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1 What Do You Learn from This Note

In the previous lectures, we have seen that matrices play an important role
in solving system of linear equations and in studying linear transformations
from R™ to R™.

Let R™*™ denote the set of all m x n matrices over R. A column vector of
dimension n is defined to be an n x 1 matrix. It turns out that R® = R™*!,
Recall that we have defined addition and scalar multiplication on R" for any
n > 1. We also defined the product of a matrix and a vector. In this note,
these operations are extended to the operations between matrices.

Basic concept: diagonal entries(X fZk JG%), main diagonal(F=X] ff1 &),
zero matrix(F M), square matrix(J7 FF), diagonal matrix(X% ff £& 5 FF),
identity matrix(HA7 K FF), transpose(# B ), matrix inverse(HiFF 1)), ele-
mentary matrix (#J5FHE)

Question: Why do we need matrix computation?
1. A linear transformation is corresponding to a unique matrix

2. For two linear transformations 74 and T, what is the combination of
two linear transform, i.e. (T + T)(Z)?

3. What is compound transformation T4 o Ts(Z)?



Examples: T4 (7) = 0 _01 ), Tp(7) = ( _01 (1) ), so what is T4 o

Te(Z)? (WARA)

2 Some Basic Terminologies for Matrix

Let A € R™*™. The entry of A in the i—th row and the j—column is called
the (4, j)—entry of A, written [A];; or a;;. If we are only concerned about the
columns of A, A can be written as (a@; --- d,) where a; represents the i—th
column of A.

diagonal entries(%f ffiZk 7% ): The diagonal entries of A are entries a1,
g, - .. , which form the main diagonal(FEXFfi£k) of A.

zero matrix(ZFHPF): If the entries of A are all zero, then A is the zero
matrix, which is denoted by 0,,x, or simply 0.

square matrix(H FE): If m = n, i.e. A € R™", then A is called a square
matrix of size n.

diagonal matrix(X fAZHFE): A square matrix A of size n with all en-
tries being zero except those in the main diagonal is called a diagonal matrix,
which can be written as A = diag(ay1, ..., Gnpn)-

identity matrix(BLAHEFE): If A = diag(1,...,1), then A is the identity
matrix of size n, which is denoted by I,, or simply I. We also write e; € R"
for the i—th column of I,, so I,, = (€} -+ €&,).

3 Some Operations

Let A, B € R™" and r € R. The equality, addition and scalar multipli-
cation are defined as follows:

1. Equality: We say A and B are equal, written A = B, iff [A];; = [B];;
foralli=1,...,mand j=1,...,n.

2. Addition: The m x n matrix A+ B such that [A+ Bl;; = [A];; + [Bl;;
is called the sum of A and B.



3. Scalar Multiplication(#{{3%): The m x n matrix 7A such that
[rA];; = r[A];; is called the scalar multiple of A by scalar r.

—

4. Multiplication: Let A € R™" and B = (51 -+ by) € R™P. The

product of A and B, written AB, is defined to be the matrix (Agl e Agp) €
Rmxp‘

Remark 1:

e AB is defined iff the number of columns of A equals the number of
rows of B (FEFF AMZNECE 55 FEBIATEAN R, XFEA RS ABH
& ).

e Row-Column Rule(4T%17%0): We can calculate [AB];; as follows:

n blj

[AB];; = the i-th entry of Ab; = Z aikbr; = (i -+ aip)

k=1 bnj

Remark 2:

e In general, AB # BA(GEFEZ [ [F)eid:, AR LT R T 2 18] e ik Ik

ﬁ,muﬁﬁ@ﬁy%nmmmx(ég)(éi)::(éz)
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e [t is not like the case of real numbers, AB = 0 does not imply A =0

. 01 0 1 00
or B=0. Formstance,(o O)(O 0>_(O O>'

e The cancelation law (V§ 2:%) generally fails, that is, AB = AC (or
BA = CA) does not imply B = C. This fact is a consequence of Re-
marks 2. since AB = AC' can be rewritten as A(B — C') = 0, by which

_ _ 01 0 1
B — C = 0 can not be derived. For instance, ( 00 ) ( 00 ) =

0 1 00 0 0 0 1
(00)(()0)—(00),butwedon0thave<00)—

00

0 0 )



e For square matrix A and a non—negative integer n, we can define the
n—th power of A (JEFEAMINIKA) to be

A=A ... A
—_—
n times

if n > 1, otherwise A° = I.

