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1 What Do You Learn from This Note

We still observe the unit vectors we have introduced in Chapter 1:

1 0 0
_‘1 = O 5 _»2 - 1 5 _’3 — O . (].)
0 0 1

Question: Have you tried to compute the inner product like ¢ - €,
51 . 53 and 52 : é:g?

You will actually find that €} - €5 =0, €] - €5 = 0 and é5 - €3 = 0. That is
the three standard basis vectors are orthogonal, more precisely orthonormal.
We have a special name for such a type of basis called orthogonal (or-
thonormal) basis. We will comprehensively introduce this in this lecture
note.

Basic Concept: orthogonal set (1FAZ%E), orthogonal basis (1EAZ4E), Or-
thogonal Matrix (IEAZ%EFF), Orthogonal Projection (IEAZ# %), Gram-—
Schmidt Process (¥&H7a8- i %45 1E 4840

2 Orthogonal Basis

2.1 Definition

Definition 1 (ORTHOGONAL SET (1EAC4E)). Let S = {#,...,0,} CR" —
{0}. We say S is an orthogonal set iff for any 7,7 = 1,...,r and i # j, we
have 0; L7;. Furthermore, if ¥y, ..., %, are all unit vectors then S is called an
orthonormal set.



Example: Textbook P.384.

Definition 2 (ORTHOGONAL BASIS (1IEAZZE)). A basis B of R" which is
also orthogonal is called an orthogonal basis. Furthermore, B is called an
orthonormal basis if it is orthonormal.

Example: The standard basis £ = {é}, ..., €,} is an orthonormal basis of R".

Example: Textbook P.389.

2.2 Some Properties

Connection between orthogonal set & linearly independent:

Theorem 3. Let S = {#,...,7,.} be an orthogonal set. Then S is linearly
independent.

Proof. Let c1, ..., ¢ be scalars. Suppose that 0 = ¢;0, + - - + ¢,¥,. Then for
each i =1,...,r, we have

0=10;-0="0; a1y + -+ & 0,) = co(T - 01) + - + (T - 1) = (T - T).

Since v; - U; # 0, we must have ¢; = 0 and the result follows. O

Orthogonal Matrix (1EAZHFE):

Theorem 4. Let U = (v, --- ¥,) € R™". Then
1. {#,...,0,} is orthogonal iff UTU is invertible and diagonal;
2. {ty,..., 0.} is orthonormal iff UTU = I,.

Proof. 1.
{?1, ..., 1} is orthogonal.
. T e = = U #O0 =
"] TR A A A { 0 otherwise.
<= U"U is invertible and diagonal.
2. Similar to 1.. O



Definition 5 (ORTHOGONAL MATRIX). A matrix U € R" is said to be
orthogonal iff UTU = I, (or UT =U™).

cosf) —sinb

Example: For any 6 € R, ( sinf  cos®

) is orthogonal.

Theorem 6.

1. I,, is orthogonal.

2. If U € R" is orthogonal then so is U~*.

3. If U; and U; € R™ are orthogonal then so is U,Us.

(So the set of orthogonal matrices of size n is a group under multiplication.)

Proof. Easy, left as an exercise. m

Why is orthogonal basis useful?

Theorem 7. Let B = {by,...,b,} be an orthogonal basis of R". Then for

any v € R"™ we have
Lo Lo T
/S ELCALIV RS CAU/VI I

So if B is orthonormal, then

s = ((0-5) - (#-5,) .

Proof. Suppose [0]s = (¢, -+ Cy)T. Then for i =1,...,n, we have

— — — —

v b; = (¢ 1+"'+5nbn)'gi:51<51'gi)+"'+8n(bn'bi):gi(i'bi)'

So & = &) O

Example: Textbook P.385.



Theorem 8. Let B = {by,...,b,} be an orthonormal basis of R”. Then for
any u, v € R",

Lot = [id]s - [T

2. 5] = 1[5]s];

3. d(u, v) = d([u]s, [V]s).

This means the coordinate isomorphism with respect to B preserves dot
product, norm and distance, in other word, the geometric structure of R"
is preserved.

Proof. 1.
(@5 [0ls = (@-01)(F-b1) + - + (- b,) (T by)

— (H. (17. b1)b1) R (*. (17. bn)bn)

= @ (T b)by -+ (T Ba)by)

— -7
2. and 3. are derived from 1. directly. O
Theorem 9. (u; --- ,) is orthogonal iff {u;,...,u,} is an orthonormal
basts.
Theorem 10.

Let B be an orthonormal basis. Then B’ is an orthonormal basis iff [B']z is
orthogonal.

Proof. Suppose that B’ = {b/,...,b,}. Then

B’ is orthonormal. < {b,...,b,} is orthonormal.
& {[Wls,---,[b,]s} is orthonormal.
[BY THEOREM §]
< ([bi]s -+ [b,]s) is orthogonal.



3 Orthogonal Projection (IEAZHH)

FE: FHZESRRHK e R U .

