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1 What Do You Learn from This Note

In the previous lectures, we have seen that matrices play an important role
in solving system of linear equations and in studying linear transformations
from Rn to Rm.

Let Rm×n denote the set of all m×n matrices over R. A column vector of
dimension n is defined to be an n× 1 matrix. It turns out that Rn = Rn×1.
Recall that we have defined addition and scalar multiplication on Rn for any
n > 1. We also defined the product of a matrix and a vector. In this note,
these operations are extended to the operations between matrices.

Basic concept：diagonal entries(对角线元素), main diagonal(主对角线),
zero matrix(零矩阵), square matrix(方阵), diagonal matrix(对角线矩阵),
identity matrix(单位矩阵), transpose(转置), matrix inverse(矩阵的逆), ele-
mentary matrix (初等矩阵)

Question: Why do we need matrix computation?

1. A linear transformation is corresponding to a unique matrix

2. For two linear transformations TA and TB, what is the combination of
two linear transform, i.e. (TA + TB)(x⃗)?

3. What is compound transformation TA ◦ TB(x⃗)?
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Examples: TA(x⃗) =

(
1 0
0 −1

)
, TB(x⃗) =

(
−1 0
0 1

)
, so what is TA ◦

TB(x⃗)? (见板书)

2 Some Basic Terminologies for Matrix

Let A ∈ Rm×n. The entry of A in the i–th row and the j–column is called
the (i, j)–entry of A, written [A]ij or aij. If we are only concerned about the
columns of A, A can be written as (⃗a1 · · · a⃗n) where ai represents the i–th
column of A.

diagonal entries(对对对角角角线线线元元元素素素): The diagonal entries of A are entries a11,
a22, . . . , which form the main diagonal(主主主对对对角角角线线线) of A.

zero matrix(零零零矩矩矩阵阵阵): If the entries of A are all zero, then A is the zero
matrix, which is denoted by 0m×n or simply 0.

square matrix(方方方阵阵阵): If m = n, i.e. A ∈ Rn×n, then A is called a square
matrix of size n.

diagonal matrix(对对对角角角线线线矩矩矩阵阵阵): A square matrix A of size n with all en-
tries being zero except those in the main diagonal is called a diagonal matrix,
which can be written as A = diag(a11, . . . , ann).

identity matrix(单单单位位位矩矩矩阵阵阵): If A = diag(1, . . . , 1), then A is the identity
matrix of size n, which is denoted by In or simply I. We also write ei ∈ Rn

for the i–th column of In, so In = (e⃗1 · · · e⃗n).

3 Some Operations

Let A, B ∈ Rm×n and r ∈ R. The equality, addition and scalar multipli-
cation are defined as follows:

1. Equality: We say A and B are equal, written A = B, iff [A]ij = [B]ij
for all i = 1, . . . ,m and j = 1, . . . , n.

2. Addition: The m×n matrix A+B such that [A+B]ij = [A]ij +[B]ij
is called the sum of A and B.
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3. Scalar Multiplication(数数数乘乘乘): The m × n matrix rA such that
[rA]ij = r[A]ij is called the scalar multiple of A by scalar r.

4. Multiplication: Let A ∈ Rm×n and B = (⃗b1 · · · b⃗p) ∈ Rn×p. The

product of A and B, written AB, is defined to be the matrix (A⃗b1 · · · A⃗bp) ∈
Rm×p.

Remark 1:

• AB is defined iff the number of columns of A equals the number of
rows of B (矩阵A的列数要与矩阵B的行数相同，这样才能使得AB有
定义。).

• Row-Column Rule(行行行列列列法法法则则则): We can calculate [AB]ij as follows:

[AB]ij = the i–th entry of A⃗bj =
n∑

k=1

aikbkj = (ai1 · · · ain)

 b1j
...
bnj



Remark 2:

• In general, AB ̸= BA(矩阵之间的乘法，不像以往数字之间乘法那

样，可以互换位置). For instance,

(
1 0
0 2

)(
1 2
3 4

)
=

(
1 2
6 8

)
,

where as

(
1 2
3 4

)(
1 0
0 2

)
=

(
1 4
3 8

)
.

• It is not like the case of real numbers, AB = 0 does not imply A = 0

or B = 0. For instance,

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

• The cancelation law (消去率) generally fails, that is, AB = AC (or
BA = CA) does not imply B = C. This fact is a consequence of Re-
marks 2. since AB = AC can be rewritten as A(B −C) = 0, by which

B − C = 0 can not be derived. For instance,

(
0 1
0 0

)(
0 1
0 0

)
=(

0 1
0 0

)(
0 0
0 0

)
=

(
0 0
0 0

)
, but we do not have

(
0 1
0 0

)
=(

0 0
0 0

)
.
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• For square matrix A and a non–negative integer n, we can define the
n–th power of A (矩阵A的n次幂) to be

An = A · · · A︸ ︷︷ ︸
n times

.

if n > 1, otherwise A0 = I.

