimated, the tracking after an object split may be incorrect.
Note that matching between two objects (particularly between
two people) is still a largely unsolved problem in computer
vision, and due to the use of spatio-temporal information, our
OGM becomes applicable.

Currently, our system is still not specifically designed for a
(extremely) busy surveillance scenario such as the hall of an
airport. Note that in a crowded environment, objects are always
seriously occluded each other and it is even hard to track a
object using currently existing techniques in such a scenario.
Also, in a busy surveillance scenario, the transition between
cameras could be infinite and thus uncertain, and how to quantify
the spatio-temporal cue in this case could be an open issue.
Our future work would be on consistently labeling and tracking
objects in busy surveillance scenarios across non-overlapping
camera views.
correct correspondence under occlusions in scenario 2. (c) and (d) show the case in

5) which was detected in the entry FOV of camera C2 consisting of two people, that is,
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Appendix A. Introduction of RPCCL

The basic idea of RPCCL [29] is that for each input, not only the
winner of the seed points is updated to adapt the input, but also its
nearest rival (i.e., the second winner) is penalized with the strength
dynamically control by a mechanism. In this mechanism, the rival
should be fully penalized if its distance to the winner is closer than
the distance between the winner and the input; otherwise the
penalization strength should be decreased as the rival distance to
the winner increases. The algorithm using Euclidean distance is
described as follows:

Step 1: Randomly take a sample xt from the data set D¼{xt}t¼1
N and

for j¼1,2,y,k, where k is the number of the seed points. Let

IðjjxtÞ ¼

1 if j¼ cðxtÞ,

�1 if j¼ rðxtÞ,

0 otherwise,

8><
>: ð30Þ

with

cðxtÞ ¼ argmin
j

gjjjxt�mjjj
2,

rðxtÞ ¼ argmin
ja cðxt Þ

gjjjxt�mjjj
2, ð31Þ

where gj ¼ nj=
Pk

r ¼ 1 nr is the relative winning frequency of the seed
point mj in the past, and nj is the cumulative number of the
occurrences of IðjjxtÞ ¼ 1 in the past.

Step 2: Update the winner mcði:e:; IðcjxtÞ ¼ 1Þ and its rival mr

only by

mnew
u ¼mold

u þDmu, u¼ c,r, ð32Þ

with

Dmc ¼ acðxt�mcÞ, ð33Þ

Dmr ¼�acprðxtÞðxt�mrÞ, ð34Þ

where ac is the learning rate. These two steps are repeated for each
input until IðjjxtÞ is converged. The measurement of the rival
penalization strength is as follows:

prðxtÞ ¼
minðjmc�mrj,jmc�xtjÞ

jmc�mrj
: ð35Þ

The RPCCL penalizes the rivals such that extra seed points are
automatically driven far away from the input data set.
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