LECTURE NOTE ON LINEAR ALGEBRA 17. STANDARD INNER PRODUCT

Wei-Shi Zheng, wszheng@ieee.org, 2011

November 21, 2011

1 What Do You Learn from This Note

Up to this point, the theory we have established can be applied to any vector space in general. However, vector spaces over \mathbb{R} have geometric structure on their own. You probably have already known concepts such as lengths, angles and distances of vectors in \mathbb{R}^2 and \mathbb{R}^3 . Now we shall see how these geometric concepts can be generalized to vector spaces over \mathbb{R} , particularly \mathbb{R}^n .

Basic Concept: inner product (内积), length (长度), unit vector (单位向量), distance (距离), orthogonality (正交), orthogonal complements (正交补)

2 Inner Product & Length

2.1 Basic Concept

Definition 1 (INNER PRODUCT OR DOT PRODUCT, 内积). Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. The standard inner product or dot product $\vec{u} \cdot \vec{v}$ of \vec{u} and \vec{v} is defined to be the real number $\vec{u}^T v$.

Definition 2 (NORM OR LENGTH, 模或长度). Let $\vec{v} \in \mathbb{R}^n$. The norm or length $\|\vec{v}\|$ of \vec{v} is defined to be

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}},$$

which is a non–negative real number.

Definition 3 (UNIT VECTOR, 单位向量). *is a vector whose norm is* 1. *If we are given any non-zero vector* \vec{v} , then $\frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector, which is called the unit vector in the same direction as \vec{v} . The process of creating $\frac{\vec{v}}{\|\vec{v}\|}$ is called normalisation.

Definition 4 (ANGLE). Let $\vec{u}, \vec{v} \in \mathbb{R}^n - {\vec{0}}$. The angle θ between \vec{u} and \vec{v} is defined to be

$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|},$$

which is a number in the interval $[0, \pi]$.

Definition 5 (DISTANCE,距离). Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ }. The distance $d(\vec{u}, \vec{v})$ between \vec{u} and \vec{v} is defined to be

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|.$$

Definition 6 (ORTHOGONALITY, $\mathbb{E}\mathfrak{D}$). Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are orthogonal if $\vec{u} \cdot \vec{v} = 0$.

2.2 Some Properties

Theorem 7. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then 1. $\vec{u} \cdot \vec{u} \ge 0$ and $\vec{u} \cdot \vec{u} = 0$ iff $\vec{u} = \vec{0}$; 2. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$; 3. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$; 4. $\vec{u} \cdot c\vec{v} = c(\vec{u} \cdot \vec{v})$. (So we say \mathbb{R}^n equipped with dot product is an inner product space.)

Proof. Straightforward.

Remark: 1) 3. and 4. of THEOREM 2 indicate that dot product is linear on the second operand, and 2. ensures that dot product is also linear on the first operand.

2) We have $\|\vec{v}\| = 0$ iff $\vec{v} = \vec{0}$. 3) For any scalar c, we have $\|c\vec{v}\| = \sqrt{c\vec{v} \cdot c\vec{v}} = \sqrt{c^2}\sqrt{\vec{v} \cdot \vec{v}} = |c|\|\vec{v}\|$.

Example: Textbook P.377.

Theorem 8 (THE CAUCHY–SCHWARZ INEQUALITY). Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Then

$$(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot u)(\vec{v} \cdot \vec{v}), \text{ or equivalently, } |\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||.$$

The equality holds if and only if \vec{u} and \vec{v} are linearly dependent.

Proof. Step 1. Suppose first that \vec{u} and \vec{v} are linearly independent. Then neither \vec{u} nor \vec{v} is $\vec{0}$. Let t be any scalar. Then $\vec{u} - tv \neq \vec{0}$, so we have

$$0 < (\vec{u} - tv) \cdot (\vec{u} - tv) \quad [\text{BY 1. OF THEOREM 2.}]$$

= $(\vec{u} \cdot \vec{u}) - t(\vec{u} \cdot \vec{v}) - t(\vec{v} \cdot \vec{u}) + t^2(\vec{v} \cdot \vec{v}) \quad [\text{BY LINEARITY.}]$
= $(\vec{u} \cdot \vec{u}) - 2t(\vec{u} \cdot \vec{v}) + t^2(\vec{v} \cdot \vec{v}) \quad [\text{BY SYMMETRY.}]$

By the arbitraryness of t, we may take $t = \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})}$ and substitute it into the above inequality to obtain

$$\begin{array}{ll} 0 &< (\vec{u} \cdot \vec{u}) - 2 \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} (\vec{u} \cdot \vec{v}) + \frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})^2} (\vec{v} \cdot \vec{v}) \\ &= (\vec{u} \cdot \vec{u}) - 2 \frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})} + \frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})} \\ &= (\vec{u} \cdot \vec{u}) - \frac{(\vec{u} \cdot \vec{v})^2}{(\vec{v} \cdot \vec{v})}. \end{array}$$