Theorem 11 (The Orthogonal Decomposition Theorem). Let W be s sub-
space of R™. Then each v in R™ can be written uniquely in the form

j=7+7
where § is in W and 7 is in W*. In fact, if {tr,--- ,u,} is any orthogonal
basis of W, then
L YUy y - Up
j=L g+ L g
Uy - Uy Uy - Uy
and R
F= g

Proof. Sketch of the proof:
1. Prove jj € W (Linear combination of all basis in W)
2. Prove 7 € W+ (ZL;, for all u;)
3. Prove the uniqueness of the decomposition.
[

Definition 12 (orthogonal projection). We say the orthogonal projection of
iy onto a subspace W 1is

L yeun Y up
70 =—=u+ -+ 5—=U
projwy T Q- "
where {iy,- -+ ,U,} is any orthogonal basis of W.
Theorem 13. If{u;,--- ,u,} is any orthonormal basis of a subspace W of

R™, then
projwy = (§ - )ty + -+ - + (- )1y
If U = [ty,--- 1, then
projuy = UUTY,

If we replace the subspace W in the above theorem by a special subspace
L = span{u}, we can still have:



Theorem 14. For any vector iy € R™, we can have

<y

)

projLy = ——

Y

S
<L

and Z is orthogonal to u in R™.
We call proj;y the orthogonal projection of y onto L.

Theorem 15 (The Best Approximation Theorem). Let W be a subspace of
R"™, i be any vector in R™. Then projyy is the closet point in W to y, in the
sense that

|5 = projwill < 17— 1]

for all U in W distinct from ﬁ

Proof. Since
Y — U=y — projywy + projyy — v,
and ¢ — proj,, 4 € Wt and proj,, 4 — v € W, so
|7 — l* = |7 — projw 41[* + |[projuv — dl|*

That is
|7 — 71> > |7 — projuw |



4 Where to use the Best Approximation The-
orem

Question: We just do nothing when the matrix equation A7 = b
has no solution in real scenarios?

NO!UINO!MNO!! Let A € R™™ and b € R™. If there is no solution
for the matrix equation A7 = 5, we are still required to find ¥ € R™ such
that A% is the best approximation of b in some sense. A feasible approach
to this problem is to find ¥ such that the distance between b and A7 is as
small as possible. We formulate this idea as follows:

Definition 16 (THE LEAST-SQUARES SOLUTION (VERSION 1)). Let A €
R™" and b € R™. Then a least—squares solution of A7 = bis an 7 € R"
such that . R .

|b— AZ| < [b — A7

for all # € R™. The distance d(b, A7) = |b— AZ] is called the least—squares
error of A7 =b.

Define W = Col(A). Notice that @/ = AZ for some ¥ € R" iff & € W
and by THEOREM 15, the closest vector to b among all vectors in W is the
orthogonal projection l;W of b onto W, which is unique. So DEFINITION 16
can be recast equivalently as

Definition 17 (THE LEAST—SQUARES SOLUTION (VERSION 2)). Let A €
R™ ™ and b € R™. Then a least-squares solution of A¥ = b is an ¥ € R"
such that

S

A :gW7

where W = Col(A).



Question: How to compute the least-square solution?

The least—squares solution set of a matrix equation over R is identified
completely as follows:

Theorem 18. Let A € R™™ and b € R™. Then the least—squares solution
set of the equation AZ = b is precisely the solution set of the equation

AT Az = ATh.

Proof. Define W = Col(A). Then

AT =by. <= b— AT € Wt
— b— A7 e Nul(4") [siNcE W' = Nul(AT)].
— AT(b— A7) =0.
— ATAZ = ATh.
So the result follows. ]

Examples: Textbook P.411, P.412, P.413.

Remark: If {dy,...,d,} is an orthogonal set then
- beq b,

bw = s——=-a1+ -+ ——an.
ap - ap Qp, - Qp

So 7 can be written down directly as

> > T
2, b~a1 b~an
T=\|o—= " === | -
ay - a Qp - Ap

Example: Textbook P.414.




Question: What is the case when A’ A is invertible?

If AT A is invertible then the matrix equation AZ = b has a unique least—
squares solution, namely (AT A)~1ATb. But this is not always the case. The
next theorem gives a sufficient and necessary condition for AT A being invert-
ible.

Lemma 19. Let A € R™*". Then
1. Nul(A) = Nul(AT A);
2. rank(A) = rank(AT A).

Proof. 1. Suppose that # € Nul(A), namely A7 = 0. Then AT Az = AT0 = 0.
So # € Nul(AT A), that is Nul(A) C Nul(AT A).
Conversely, suppose that 7 € Nul(AT A), namely A7 Az = 0. Then
(A7) - (A7) = (AZ)"(AZ) = [|AZ]]* =0,
which forces that AZ = 0. So & € Nul(A) and Nul(A” A) C Nul(A).
2. By the RANK & NULLITY THEOREM,

rank(A) = n — dim Nul(A) = n — dim Nul(A” A) = rank(A” A).

]

Theorem 20. Let A = (@, --- @,) € R™". Then AT A is invertible iff
{dy,...,d,} is linearly independent.

