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1 What Do You Learn from This Note

Do you still remember the following equation or something like that I
have mentioned in the class

f = x⃗TAx⃗. (1)

It is exactly a quadratic form function which is going to detail in the
following. This connects the eigen-analysis and orthogonal matrix very well.

Basic Concept：symmetric matrix(对称矩阵), quadratic form, quadratic
function, positive definitely matrix(正定矩阵), Spectral Decomposition (谱
分解), singular value decomposition (奇异值分解)

2 What is symmetric matrix

Definition 1 (symmetric matrix). A square matrix A is said to be sym-
metric iff AT = A (or equivalently, [A]ij = [A]ji).

Examples: 0n×n, In, diagonal matrices, etc..

Theorem 2. All square matrices in Rn×n form a vector space. Denote this
vector space as Mn.
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Theorem 3. The set of all symmetric matrices of size n, denoted by Symn,
forms a subspace of Mn.

Proof. Let A and B be symmetric matrices of size n and c a scalar. Then
1. 0n×n is symmetric obviously;
2. A+B is symmetric since (A+B)T = AT +BT = A+B;
3. cA is symmetric since (cA)T = cAT = cA.
So Symn is a subspace of Mn.

3 Eigenvectors for Symmetric Matrix

Theorem 4. Let A ∈ Symn(R). Also let λ1, λ2 ∈ R be distinct eigenvalues
of A with eigenvectors v⃗1, v⃗2 respectively. Then v⃗1⊥v⃗2.

Proof. We have

λ1(v⃗1·v⃗2) = λ1v⃗1·v⃗2 = Av1·v⃗2 = v⃗T1 A
Tv2 = v⃗T1 Av2 = v⃗1·Av2 = v⃗1·λ2v⃗2 = λ2(v⃗1·v⃗2).

So (λ1−λ2)(v⃗1 · v⃗2) = 0. But λ1−λ2 ̸= 0 since they are distinct, which forces
that v⃗1 · v⃗2 = 0.

Theorem 5. Let A ∈ Symn(R) and λ a complex eigenvalue of A. Then
λ ∈ R, that is λ is a real eigenvalue of A.

Proof. Let v ∈ Cn be a λ–eigenvector. Then Av⃗ = λv⃗. Also, A
T
= A. So

λ(vT v⃗) = vT (λv⃗) = v⃗
T
Av⃗ = Av⃗

T
v⃗ = (λv⃗

T
)v⃗ = λ(v⃗

T
v⃗).

So (λ− λ)v⃗
T
v⃗ = 0. Since v⃗ ̸= 0⃗, it follows that

v⃗
T
v⃗ = v⃗1v⃗1 + · · ·+ v⃗nv⃗n = |v⃗1|2 + · · ·+ |v⃗n|2 > 0

where (v⃗1 · · · v⃗n)
T = v⃗, which forces that λ− λ = 0. So λ is real.
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4 Orthogonality & Symmetry

Theorem 6. Let A be any symmetric function and U any orthogonal
matrix. Then U−1AU is still a symmetric matrix.

Proof. Notice that UT = U−1. So

(U−1AU)T = UTAT (U−1)T = U−1AU.

We can now prove the major result on symmetric matrices.

Theorem 7 (orthogonally diagonalizable). Let A be a square matrix.
Then A is a symmetric matrix if and only if there exists an orthogonal matrix
U such that U−1AU is diagonal.

Proof. Firstly, it is easy to verify that if there exists an orthogonal matrix
U such that U−1AU is diagonal, then A is symmetric. It is because let the
diagonal matrix be D, then A = UDU−1 ∈ Symn(R).

Secondly, or say reversely, if A is symmetric, then we need to prove there
exists an orthogonal matrix U such that U−1AU is diagonal. It can be done
by induction on n as follows.

1. Step 1: Base Case: n = 1. Trivial.

2. Step 2: Inductive Hypotheses: Assume the result holds for n− 1.

3. Step 3: Inductive Step: Let λ1 be an eigenvalue of A, which is real
by Theorem 5, and u⃗1 a unit λ1–eigenvector. Then we can extend
{u⃗1} to a basis of Rn, say {u⃗1, v⃗2, . . . , v⃗n}. Furthermore, by applying
the Gram–Schmidt process, we obtain an orthonormal basis U1 =
{u⃗1, u⃗2, . . . , u⃗n} of Rn. Define U1 = (u⃗1 · · · u⃗n) ∈ On(R), which is the
matrix from basis U1 to basis E . Let

