LINEAR ALGEBRA 20 Symmetric Matrices and Quadratic Forms

Wei-Shi Zheng, wszheng@ieee.org, 2011

1 What Do You Learn from This Note

Do you still remember the following equation or something like that I have mentioned in the class

$$f = \vec{x}^T A \vec{x}.$$
 (1)

It is exactly a quadratic form function which is going to detail in the following. This connects the eigen-analysis and orthogonal matrix very well.

Basic Concept: symmetric matrix(对称矩阵), quadratic form, quadratic function, positive definitely matrix(正定矩阵), Spectral Decomposition (谱 分解), singular value decomposition (奇异值分解)

2 What is symmetric matrix

Definition 1 (symmetric matrix). A square matrix A is said to be symmetric iff $A^T = A$ (or equivalently, $[A]_{ij} = [A]_{ji}$).

Examples: $0_{n \times n}$, I_n , diagonal matrices, etc..

Theorem 2. All square matrices in $\mathbb{R}^{n \times n}$ form a vector space. Denote this vector space as M_n .

Theorem 3. The set of all symmetric matrices of size n, denoted by Sym_n , forms a subspace of M_n .

Proof. Let A and B be symmetric matrices of size n and c a scalar. Then 1. $0_{n \times n}$ is symmetric obviously; 2. A + B is symmetric since $(A + B)^T = A^T + B^T = A + B$; 3. cA is symmetric since $(cA)^T = cA^T = cA$. So Sym_n is a subspace of M_n .

3 Eigenvectors for Symmetric Matrix

Theorem 4. Let $A \in \text{Sym}_n(\mathbb{R})$. Also let $\lambda_1, \lambda_2 \in \mathbb{R}$ be distinct eigenvalues of A with eigenvectors $\vec{v_1}, \vec{v_2}$ respectively. Then $\vec{v_1} \perp \vec{v_2}$.

Proof. We have

$$\lambda_1(\vec{v}_1 \cdot \vec{v}_2) = \lambda_1 \vec{v}_1 \cdot \vec{v}_2 = Av_1 \cdot \vec{v}_2 = \vec{v}_1^T A^T v_2 = \vec{v}_1^T A v_2 = \vec{v}_1 \cdot A v_2 = \vec{v}_1 \cdot \lambda_2 \vec{v}_2 = \lambda_2 (\vec{v}_1 \cdot \vec{v}_2).$$

So $(\lambda_1 - \lambda_2)(\vec{v}_1 \cdot \vec{v}_2) = 0$. But $\lambda_1 - \lambda_2 \neq 0$ since they are distinct, which forces that $\vec{v}_1 \cdot \vec{v}_2 = 0$.

Theorem 5. Let $A \in \text{Sym}_n(\mathbb{R})$ and λ a complex eigenvalue of A. Then $\lambda \in \mathbb{R}$, that is λ is a real eigenvalue of A.

Proof. Let $v \in \mathbb{C}^n$ be a λ -eigenvector. Then $A\vec{v} = \lambda \vec{v}$. Also, $\overline{A}^T = A$. So

$$\lambda(\overline{v}^T \vec{v}) = \overline{v}^T (\lambda \vec{v}) = \overline{\vec{v}}^T A \vec{v} = \overline{A \vec{v}}^T \vec{v} = (\overline{\lambda} \overline{\vec{v}}^T) \vec{v} = \overline{\lambda} (\overline{\vec{v}}^T \vec{v}).$$

So $(\lambda - \overline{\lambda})\overline{\vec{v}}^T \vec{v} = 0$. Since $\vec{v} \neq \vec{0}$, it follows that

$$\vec{\vec{v}}^T \vec{v} = \vec{v}_1 \vec{v}_1 + \dots + \vec{v}_n \vec{v}_n = |\vec{v}_1|^2 + \dots + |\vec{v}_n|^2 > 0$$

where $(\vec{v}_1 \cdots \vec{v}_n)^T = \vec{v}$, which forces that $\lambda - \overline{\lambda} = 0$. So λ is real.

4 Orthogonality & Symmetry

Theorem 6. Let A be any symmetric function and U any orthogonal matrix. Then $U^{-1}AU$ is still a symmetric matrix.

Proof. Notice that $U^T = U^{-1}$. So

$$(U^{-1}AU)^T = U^T A^T (U^{-1})^T = U^{-1}AU.$$

We can now prove the major result on symmetric matrices.