In addition, let S : Rp → Rn and T : Rn → Rm be linear trans-
formations. Then the map T ◦ S : Rp → Rm, T ◦ S(x⃗) = T (S(x⃗)) is
called the composition of T and S (变换T和S的复合). It is only a rou-
tine work to verify that T ◦ S is indeed a linear transformation. Now let
A and B be the standard matrices for T and S respectively. Then we have
T ◦ S(x⃗) = T (S(x⃗)) = T (Bx⃗) = A(Bx⃗) = (AB)x⃗. This indicates that AB is
exactly the standard matrix for T ◦ S.

5. Transpose(转转转置置置): Let A ∈ Rm×n. Then the transpose AT of A is an
n×m matrix such that [AT ]ij = [A]ji.

Suppose that A, B ∈ Rn×n. By definition, AB is defined and AB ∈ Rn×n,
which indicates that Rn×n is closed under multiplication. The closure of mul-
tiplication leads to the following useful operation defined on square matrices.

6. Matrix inverse(矩矩矩阵阵阵的的的逆逆逆): Let A ∈ Rn×n. If there is another
B ∈ Rn×n such that AB = BA = In, then A is said to be invertible (可逆
的) and B is called the inverse of A.

Remark 3:

• Not all square matrices are invertible (不是所有矩阵都有逆). A no-
table case is the zero matrix since for any A ∈ Rn×n, 0n×nA = 0n×n ̸=
In.

• The inverse of any invertible matrix is unique(矩阵的逆是唯一的). To
see this, suppose that matrices B and C are both the inverses of A.
Then B = IB = (CA)B = C(AB) = CI = C. Normally, the unique
inverse of A is denoted by A−1.
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4 Some Theorems

4.1 Theorem about Addition Operation

Theorem 1. Let A, B, C ∈ Rm×n and r, s ∈ R. Then
1. (A+B) + C = A+ (B + C) (Additive Associativity，加法结合律);
2. 0 + A = A+ 0 (Additive Identity);
3. (−A) + A = A+ (−A) = 0 (Additive Inverseness);
4. A+B = B + A (Additive commutativity, 加法交换律);
5. r(A+B) = rA+ rB;
6. (r + s)A = rA+ sA;
7. r(sA) = (rs)A;
8. 1A = A.

4.2 Theorem about Multiplication Operation

Theorem 2. Let A ∈ Rm×n. Then
1. (AB)C = A(BC) where B ∈ Rn×p, C ∈ Rp×q (Multiplicative Associativi-
ty);
2. ImA = AIn = A (Multiplicative Identity);
3. A(B + C) = AB + AC where B, C ∈ Rn×p (Left Distributivity，左边分
配律);
4. (B + C)A = BA + CA where B, C ∈ Rl×m (Right Distributivity，右边
分配律);
5. r(AB) = (rA)B = A(rB) where r ∈ R, B ∈ Rn×p.

Proof. 1. We have

[(AB)C]ij =

p∑
v=1

[AB]ivcvj =

p∑
v=1

( n∑
u=1

aiubuv

)
cvj =

p∑
v=1

n∑
u=1

aiubuvcvj

and

[A(BC)]ij =
n∑

u=1

aiu[BC]uj =
n∑

u=1

aiu

( p∑
v=1

buvcvj

)
=

n∑
u=1

p∑
v=1

aiubuvcvj.

So [(AB)C]ij = [A(BC)]ij and the result follows.
2.–5. are easy and left as exercises.

The next theorem tells us, we can describe the row operation on a matrix
A by multiplication of a matrix E which is called the elementary matrix and
A.
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Theorem 3. Given a m× n matrix A, we have

1. Scaling: Given a m×m matrix E, for some i0,

[E]ij =


1, i = j and i ̸= i0 and j ̸= j0;
k, i = i0 and j = i0;
0, otherwise.

then EA will multiply a constant value k on the row i0 of matrix A.

e.g. E =


1 0 0 0
0 k 0 0
0 0 1 0
0 0 0 1


2. Interchange: Given a m×m matrix E, for some i0, j0, i0 ̸= j0,

[E]ij =


1, i = j and i ̸= i0 and j ̸= j0;
1, i = i0 and j = j0;
1, i = j0 and j = i0;
0, otherwise.

then EA will interchange row i0 and row j0 in matrix A.

e.g. E =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


3. Replacement: Given a m×m matrix E, for some i0, j0, i0 ̸= j0,

[E]ij =


1, i = j and i ̸= i0 and j ̸= j0;
k, i = i0 and j = j0;
0, otherwise.

, then EA will replace row i0 of matrix A by the addition of the original
row i0 and a multiple of the row j0 of matrix A.

e.g. E =


1 k 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Example: 见板书.

