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1 What Do You Learn from This Note

Up to this point, the theory we have established can be applied to any vec-
tor space in general. However, vector spaces over R have geometric structure
on their own. You probably have already known concepts such as lengths,
angles and distances of vectors in R2 and R3. Now we shall see how these
geometric concepts can be generalized to vector spaces over R, particularly
Rn.

Basic Concept：inner product (内积), length (长度), unit vector (单位向
量), distance (距离), orthogonality (正交), orthogonal complements (正交
补)

2 Inner Product & Length

2.1 Basic Concept

Definition 1 (inner product or dot product, 内积). Let u⃗, v⃗ ∈ Rn.
The standard inner product or dot product u⃗ · v⃗ of u⃗ and v⃗ is defined to be
the real number u⃗Tv.

Definition 2 (norm or length, 模或长度). Let v⃗ ∈ Rn. The norm or
length ||v⃗|| of v⃗ is defined to be

||v⃗|| =
√
v⃗ · v⃗,
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which is a non–negative real number.

Definition 3 (unit vector, 单位向量). is a vector whose norm is 1. If we
are given any non–zero vector v⃗, then v⃗

||v⃗|| is a unit vector, which is called the

unit vector in the same direction as v⃗. The process of creating v⃗
||v⃗|| is called

normalisation.

Definition 4 (angle). Let u⃗, v⃗ ∈ Rn − {⃗0}. The angle θ between u⃗ and v⃗
is defined to be

θ = arccos
u⃗ · v⃗
||u⃗||||v⃗||

,

which is a number in the interval [ 0, π].

Definition 5 (distance,距离). Let u⃗, v⃗ ∈ Rn}. The distance d(u⃗, v⃗)
between u⃗ and v⃗ is defined to be

d(u⃗, v⃗) = ||u⃗− v⃗||.

Definition 6 (orthogonality,正交). Two vectors u⃗ and v⃗ in Rn are or-
thogonal if u⃗ · v⃗ = 0.

2.2 Some Properties

Theorem 7. Let u⃗, v⃗ ∈ Rn and c ∈ R. Then
1. u⃗ · u⃗ > 0 and u⃗ · u⃗ = 0 iff u⃗ = 0⃗;
2. u⃗ · v⃗ = v⃗ · u⃗;
3. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗;
4. u⃗ · cv⃗ = c(u⃗ · v⃗).
(So we say Rn equipped with dot product is an inner product space.)

Proof. Straightforward.

Remark: 1) 3. and 4. of Theorem 2 indicate that dot product is linear
on the second operand, and 2. ensures that dot product is also linear on the
first operand.
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2) We have ||v⃗|| = 0 iff v⃗ = 0⃗.
3) For any scalar c, we have ||cv⃗|| =

√
cv⃗ · cv⃗ =

√
c2
√
v⃗ · v⃗ = |c|||v⃗||.

Example: Textbook P.377.

Theorem 8 (the Cauchy–Schwarz inequality). Let u⃗, v⃗ ∈ Rn. Then

(u⃗ · v⃗)2 6 (u⃗ · u)(v⃗ · v⃗), or equivalently, |u⃗ · v⃗| 6 ||u⃗||||v⃗||.

The equality holds if and only if u⃗ and v⃗ are linearly dependent.

Proof. Step 1. Suppose first that u⃗ and v⃗ are linearly independent. Then
neither u⃗ nor v⃗ is 0⃗. Let t be any scalar. Then u⃗− tv ̸= 0⃗, so we have

0 < (u⃗− tv) · (u⃗− tv) [by 1. of Theorem 2.]

= (u⃗ · u⃗)− t(u⃗ · v⃗)− t(v⃗ · u⃗) + t2(v⃗ · v⃗) [by linearity.]

= (u⃗ · u⃗)− 2t(u⃗ · v⃗) + t2(v⃗ · v⃗) [by symmetry.]

By the arbitraryness of t, we may take t = (u⃗·v⃗)
(v⃗·v⃗) and substitute it into the

above inequality to obtain

0 < (u⃗ · u⃗)− 2
(u⃗ · v⃗)
(v⃗ · v⃗)

(u⃗ · v⃗) + (u⃗ · v⃗)2

(v⃗ · v⃗)2
(v⃗ · v⃗)

= (u⃗ · u⃗)− 2
(u⃗ · v⃗)2

(v⃗ · v⃗)
+

(u⃗ · v⃗)2

(v⃗ · v⃗)

= (u⃗ · u⃗)− (u⃗ · v⃗)2

(v⃗ · v⃗)
.

Multiply (v⃗ · v⃗) on both side, we get

0 < (u⃗ · u⃗)(v⃗ · v⃗)− (u⃗ · v⃗)2.