Multiply $(\vec{v} \cdot \vec{v})$ on both side, we get

$$0 < (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) - (\vec{u} \cdot \vec{v})^2.$$

So $(\vec{u} \cdot \vec{v})^2 < (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}).$

Step 2. If \vec{u} and \vec{v} are linearly dependent then either $\vec{u} = \lambda \vec{v}$ or $\vec{v} = \lambda \vec{u}$. For both cases, it is obvious that $(\vec{u} \cdot \vec{v})^2 = (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v})$.

By the Cauchy–Schwarz inequality, for any $\vec{u}, \vec{v} \in \mathbb{R}^n - {\vec{0}}$ we have

$$-1 \leqslant \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \leqslant 1,$$

Remarks:

1. By definition, we have $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$.

2. By Cauchy–Schwarz inequality, $\theta = 0$ or π iff \vec{u} and \vec{v} are linearly dependent. It is not hard to see that $\theta = 0$ if \vec{u} and \vec{v} are in the same direction and $\theta = \pi$ if \vec{u} and \vec{v} are in the opposite direction.

Theorem 9. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then 1. $\|\vec{u}\| \ge 0$ and $\|\vec{u}\| = 0$ iff $\vec{u} = \vec{0}$; 2. $\|c\vec{u}\| = |c|\|\vec{u}\|$;

3. $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$ and the equality holds iff \vec{u} and \vec{v} are in the same direction.

(So we say \mathbb{R}^n equipped with $\|\cdot\|$ is a normed space.)

Proof. 1. and 2. have been shown already. For 3. we have

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2(\vec{u} \cdot \vec{v}) \\ &\leqslant \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\|\vec{u}\|\|\vec{v}\| \quad \text{[BY CAUCHY-SCHWARZ INEQUALITY.]} \\ &= (\|\vec{u}\| + \|\vec{v}\|)^2 \end{aligned}$$

So $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$ and the equality holds iff $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\|$ iff \vec{u} and \vec{v} are in the same direction.

Example: Textbook P.378.

Theorem 10. Let \vec{u} , \vec{v} and $\vec{w} \in \mathbb{R}^n$. Then 1. $d(\vec{u}, \vec{v}) \ge 0$ and $d(\vec{u}, \vec{v}) = 0$ iff $\vec{u} = \vec{v}$; 2. $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$; 3. TRIANGLE INEQUALITY: $d(\vec{u}, \vec{w}) \le d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w})$. (So we say \mathbb{R}^n equipped with $d(\cdot, \cdot)$ is a metric space.)

Proof. 1. and 2. are obvious. For 3., we have

$$d(\vec{u}, \vec{w}) = \|\vec{u} - \vec{w}\| = \|(\vec{u} - \vec{v}) + (\vec{v} - \vec{w})\| \leqslant \|\vec{u} - \vec{v}\| + \|\vec{v} - \vec{w}\| = d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w}).$$

3 Orthogonality: More

Definition 11 (orthogonality, $\mathbb{E}\mathfrak{N}$). Vectors \vec{u} and \vec{v} are said to be **orthogonal**, written as $\vec{u} \perp \vec{v}$, iff $\vec{u} \cdot \vec{v} = 0$. If neither \vec{u} nor \vec{v} is $\vec{0}$, then $\vec{u} \perp \vec{v}$ is equivalent to $\theta = \frac{\pi}{2}$.

Theorem 12. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$.

1. THE COSINE THEOREM: If neither \vec{u} nor \vec{v} is $\vec{0}$, then

 $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{u}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos\theta.$

2. The Pythagorean Theorem: If $\vec{u} \perp \vec{v}$, then

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Proof. 1.

$$\begin{split} \|\vec{u} - \vec{v}\|^2 &= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - 2(\vec{u} \cdot \vec{v}) = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos \theta. \\ 2. \\ \|\vec{u} + \vec{v}\|^2 &= \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2(\vec{u} \cdot \vec{v}) = \|\vec{u}\|^2 + \|\vec{v}\|^2. \end{split}$$

Definition 13 (orthogonal complements, 正交补). If a vector \vec{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \vec{z} is said to be orthogonal to W. The set of all vector \vec{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} .

Theorem 14. Let W be a subspace of \mathbb{R}^n . Then W^{\perp} is a subspace.

Proof. Exercise.

Theorem 15. Let A be an $m \times n$ matrix. Then $(RowA)^{\perp} = NulA$ and $(ColA)^{\perp} = NulA^{T}$

The Flight into Egypt, by Giotto di Bondone