Theorem 7 (orthogonally diagonalizable). Let A be a square matrix. Then A is a symmetric matrix if and only if there exists an orthogonal matrix U such that $U^{-1}AU$ is diagonal.

Proof. Firstly, it is easy to verify that if there exists an orthogonal matrix U such that $U^{-1}AU$ is diagonal, then A is symmetric. It is because let the diagonal matrix be D, then $A = UDU^{-1} \in \text{Sym}_n(\mathbb{R})$.

Secondly, or say reversely, if A is symmetric, then we need to prove there exists an orthogonal matrix U such that $U^{-1}AU$ is diagonal. It can be done by induction on n as follows.

- 1. Step 1: BASE CASE: n = 1. Trivial.
- 2. Step 2: INDUCTIVE HYPOTHESES: Assume the result holds for n-1.
- 3. Step 3: INDUCTIVE STEP: Let λ_1 be an eigenvalue of A, which is real by THEOREM 5, and \vec{u}_1 a unit λ_1 -eigenvector. Then we can extend $\{\vec{u}_1\}$ to a basis of \mathbb{R}^n , say $\{\vec{u}_1, \vec{v}_2, \ldots, \vec{v}_n\}$. Furthermore, by applying THE GRAM-SCHMIDT PROCESS, we obtain an orthonormal basis $\mathcal{U}_1 =$ $\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\}$ of \mathbb{R}^n . Define $U_1 = (\vec{u}_1 \cdots \vec{u}_n) \in O_n(\mathbb{R})$, which is the matrix from basis \mathcal{U}_1 to basis \mathcal{E} . Let

$$F = U_1^{-1}AU_1$$

It is not hard to see that the first column of F is $(\lambda_1 \ 0 \ \cdots \ 0)$ since $U_1^{-1} = U^T$. So F has the form

$$F = \left(\begin{array}{cc} \lambda_1 & \vec{0}_{n-1}^T \\ \vec{0}_{n-1} & A' \end{array}\right),\,$$

where $A' \in \operatorname{Sym}_{n-1}(\mathbb{R})$. By INDUCTIVE HYPOTHESES, there exists $U' \in O_{n-1}(\mathbb{R})$ such that $U'^{-1}A'U'$ is diagonal. Define $U_2 = \begin{pmatrix} 1 & \vec{0}_{n-1}^T \\ \vec{0}_{n-1} & U' \end{pmatrix}$, which is an orthogonal matrix. Then

$$U_2^{-1}U_1^{-1}AU_1U_2 = U_2^{-1}FU_2 = \begin{pmatrix} \lambda_1 & \vec{0}_{n-1}^T \\ \vec{0}_{n-1} & U'^{-1}A'U' \end{pmatrix}$$

which is diagonal. So take $U = U_1U_2$, then U is an orthogonal matrix and $U^{-1}AU$ is diagonal.

Remarks (Spectral Decomposition, i \mathcal{H} **fi**s orthogonally diagonalizable, and

$$A = PDP^{T} = \begin{pmatrix} \vec{u}_{1} & \cdots & \vec{u}_{n} \end{pmatrix} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \begin{pmatrix} \vec{u}_{1}^{T} \\ \vdots \\ \vec{u}_{n}^{T} \end{pmatrix}$$

, then $A = \lambda_1 \vec{u}_1 \vec{u}_1^T + \dots + \lambda_n \vec{u}_n \vec{u}_n^T$ is the spectral decomposition of matrix A.

5 Singular Value Decomposition

Question: If matrix A is not symmetric, it may not be orthogonally diagonalizable. However, $A^T A$ is symmetric and can be orthogonally diagonalized as PDP^{-1} . Then is it possible to find some orthogonal matrix U and Σ such that

$$PDP^{-1} = P\Sigma^{T}U^{T}U\Sigma P^{-1}, \ A = U\Sigma P^{-1} = U\Sigma V^{T}?$$

Answer: Yes. It can be. The Singular Value Decomposition can realize this!!!

Question: What is singular values?

Definition 8. Let A be $m \times n$ matrix. Then $A^T A$ can be orthogonally diagonalized. Let $\{\vec{v}_1, \dots, \vec{v}_n\}$ be the orthogonal eigenvector basis of matrix $A^T A$, where their corresponding eigenvalues are $\lambda_1 \ge \lambda_2 \ge \dots \lambda_n \ge 0$. Then we say $\sigma_i = \sqrt{\lambda_i}$ are the singular values of matrix A.