So (u⃗ · v⃗)2 < (u⃗ · u⃗)(v⃗ · v⃗).

Step 2. If u⃗ and v⃗ are linearly dependent then either u⃗ = λv⃗ or v⃗ = λu⃗. For
both cases, it is obvious that (u⃗ · v⃗)2 = (u⃗ · u⃗)(v⃗ · v⃗).

By the Cauchy–Schwarz inequality, for any u⃗, v⃗ ∈ Rn − {⃗0} we have

−1 6 u⃗ · v⃗
||u⃗||||v⃗||

6 1,
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Remarks:
1. By definition, we have u⃗ · v⃗ = ||u⃗||||v⃗|| cos θ.
2. By Cauchy–Schwarz inequality, θ = 0 or π iff u⃗ and v⃗ are linearly depen-
dent. It is not hard to see that θ = 0 if u⃗ and v⃗ are in the same direction
and θ = π if u⃗ and v⃗ are in the opposite direction.

Theorem 9. Let u⃗, v⃗ ∈ Rn and c ∈ R. Then
1. ||u⃗|| > 0 and ||u⃗|| = 0 iff u⃗ = 0⃗;
2. ||cu⃗|| = |c|||u⃗||;
3. ||u⃗ + v⃗|| 6 ||u⃗|| + ||v⃗|| and the equality holds iff u⃗ and v⃗ are in the same
direction.
(So we say Rn equipped with || · || is a normed space.)

Proof. 1. and 2. have been shown already. For 3. we have

||u⃗+ v⃗||2 = u⃗ · u⃗+ v⃗ · v⃗ + 2(u⃗ · v⃗)
6 ||u⃗||2 + ||v⃗||2 + 2||u⃗||||v⃗|| [by Cauchy–Schwarz inequality.]

= (||u⃗||+ ||v⃗||)2

So ||u⃗+ v⃗|| 6 ||u⃗||+ ||v⃗|| and the equality holds iff u⃗ · v⃗ = ||u⃗||||v⃗|| iff u⃗ and v⃗ are
in the same direction.

Example: Textbook P.378.

Theorem 10. Let u⃗, v⃗ and w⃗ ∈ Rn. Then
1. d(u⃗, v⃗) > 0 and d(u⃗, v⃗) = 0 iff u⃗ = v⃗;
2. d(u⃗, v⃗) = d(v⃗, u⃗);
3. Triangle inequality: d(u⃗, w⃗) 6 d(u⃗, v⃗) + d(v⃗, w⃗).
(So we say Rn equipped with d( · , · ) is a metric space.)

Proof. 1. and 2. are obvious. For 3., we have

d(u⃗, w⃗) = ||u⃗−w⃗|| = ||(u⃗− v⃗)+(v⃗−w⃗)|| 6 ||u⃗− v⃗||+ ||v⃗−w⃗|| = d(u⃗, v⃗)+d(v⃗, w⃗).

3 Orthogonality: More

Definition 11 (orthogonality,正交). Vectors u⃗ and v⃗ are said to be orthog-
onal, written as u⃗⊥v⃗, iff u⃗ · v⃗ = 0. If neither u⃗ nor v⃗ is 0⃗, then u⃗⊥v⃗ is
equivalent to θ = π

2
.
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Theorem 12. Let u⃗, v⃗ ∈ Rn.
1. the Cosine Theorem: If neither u⃗ nor v⃗ is 0⃗, then

||u⃗− v⃗||2 = ||u⃗||2 + ||u⃗||2 − 2||u⃗||||v⃗|| cos θ.

2. the Pythagorean Theorem: If u⃗⊥v⃗, then

||u⃗+ v⃗||2 = ||u⃗||2 + ||v⃗||2.

Proof. 1.

||u⃗− v⃗||2 = (u⃗− v⃗) · (u⃗− v⃗) = u⃗ · u⃗+ v⃗ · v⃗−2(u⃗ · v⃗) = ||u⃗||2+ ||v⃗||2−2||u⃗||||v⃗|| cos θ.

2.
||u⃗+ v⃗||2 = u⃗ · u⃗+ v⃗ · v⃗ + 2(u⃗ · v⃗) = ||u⃗||2 + ||v⃗||2.

Definition 13 (orthogonal complements,正交补). If a vector z⃗ is orthogonal
to every vector in a subspace W of Rn, then z⃗ is said to be orthogonal to W .
The set of all vector z⃗ that are orthogonal to W is called the orthogonal
complement of W and is denoted by W⊥.

Theorem 14. Let W be a subspace of Rn. Then W⊥ is a subspace.

Proof. Exercise.

Theorem 15. Let A be an m × n matrix. Then (RowA)⊥ = NulA and
(ColA)⊥ = NulAT

The Flight into Egypt, by Giotto di Bondone
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