F = U−1
1 AU1

It is not hard to see that the first column of F is (λ1 0 · · · 0) since
U−1
1 = UT . So F has the form

F =

(
λ1 0⃗Tn−1

0⃗n−1 A′

)
,
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where A′ ∈ Symn−1(R). By Inductive Hypotheses, there exists

U ′ ∈ On−1(R) such that U ′−1A′U ′ is diagonal. Define U2 =

(
1 0⃗Tn−1

0⃗n−1 U ′

)
,

which is an orthogonal matrix. Then

U−1
2 U−1

1 AU1U2 = U−1
2 FU2 =

(
λ1 0⃗Tn−1

0⃗n−1 U ′−1A′U ′

)
,

which is diagonal. So take U = U1U2, then U is an orthogonal matrix
and U−1AU is diagonal.

Remarks (Spectral Decomposition,谱谱谱分分分解解解): If A is orthogonally diag-
onalizable, and

A = PDP T =
(
u⃗1 · · · u⃗n

) λ1

. . .

λn


 u⃗T

1
...
u⃗T
n


, then A = λ1u⃗1u⃗

T
1 + · · ·+λnu⃗nu⃗

T
n is the spectral decomposition of matrix A.

5 Singular Value Decomposition

Question: If matrix A is not symmetric, it may not be orthog-
onally diagonalizable. However, ATA is symmetric and can be or-
thogonally diagonalized as PDP−1. Then is it possible to find some
orthogonal matrix U and Σ such that

PDP−1 = PΣTUTUΣP−1, A = UΣP−1 = UΣV T ?

Answer: Yes. It can be. The Singular Value Decomposition can
realize this!!!

Question: What is singular values?

Definition 8. Let A be m×n matrix. Then ATA can be orthogonally diago-
nalized. Let {v⃗1, · · · , v⃗n} be the orthogonal eigenvector basis of matrix ATA,
where their corresponding eigenvalues are λ1 > λ2 > · · ·λn > 0. Then we say
σi =

√
λi are the singular values of matrix A.
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Theorem 9. Let A be m×n matrix, where r = rank(A). Then there exists
a m×m orthogonal matrix U and a n×n orthogonal matrix V and a m×n

matrix Σ =

(
D Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

)
, where D = diag(σ1, σ2, · · · , σr)

σ1 > σ2 > · · · > σr > 0 are singular values of A, such that

A = UΣV.

Proof. • STEP 1: Let {v⃗1, · · · , v⃗n} be the orthogonal eigenvector basis
of matrix ATA, where their corresponding eigenvalues are λ1 > λ2 >
· · ·λr > λr+1 = λr+2 = · · · = λn = 0. Then we can prove that
{Av⃗1, · · · , Av⃗r} are orthogonal basis of ColA.

• STEP 2: Normalize all vectors in the set {Av⃗1, · · · , Av⃗r} to obtain
orthonormal basis {u⃗1, · · · , u⃗r}, where

u⃗i =
1

||Av⃗i||
Av⃗i =

1

σi

Av⃗i.

That is
Av⃗i = σiu⃗i, 1 6 i 6 r.

• STEP 3: Extend {u⃗1, · · · , u⃗r} to be the orthonormal basis of Rm

{u⃗1, · · · , u⃗r, u⃗r+1, · · · , u⃗n}.

• STEP 4: Let U = [u⃗1, · · · , u⃗n] and V = [v⃗1, · · · , v⃗n]. Then they are
orthogonal matrices and

AV = [Av⃗1, · · · , Av⃗r, 0 · · · 0] = [σ1u⃗1, · · · , σru⃗r, 0 · · · 0].

Then we can easily have
A = UΣV T .

Example: Compute the singular value decomposition for matrix

A =

(
4 11 14
8 7 −2

)
.

Applications: Image Processing (见见见演演演示示示)
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6 Application: Quadratic Form(二二二次次次型型型)

Definition 10 (quadratic form). A real quadratic form q(x1, . . . , xn) in n
variables x1, . . . , xn is a polynomial over R having the form

q(x1, . . . , xn) =
∑

16i6j6n

cijxixj.

Examples: 0, 8x2
1, −x2x7, x2

1 + x2
2 + x2

3, x1x2 + 12x2
5, 2x3x4 − 4x2

1 are
all quadratic forms.

Now we are given a quadratic form q(x1, . . . , xn) =
∑

16i6j6n cijxixj. We
can define a symmetric matrix A such that

[A]ij =


cij if i = j;
1
2
cij if i < j;

1
2
cji if i > j.