Theorem 9. Let A be $m \times n$ matrix, where r = rank(A). Then there exists a $m \times m$ orthogonal matrix U and a $n \times n$ orthogonal matrix V and a $m \times n$ matrix $\Sigma = \begin{pmatrix} D & O_{r \times (n-r)} \\ O_{(m-r) \times r} & O_{(m-r) \times (n-r)} \end{pmatrix}$, where $D = diag(\sigma_1, \sigma_2, \cdots, \sigma_r)$ $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are singular values of A, such that

$$A = U\Sigma V$$

- **Proof.** STEP 1: Let $\{\vec{v}_1, \cdots, \vec{v}_n\}$ be the orthogonal eigenvector basis of matrix $A^T A$, where their corresponding eigenvalues are $\lambda_1 \ge \lambda_2 \ge$ $\cdots \lambda_r > \lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0$. Then we can prove that $\{A\vec{v}_1, \cdots, A\vec{v}_r\}$ are orthogonal basis of ColA.
 - STEP 2: Normalize all vectors in the set $\{A\vec{v}_1, \dots, A\vec{v}_r\}$ to obtain orthonormal basis $\{\vec{u}_1, \dots, \vec{u}_r\}$, where

$$\vec{u}_i = \frac{1}{||A\vec{v}_i||} A\vec{v}_i = \frac{1}{\sigma_i} A\vec{v}_i.$$

That is

$$A\vec{v}_i = \sigma_i \vec{u}_i, \ 1 \leq i \leq r.$$

- STEP 3: Extend $\{\vec{u}_1, \cdots, \vec{u}_r\}$ to be the orthonormal basis of \mathbb{R}^m $\{\vec{u}_1, \cdots, \vec{u}_r, \vec{u}_{r+1}, \cdots, \vec{u}_n\}.$
- STEP 4: Let $U = [\vec{u}_1, \cdots, \vec{u}_n]$ and $V = [\vec{v}_1, \cdots, \vec{v}_n]$. Then they are orthogonal matrices and

$$AV = [A\vec{v}_1, \cdots, A\vec{v}_r, 0 \cdots 0] = [\sigma_1\vec{u}_1, \cdots, \sigma_r\vec{u}_r, 0 \cdots 0].$$

Then we can easily have

$$A = U\Sigma V^T.$$

Example: Compute the singular value decomposition for matrix $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$.

Applications: Image Processing (见演示)

6 Application: Quadratic Form(二次型)

Definition 10 (quadratic form). A real quadratic form $q(x_1, \ldots, x_n)$ in n variables x_1, \ldots, x_n is a polynomial over \mathbb{R} having the form

$$q(x_1,\ldots,x_n) = \sum_{1 \leq i \leq j \leq n} c_{ij} x_i x_j.$$

Examples: 0, $8x_1^2$, $-x_2x_7$, $x_1^2 + x_2^2 + x_3^2$, $x_1x_2 + 12x_5^2$, $2x_3x_4 - 4x_1^2$ are all quadratic forms.

Now we are given a quadratic form $q(x_1, \ldots, x_n) = \sum_{1 \leq i \leq j \leq n} c_{ij} x_i x_j$. We can define a symmetric matrix A such that

$$[A]_{ij} = \begin{cases} c_{ij} & \text{if } i = j; \\ \frac{1}{2}c_{ij} & \text{if } i < j; \\ \frac{1}{2}c_{ji} & \text{if } i > j. \end{cases}$$

Then it is easy to verify that $q(x_1, \ldots, x_n) = (x_1 \cdots x_n)A(x_1 \cdots x_n)^T$. Conversely, for any $A \in \text{Sym}_n(\mathbb{R})$,

$$q(x_1, \dots, x_n) = (x_1 \cdots x_n) A(x_1 \cdots x_n)^T = \sum_{1 \le i \le n} a_{ii} x_i^2 + \sum_{1 \le i < j \le n} 2a_{ij} x_i x_j$$

is a quadratic form, which is called the quadratic form corresponding to A and is denoted by $q_A(x_1, \ldots, x_n)$.

Thus, any quadratic form in n variables can be represented by a symmetric matrix of size n uniquely.

Definition 11 (quadratic form function). Let $q(x_1, \ldots, x_n)$ be a real quadratic form. Then the function

$$f_q: \mathbb{R}^n \to \mathbb{R}, \quad f_q(\vec{x}) = q(x_1, \dots, x_n),$$

where $\vec{x} = (x_1 \cdots x_n)^T$, is called the quadratic form function induced by q. If q corresponds to $A \in \text{Sym}_n$, then we write f_A for f_q and $f_A(\vec{x}) = \vec{x}^T A \vec{x}$.