Proof. Notice that ATA € R*. Then

AT A is invertible. rank(A”A) = n.
rank(A) =n [BY LEMMA 4].
dim Col(A) = dim Span{dy, ...,d,} = n.

{di,...,d,} is linearly independent.

1111



5 Constructing Orthogonal Basis by Gram-—
Schmidt Process (k&7 i-jiti 23555 IEAZ40)

Question: We have seen the usefulness of orthonormal/orthogonal
basis. But how can we generate them?

VE: X HEEREATERE Al A A IR AR

We shall show this by the means of THE GRAM—SCHMIDT PROCESS.

Theorem 21 (THE GRAM—SCHMIDT PROCESS). Let {d,...,d,} C R"
be a linearly independent set. Then we can construct an orthogonal set
{?1,...,4,} CR"such that

Span{vy, ..., 4} = Span{wy,...,u,}.

Furthermore, by normalising {#,..., .}, we obtain an orthonormal set
{1, ..., 1.} CR" such that

Span{uy,...,u,} = Span{y,...,w,}.
Proof. We shall prove the first part of the theorem by induction on r( FTfl,
BAVHECAADNEIE]).

1. STEP 1: r = 1. Then we can take v; = w; and the result is trivial.

2. STEP 2: INDUCTIVE HYPOTHESIS. Assume the result holds for » —1.

3. STEP 3: INDUCTIVE STEP. Since {wy,...,w,_1} is linearly indepen-
dent, so by INDUCTIVE HYPOTHESIS, we can construct an orthogonal
set {71,...,¥,_1} such that

Span{Ul, ces 7177“—1} = Span{iﬁl, ce ,wr_l}.

Now,@%ﬁ,forallizl,...,r—l,so

is well-defined. It is obvious that
Span{vy, ..., u,} = Span{wy,...,w,},

10



SOUT;éﬁ. Also for i =1,...,r — 1, we have

- o o L Wy Up Wy * VUp—1 - - oL WU,
Uy Uy = Wy Uy — ——— U1 U=+ - = o—————Up_1°U; = Wy U;————=0;-0; = 0.
U101 Up—1 " Up—1 Vs - Vs
Therefore {71, ..., 4,} is an orthogonal set.
Finally, fori = 1,...,r, define u; = ﬁ Then {u, ..., u,} is orthonormal
T
and
Span{y, ..., u,} = Span{wy, ..., w,}.
0
The Gram—Schmidt Process:
. Uy

According to the proof of the above theorem, we can write down 7, . .
and 1, ..., u, directly as follows:

v = Wy,
. L Wyt
Uy = Wy — 5 Vi,
V1 - U1
- Wi - V1, Wi " Vi—1
Vi = Wi — o U T S ——Ui-1,
U1+ U1 Vi—1 * Vi—1
- - Wy - V1 Wy * Up—1
Vp = Wp— ——=V1— " — 55 VUr_1,
U1 - U1 Vp—1 " Ur-1
Uy = 3575, U2 =357 ) = 7=
|91 ) o)
., U, and y,...,u, is called the GRAM—

This process of writing down 77, ..
SCHMIDT PROCESS, which can be used to creating an orthonormal basis for

any subspace of R".

Examples: Textbook P.402, P.405.
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QR Decomposition: Application of Gram—Schmidt:

An application of Gram—Schmidt is for decompose a matrix A whose
columns are linearly independent into the following forms:

A= (R,

where () is a matrix whose columns form an orthonormal basis for ColA
and R is an upper triangular invertible matrix with positive entries onits
diagonal. More specifically, we have the following theorem:

Theorem 22 (QR factorization (QR77fi#)). Let A = (w; --- w,) € R™*"
and rank(A) = r. Then A can be factorised as A = QR, where Q € R™*"
such that the columns of () form an orthonormal basis of Col(Q) and R €
R™ 7" is an upper triangular matrix such that diagonal entries are positive.

Proof. The rank of A is r indicates that {u,...,&,} is linearly indepen-
dent. So by THEOREM 1, we can construct orthogonal set {#,...,v,} and
orthonormal set {, ..., .} such that for i =1,... 7,
w0y Ty - Ty L o
Wy = W e o T Ui, Uy = ||,
U1 - Vi—1 * Vi—1
That is
1 Bt Ge Ty
7 i)
11_{7"‘22
(W) - @) = (¥, --- T vz
0 0 1
and
(U -+ 0) = (a1 -+ @) diag([ai], [T, . . ., |2:])-
So
lte] 0 - 0 1 iglzgll 7«%721
B B B B 0 Jozf --- 0 0o 1 ...
(y - i) = (@ ---a) | . . . e
0 0 A 0 0 1
|3 -y e -
| . I e
= (@ - a) | . :
0 0 A

12




H’Z_)l ” ’1172 . 1,_[1 Wy - 711
. . 0[] Wy - Uy

Take Q@ = (@ -+ 4,) and R = ) _ ) and the
0 0 oA

O

result follows.

Example: Textbook P.406.
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