In addition, let S : R? — R™ and T : R®* — R™ be linear trans-
formations. Then the map T o S : RP — R™ T o S(Z) = T(S(¥)) is
called the composition of T and S (ZZ#THSH K ). Tt is only a rou-
tine work to verify that T o S is indeed a linear transformation. Now let
A and B be the standard matrices for T" and S respectively. Then we have
ToS(Z¥)=T(S(%)) =T(Br) = A(BZ) = (AB)Z. This indicates that AB is
exactly the standard matrix for 7o S.

5. Transpose(¥ &): Let A € R™". Then the transpose AT of A is an
n x m matrix such that [AT];; = [A4];;.

Suppose that A, B € R"*". By definition, AB is defined and AB € R™*",
which indicates that R™*" is closed under multiplication. The closure of mul-
tiplication leads to the following useful operation defined on square matrices.

6. Matrix inverse(JEPFERIi¥): Let A € R™™. If there is another
B € R™"™ such that AB = BA = I,,, then A is said to be invertible (7]
[¥]) and B is called the inverse of A.

Remark 3:

e Not all square matrices are invertible (A& A5 FEHA ). A no-
table case is the zero matrix since for any A € R™"™, 0,xnA = Opxn #

I,.

e The inverse of any invertible matrix is unique(# 54 W2 ME—1)). To
see this, suppose that matrices B and C' are both the inverses of A.
Then B = IB = (CA)B = C(AB) = CI = C. Normally, the unique
inverse of A is denoted by A~



4 Some Theorems

4.1 Theorem about Addition Operation

THEOREM 1. Let A, B, C € R™" and r, s € R. Then

1. (A+ B)+ C = A+ (B + C) (Additive Associativity, MiEgsHH);
2.0+ A= A+ 0 (Additive Identity);

3. (—A) + A=A+ (—A) = 0 (Additive Inverseness);

4. A+ B = B + A (Additive commutativity, JIVEAZHLE);

5.7(A+ B) =rA+rB;

6. (r+s)A=rA+ sA;

7.1(sA) = (rs)A;

8. 1A= A.

4.2 Theorem about Multiplication Operation

THEOREM 2. Let A € R™*". Then

1. (AB)C = A(BC) where B € R™*?, C' € RP*? (Multiplicative Associativi-
ty);

2. I,,A = Al,, = A (Multiplicative Identity);

3. A(B+ C) = AB + AC where B, C € R™? (Left Distributivity, Zril14>
Bofd);

4. (B+ C)A = BA+ CA where B, C € R*™ (Right Distributivity, fii/
reA);

5.17(AB) = (rA)B = A(rB) where r € R, B € R"*?.

Proof. 1. We have

p p n p n
[(AB)C]Z] = Z[AB]ivcvj = Z <Zaiubuv)cvj = Z Z aiubuvcvj
v=1 v=1 u=l1 v=1 u=1
and
n n p n p
[A<BC)]’LJ = Z Qi [BO]T,L] = Z 7 < Z buvcvj> = Z Z aiubuvcvj'
u=1 u=1 v=1 u=1 v=1
So [(AB)C;; = [A(BC)];; and the result follows.
2.-5. are easy and left as exercises. O]

The next theorem tells us, we can describe the row operation on a matrix
A by multiplication of a matrix £ which is called the elementary matrix and

A.



THEOREM 3. Given a m X n matrix A, we have

1. Scaling: Given a m x m matriz E, for some ig,

1, 1=j and i #ig and j # jo;
[E]z] = ]{7, 1= io andj = io,’
0, otherwise.

then EA will multiply a constant value k on the row iy of matriz A.

1000
0k 00
o E=19709 10
0001

2. Interchange: Given a m x m matriz E, for some iq, jo, %9 7 Jjo,

1, 1=j and i #ig and j # jo;
1, Z:ZO andj:jg;

]_, l:jg andj:ig;

0, otherwise.