Question: Can we have a more simplified quadratic form for the same quadratic function?

Recall that for any $x \in \mathbb{R}^n$, we have $x = [x]_{\mathcal{E}}$, where \mathcal{E} is the standard basis. Suppose that \mathcal{B} is another basis of \mathbb{R}^n . Then $\vec{x} = [\vec{x}]_{\mathcal{E}} = P[\vec{x}]_{\mathcal{B}}$, where $P = [\mathcal{B}]_{\mathcal{E}}$. So for any quadratic form function f_A we have

$$f_A(\vec{x}) = f_A(P\vec{y}) = \vec{y}^T P^T A P \vec{y} = f_{P^T A P}(\vec{y}),$$

where $\vec{y} = [\vec{x}]_{\mathcal{B}}$. So f_A and f_{P^TAP} can be regarded as the same quadratic form function with respect to different bases. Therefore for the sake of convenience, it is quite natural to choose an invertible matrix P such that f_{P^TAP} has a simple form. Also, under the postulates of EUCLIDEAN GEOMETRY, only orthogonal coordinate transformation is admitted, that is P is required to be orthogonal.

Now by THEOREM 6, we can choose an orthogonal matrix U such that $U^T A U$ is diagonal. So we have

Theorem 12. Let $f_A(\vec{x}) = \vec{x}^T A \vec{x}$ be a quadratic form function. Then there exists $U \in O_n$ such that

$$f_A(\vec{x}) = f_{U^T A U}(\vec{y}) = \vec{y}^T U^T A U \vec{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2,$$

where $\vec{y} = (y_1 \cdots y_n)^T$ and $\lambda_1, \ldots, \lambda_n$ are all eigenvalues of A counting multiplicity.

6.1 Positive definite quadratic form

Definition 13 (positive definite quadratic form). Let q be a real quadratic form in n variables. Then q is said to be

1. positive definite (E\overline b) if $f_q(\vec{x}) > 0$ for all $x \neq 0$;

2. negative definite (负定的) if $f_q(\vec{x}) < 0$ for all $x \neq \vec{0}$;

3. indefinite (不定的) if the values of $f_q(\vec{x})$ can be both positive and negative.

Theorem 14. Let q_A be the quadratic form corresponding to $A \in \text{Sym}_n(\mathbb{R})$ and $\lambda_1, \ldots, \lambda_n$ all the eigenvalues of A. Then

1. q_A is positive definite iff $\lambda_i > 0$ for all i = 1, ..., n;

2. q_A is negative definite iff $\lambda_i < 0$ for all $i = 1, \ldots, n$;

3. q_A is indefinite iff there exist i, j such that $\lambda_i > 0$ and $\lambda_j < 0$.

Proof. Let U be an orthogonal matrix such that

$$f_A(\vec{x}) = f_{U^T A U}(\vec{y}) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

Then the range of $f_A(\vec{x})$ is the same as that of f_{U^TAU} . So the result follows easily by arguing the range of $\lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$.

Theorem 15. Let $A \in \text{Sym}_2(\mathbb{R})$ and $\lambda_1 \ge \lambda_2$ be eigenvalues of A. Then equation $f_A(\vec{x}) = 1$ represents a conic (圆锥) section, which can be classified as:

- 1. an ellipse (椭圆) if $\lambda_1 \ge \lambda_2 > 0$;
- 2. a hyperbola (双曲线) if $\lambda_1 > 0 > \lambda_2$;
- 3. empty set if $0 \ge \lambda_1 \ge \lambda_2$;

4. a pair of parallel lines if $\lambda_1 > \lambda_2 = 0$.

Proof. Let $U \in O_2$ be such that

$$f_A(\vec{x}) = f_{U^T A U}(\vec{y}) = \lambda_1 y_1^2 + \lambda_2 y_2^2.$$

Then the original equation turns out to be $\lambda_1 y_1^2 + \lambda_2 y_2^2 = 1$ and the result follows easily.

7 Geometric Understanding of Symmetric Matrix

Theorem 16. Let A be a symmetric matrix, then we have

 $M = \max\{\vec{x}^T A \vec{x} \mid ||\vec{x}|| = 1\} = the maximum eigenvalue of A,$

 $n = \min\{\vec{x}^T A \vec{x} \mid ||\vec{x}|| = 1\} = the minimum eigenvalue of A.$

The Cafe Terrace on the Place du Forum, $by \ Van \ Gogh$