Formally, we call all matrices E in Theorem 3 as elementary matrix
(初等矩阵). This theorem tells us each row operation is corresponding to an
elementary matrix. Row operation can be realized by matrix multiplication.
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注：上面的定理正好告诉我们对一个矩阵A三种基本行变换可以通过相
应的初等矩阵E左乘以矩阵A实现。

Moreover, the elementary is actually invertible according to the last the-
orem as well. Let us together go through the following example:
Example:

E3(2, 3) =

 1 0 0
0 0 1
0 1 0

 ; E3(3; 5) =

 1 0 0
0 1 0
0 0 5

 ; E3(1, 3; 8) =

 1 0 8
0 1 0
0 0 1

 .

Then the inverse is: Example:

E3(2, 3)
−1 = E3(2, 3); E3(3; 5)

−1 = E3(3; 5
−1); E3(1, 3; 8)

−1 = E3(1, 3;−8).

4.3 Theorem about Transpose Operation

Theorem 4. Let A ∈ Rm×n. Then
1. (AT )T = A;
2. (A+B)T = AT +BT where B ∈ Rm×m;
3. (rA)T = rAT where r ∈ R;
4. (AB)T = BTAT where B ∈ Rn×p.

Proof. 1.–3. are straightforward. For 4., we have

[(AB)T ]ij = [AB]ji =
n∑

k=1

[A]jk[B]ki =
n∑

k=1

[BT ]ik[A
T ]kj = [BTAT ]ij,

and the result follows.
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4.4 Theorem about Inverse Operation

4.4.1 Inverse and Multiplication

Theorem 5. Let A,B ∈ Rn×n be invertible. Then
1. (A−1)−1 = A;
2. (AB)−1 = B−1A−1;
3. (AT )−1 = (A−1)T .

Proof. 1. and 3. are obvious.
2. We have

(AB)(B−1A−1) = (A(BB−1))A−1 = (AI)A−1 = AA−1 = I.

Similarly, (B−1A−1)(AB) = I. So AB is invertible and the inverse is B−1A−1.

Remark: By Theorem 4, 2., if A is invertible then for any integer n > 0,
An is invertible. We normal write A−n for (An)−1 = (A−1)n.

4.4.2 Solution of Matrix Equation If A is invertible

Question: Given that A is invertible, what can we say about the matrix
equation Ax⃗ = b⃗?

Theorem 6. Let A ∈ Rn×n be invertible. Then for any b⃗ ∈ Rn, the matrix
equation Ax⃗ = b⃗ has a unique solution A−1⃗b.

Proof. Since A(A−1⃗b) = (AA−1)⃗b = Ib⃗ = b⃗, so A−1⃗b is indeed a solution.

Suppose that x⃗0 is a solution, thenAx⃗0 = b⃗. It follows thatA−1(Ax⃗0) = A−1⃗b,

which gives x⃗0 = A−1⃗b. This shows the uniqueness of the solution.
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4.4.3 Connection to Row Reduction Algorithm

We first need to prove the following theorem.

Theorem 7. If A ∈ Rn×n is invertible then A ∼ I.

Proof. 1. Step 1: We first need to prove if A ∈ Rn×n is invertible, then
A ∼ I .
By Theorem 6, the linear transformation TA : Rn → Rn, TA(x⃗) = Ax⃗
is surjective. As a result, Span{a⃗1, . . . , a⃗n} = Rn, which indicates that
A has a pivot position in every row (the number of pivots = n). But
A is a square matrix, it turns out that every column of A is a pivot
column, i.e. A ∼ I.

2. Step 2: We next prove if A ∼ I, then A ∈ Rn×n is invertible. The key
idea to construct the inverse of matrix A.

Since A ∼ I, then we have a series of matrices:

A = A0
op1−→ A1

op2−→ · · · opl−→ Al = I.

By the preceding discussion, Ai = EiAi−1 where Ei is the elementary
matrix associated to opi for all i. So

I = Al = ElAl−1 = · · · = ElEl−1 · · ·E1A.

Since Ei is invertible, we can multiply both sides of the above equation
by (ElEl−1 · · ·E1)

−1 on left to obtain

(ElEl−1 · · ·E1)
−1I = A.

So
A = (ElEl−1 · · ·E1)

−1 = E−1
1 · · ·E−1

l−1E
−1
l .

In other words, the above theorem can be described in a different way as
follows:

Theorem 8. Let A ∈ Rn×n. Then following statements are equivalent:
1. A is invertible.
2. A ∼ I.
3. A is the product of some elementary matrices.
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By Theorem 8 and the preceding discussion, we have

Corollary 9. Let A, B ∈ Rm×n. Then A ∼ B iff there is an invertible
T ∈ Rn×n such that TA = B.