(£ =

then EA will interchange row ig and row jo in matrix A.

1000
0010
g E=191 0 0
000 1

3. Replacement: Given a m X m matriz E, for some ig, jo, 0 # Jjo,
1, i=j andi# iy and j # jo;
[Elij =14 k, i=1¢ and j = jo;

0, otherwise.

, then EA will replace row iy of matriz A by the addition of the original
row ig and a multiple of the row jo of matriz A.

Example: WS,

Formally, we call all matrices E in Theorem 3 as elementary matrix
(WIEEHERE). This theorem tells us each row operation is corresponding to an
elementary matrix. Row operation can be realized by matrix multiplication.
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Moreover, the elementary is actually invertible according to the last the-
orem as well. Let us together go through the following example:
Example:

100 100 108
Es2,3)=100 1 ]; E@5=(010]; BE13%x8)=[010
010 005 00 1

Then the inverse is: Example:

E3(2,3)7" = E5(2,3);  E3(3;5)7" = E5(3;57");  Es(1,3:8)7" = E3(L,3;-8).

4.3 Theorem about Transpose Operation

THEOREM 4. Let A € R™*". Then
1. (AT = 4;

2. (A+ B)T = AT + BT where B € R™*™;
3. (rA)T = r AT where r € R;

4. (AB)T = BT AT where B € R™?.

Proof. 1.-3. are straightforward. For 4., we have

n n

[(AB)"];; = [ABl; = Y [Al[Bli = Y _[B"ul[A"]x; = [B"A"]y;,

k=1 k=1

and the result follows. O]



4.4 Theorem about Inverse Operation

4.4.1 Inverse and Multiplication

THEOREM 5. Let A, B € R™*" be invertible. Then
1. (AH)™ 1 = A;

2. (AB)"'=B1A™ Y

3. (ATt = (A" HT.

Proof. 1. and 3. are obvious.

2. We have

(AB)(B'A™) = (A(BB™ ')A ' = (ADNA' = AA = I

Similarly, (B~'A71)(AB) = I. So AB is invertible and the inverse is B~ A~
[l

Remark: By THEOREM 4, 2., if A is invertible then for any integer n > 0,
A™ is invertible. We normal write A= for (A")~! = (A=)

4.4.2 Solution of Matrix Equation If A is invertible

Question: Given that A is invertible, what can we say about the matrix
equation A7 = b?

THEOREM 6. Let A € R"*" be invertible. Then for any b € R, the matrix
equation AZ = b has a unique solution A~1b.

Proof. Since A(A™'h) = (AA™)b = Ib = b, so A~'b is indeed a solution.
Suppose that 7 is a solution, then A%y = b. It follows that A=1(AZy) = A1,
which gives #; = A~!b. This shows the uniqueness of the solution. O



4.4.3 Connection to Row Reduction Algorithm

We first need to prove the following theorem.

THEOREM 7. If A € R™" is invertible then A ~ 1.

Proof. 1. Step 1: We first need to prove if A € R"*" is invertible, then

A~T.
By THEOREM 6, the linear transformation Ty : R" — R", Ty (%) = AZ
is surjective. As a result, Span{ay, ..., d,} = R™, which indicates that

A has a pivot position in every row (the number of pivots = n). But
A is a square matrix, it turns out that every column of A is a pivot
column, i.e. A~ 1.

2. Step 2: We next prove if A ~ I, then A € R"*" is invertible. The key

idea to construct the inverse of matrix A.

Since A ~ I, then we have a series of matrices:
A=A 2 A5 .. 24 =1

By the preceding discussion, A; = E;A; 1 where F; is the elementary
matrix associated to op; for all 2. So

I=A=EA = =EE_, - EA.

Since FEj; is invertible, we can multiply both sides of the above equation
by (EE;_1--- E;)~! on left to obtain

(B/E_,---E\)" ' = A
So
A= (ElEl_l...El)—l — El—l . "Ez__11Ez_1-
O]

In other words, the above theorem can be described in a different way as
follows:

THEOREM 8. Let A € R™*"™. Then following statements are equivalent:
1. A is invertible.
2. A~ 1.