Then it is easy to verify that q(x1, . . . , xn) = (x1 · · · xn)A(x1 · · · xn)
T .

Conversely, for any A ∈ Symn(R),

q(x1, . . . , xn) = (x1 · · · xn)A(x1 · · · xn)
T =

∑
16i6n

aiix
2
i +

∑
16i<j6n

2aijxixj

is a quadratic form, which is called the quadratic form corresponding to A
and is denoted by qA(x1, . . . , xn).

Thus, any quadratic form in n variables can be represented by a symmet-
ric matrix of size n uniquely.

Definition 11 (quadratic form function). Let q(x1, . . . , xn) be a real quadrat-
ic form. Then the function

fq : Rn → R, fq(x⃗) = q(x1, . . . , xn),

where x⃗ = (x1 · · · xn)
T , is called the quadratic form function induced by q.

If q corresponds to A ∈ Symn, then we write fA for fq and fA(x⃗) = x⃗TAx⃗.
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Question: Can we have a more simplified quadratic form for the
same quadratic function?

Recall that for any x ∈ Rn, we have x = [x]E , where E is the standard
basis. Suppose that B is another basis of Rn. Then x⃗ = [x⃗]E = P [x⃗]B, where
P = [B]E . So for any quadratic form function fA we have

fA(x⃗) = fA(P y⃗) = y⃗TP TAPy⃗ = fPTAP (y⃗),

where y⃗ = [x⃗]B. So fA and fPTAP can be regarded as the same quadratic form
function with respect to different bases. Therefore for the sake of convenience,
it is quite natural to choose an invertible matrix P such that fPTAP has a
simple form. Also, under the postulates of Euclidean Geometry, only
orthogonal coordinate transformation is admitted, that is P is required to be
orthogonal.

Now by Theorem 6, we can choose an orthogonal matrix U such that
UTAU is diagonal. So we have

Theorem 12. Let fA(x⃗) = x⃗TAx⃗ be a quadratic form function. Then there
exists U ∈ On such that

fA(x⃗) = fUTAU(y⃗) = y⃗TUTAUy⃗ = λ1y
2
1 + · · ·+ λny

2
n,

where y⃗ = (y1 · · · yn)
T and λ1, . . . , λn are all eigenvalues of A counting

multiplicity.
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6.1 Positive definite quadratic form

Definition 13 (positive definite quadratic form). Let q be a real quadratic
form in n variables. Then q is said to be
1. positive definite (正定的) if fq(x⃗) > 0 for all x ̸= 0⃗;
2. negative definite (负定的) if fq(x⃗) < 0 for all x ̸= 0⃗;
3. indefinite (不定的) if the values of fq(x⃗) can be both positive and negative.

Theorem 14. Let qA be the quadratic form corresponding to A ∈ Symn(R)
and λ1, . . . , λn all the eigenvalues of A. Then
1. qA is positive definite iff λi > 0 for all i = 1, . . . , n;
2. qA is negative definite iff λi < 0 for all i = 1, . . . , n;
3. qA is indefinite iff there exist i, j such that λi > 0 and λj < 0.

Proof. Let U be an orthogonal matrix such that

fA(x⃗) = fUTAU(y⃗) = λ1y
2
1 + · · ·+ λny

2
n.

Then the range of fA(x⃗) is the same as that of fUTAU . So the result follows
easily by arguing the range of λ1y

2
1 + · · ·+ λny

2
n.

Theorem 15. Let A ∈ Sym2(R) and λ1 > λ2 be eigenvalues of A. Then
equation fA(x⃗) = 1 represents a conic (圆锥) section, which can be classified
as:
1. an ellipse (椭圆) if λ1 > λ2 > 0;
2. a hyperbola (双曲线) if λ1 > 0 > λ2;
3. empty set if 0 > λ1 > λ2;
4. a pair of parallel lines if λ1 > λ2 = 0.

Proof. Let U ∈ O2 be such that

fA(x⃗) = fUTAU(y⃗) = λ1y
2
1 + λ2y

2
2.

Then the original equation turns out to be λ1y
2
1 + λ2y

2
2 = 1 and the result

follows easily.
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7 Geometric Understanding of Symmetric Ma-

trix

Theorem 16. Let A be a symmetric matrix, then we have

M = max{x⃗TAx⃗| ||x⃗|| = 1} = the maximum eigenvalue of A,

n = min{x⃗TAx⃗| ||x⃗|| = 1} = the minimum eigenvalue of A.

The Cafe Terrace on the Place du Forum,

by Van Gogh
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