In practice, we can compute A−1 via elementary row operations. From
the proof of Theorem 7, we have

A−1 = ElEl−1 · · ·E1 = ElEl−1 · · ·E1I.

So
I

op1−→ E1I
op2−→ · · · opl−→ ElEl−1 · · ·E1I = A−1.

So op1, . . . , opl transform A, I to I, A−1 simultaneously, i.e.

(A I)
op1−→ · · · opl−→ (I A−1).

Example: Textbook P.124.
注：我们最后回头来介绍怎么计算。
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4.4.4 Connection to Linear Transformation

Theorem 10. Let A = (⃗a1 · · · a⃗n) ∈ Rn×n. Then following statements are
equivalent:
1. A is invertible.
2. TA : Rn → Rn, TA(x⃗) = Ax⃗ is surjective.
3. TA : Rn → Rn, TA(x⃗) = Ax⃗ is injective.

Proof. 1. ⇒ 2. and 1. ⇒ 3. are established in Theorem 5.
2. ⇒ 1. Again, by Theorem 4 in lecture note 4, A has a pivot position
in every row since Span{a⃗1, . . . , a⃗n} = Rn. So every column of A is a pivot
column. It follows that A ∼ I since I is the unique REF of A. So 1. holds.
3. ⇒ 1. By assumption, Ax⃗ = 0⃗ has only one solution, namely 0⃗. It follows
that every column of A is a pivot column since no free variable for Ax⃗ = 0⃗.
So (A 0⃗) ∼ (I 0⃗), i.e. A ∼ I. So 1. holds.

Theorem 11. Let A ∈ Rn×n. Then following statements are equivalent:
1. A is invertible.
2. There exists B ∈ Rn×n such that AB = I.
3. There exists B ∈ Rn×n such that BA = I.

Proof. 1. ⇒ 2. and 1. ⇒ 3. are obvious since we can take A−1 for B.
2. ⇒ 1. Consider TA : Rn → Rn, TA(x⃗) = Ax⃗. For any b⃗ ∈ Rn×n, we have

TA(Bb⃗) = A(Bb⃗) = Ib⃗ = b⃗. So TA is surjective and the result follows.
3. ⇒ 1. Consider TA : Rn → Rn, TA(x⃗) = Ax⃗. Suppose that TA(x1) = TA(x2),
namely Ax⃗1 = Ax⃗2. Then we have BAx⃗1 = BAx⃗2, which is followed by
x⃗1 = x⃗2. So TA is injective and the result follows.

A simple consequence of Theorem 10 is

Corollary 12. Let A, B ∈ Rn×n. Then if AB = I (or BA = I) then
B = A−1.

Finally, we introduce the concept of invertible linear transformations for
which the standard matrices are exactly those being invertible.

Let T : Rn → Rn. If there is another S : Rn → Rn such that for any
x⃗ ∈ Rn, T ◦ S(x⃗) = S ◦ T (x⃗) = (x⃗), then T is said to be invertible and S,
written T−1 is called the inverse of T .

Theorem 13. Linear transformation T : Rn → Rn is invertible iff the stan-
dard matrix A for T is invertible. Also, T−1(x⃗) = A−1x⃗ in the case that T is
invertible.
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Proof. Suppose that T is invertible and T−1(x⃗) = Bx⃗. Then we have T ◦
T−1(x⃗) = T (T−1(x⃗)) = A(Bx⃗) = (AB)x. On the other hand, T ◦ T−1(x⃗) =
(x⃗) = I(x⃗). So both AB and I are standard matrices of T ◦ T−1. By
uniqueness of standard matrix, we must have AB = I. So A is invertible and
B = A−1.

Conversely, suppose that A is invertible. Define S(x⃗) = A−1x⃗. Then
T ◦ S(x⃗) = T (S(x⃗)) = A(A−1x⃗) = Ix⃗ = x⃗ and S ◦ T (x⃗) = S(T (x⃗)) =
A−1(Ax⃗) = Ix⃗ = x⃗. So T is invertible with inverse S.

5 A Method for Computing the Inverse of a

Matrix

Strategy: Row reduce the augmented matrix [A I]. If A is row equivalent
to I, then [A I] is row equivalent to [I A−1]. Otherwise, A does not have
an inverse.

Tool: Row reduction algorithm and Theorem 7.

Example: Find the inverse of the matrix A =

 0 1 2
1 0 3
4 −3 8

 if it exists.

Solution:

[A I] =

 0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 1 1


→ Row Reduction Algorithm →

 1 0 0 −9/2 7 −3/2
0 1 0 −2 4− 1
0 1 1 3/2 −2 1/2

. Hence,

A−1/ =

 −9/2 7 −3/2
−2 4− 1
3/2 −2 1/2

. (详见板书)

Reference

David C. Lay. Linear Algebra and Its Applications (3rd edition). Pages
105∼134

12



Saint George and the Dragon, by Rubens

13