3. A is the product of some elementary matrices.



By THEOREM 8 and the preceding discussion, we have

COROLLARY 9. Let A, B € R™". Then A ~ B iff there is an invertible
T € R™™ such that TA = B.

In practice, we can compute A~! via elementary row operations. From
the proof of THEOREM 7, we have

Ail == ElElfl t E1 - ElElfl e E1[

So
I BTl 5EE - B T=AL
So op1,...,op; transform A, I to I, A~! simultaneously, i.e.

(AD) .. 25 (1 ATY.

Example: Textbook P.124.
A TATRE RN S AT
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4.4.4 Connection to Linear Transformation

THEOREM 10. Let A = (@, --- d@,) € R™". Then following statements are
equivalent:

1. A is invertible.

2. Ty : R" = R", Ty(Z) = AT is surjective.

3. Ta: R" — R", Ty(Z) = AZ is injective.

Proof. 1. = 2. and 1. = 3. are established in THEOREM 5.

2. = 1. Again, by THEOREM 4 in lecture note 4, A has a pivot position
in every row since Span{dj,...,d,} = R". So every column of A is a pivot
column. It follows that A ~ I since [ is the unique REF of A. So 1. holds.
3. = 1. By assumption, AZ = 0 has only one solution, namely 0. It follows
that every column of A is a pivot column since no free variable for AZ = 0.

So (A 0) ~ (1 0),ie A~ I So 1. holds. O

THEOREM 11. Let A € R™*". Then following statements are equivalent:
1. A is invertible.

2. There exists B € R™" such that AB = I.

3. There exists B € R™" such that BA = 1.

Proof. 1. = 2. and 1. = 3. are obvious since we can take A~! for B.
2. = 1. Consider Ty : R" — R", T4(Z) = AZ. For any b € R™*", we have
Tu(Bb) = A(Bb) = Ib=b. So T} is surjective and the result follows.
3. = 1. Consider Ty : R" — R™, T4 (%) = AZ. Suppose that Tx(x1) = Ta(x2),
namely A¥; = AZ5. Then we have BAZ, = BAZ,, which is followed by
T1 = Ty. So T4 is injective and the result follows. ]

A simple consequence of THEOREM 10 is

COROLLARY 12. Let A, B € R™". Then if AB = I (or BA = I) then
B=A""%

Finally, we introduce the concept of invertible linear transformations for
which the standard matrices are exactly those being invertible.

Let T : R* — R". If there is another S : R® — R" such that for any
ZeR" ToS(¥) =S5oT(¥) = (Z), then T is said to be invertible and S,
written 7! is called the inverse of T

THEOREM 13. Linear transformation 7" : R" — R" is invertible iff the stan-
dard matrix A for T is invertible. Also, T!(Z) = A~'Z in the case that T is
invertible.
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Proof. Suppose that T is invertible and T—'(#) = B#. Then we have T o
T-Y%) =T(T (%)) = A(BZ) = (AB)z. On the other hand, T o T~(Z) =
(£) = I(£). So both AB and I are standard matrices of T o T™'. By
uniqueness of standard matrix, we must have AB = I. So A is invertible and
B=A""

Conversely, suppose that A is invertible. Define S(#) = A~'Z. Then
ToS(Z) = T(S(T) = A(A™'%) = I = Z and S o T(Z) = S(T(¥)) =
A1 (AZ) = IZ = Z. So T is invertible with inverse S. O

5 A Method for Computing the Inverse of a
Matrix

Strategy: Row reduce the augmented matrix [A I]. If A is row equivalent
to I, then [A ] is row equivalent to [I A~']. Otherwise, A does not have

an inverse.

Tool: Row reduction algorithm and Theorem 7.

0 1 2
Example: Find the inverse of the matrix A= | 1 0 3 | if it exists.
4 -3 8
Solution:
0 1 2100
[AIll=|1 0 3 010
4 -3 8 01 1

100 —-9/2 7 =32
— Row Reduction Algorithm — [ 0 1 0 -2 4-—-1 . Hence,
011 32 -2 1)2
-9/2 7 =3/2
AV = -2 4-1 (VEILRT)
3/2 -2 1/2

Reference
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105~134
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SAINT GEORGE AND THE DRAGON, by Rubens
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