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Abstract

K-means, a simple and effective clustering algorithm, is

one of the most widely used algorithms in computer vision

community. Traditional k-means is an iterative algorithm—

in each iteration new cluster centers are computed and each

data point is re-assigned to its nearest center. The cluster

re-assignment step becomes prohibitively expensive when

the number of data points and cluster centers are large.

In this paper, we propose a novel approximate k-means

algorithm to greatly reduce the computational complexity

in the assignment step. Our approach is motivated by the

observation that most active points changing their cluster

assignments at each iteration are located on or near clus-

ter boundaries. The idea is to efficiently identify those ac-

tive points by pre-assembling the data into groups of neigh-

boring points using multiple random spatial partition trees,

and to use the neighborhood information to construct a clo-

sure for each cluster, in such a way only a small number of

cluster candidates need to be considered when assigning a

data point to its nearest cluster. Using complexity analysis,

real data clustering, and applications to image retrieval, we

show that our approach out-performs state-of-the-art ap-

proximate k-means algorithms in terms of clustering quality

and efficiency.

1. Introduction

K-means [12] has been widely used in computer vision

and machine learning for clustering and vector quantization.

In image retrieval and recognition, it is often used to learn

the codebook for the popular bag-of-features image repre-

sentation [16, 23].

In large-scale image retrieval, it is advantageous to

learn a large codebook containing one million or more en-

tries [16, 18], which requires clustering tens or even hun-

dreds of millions of high-dimensional feature descriptors

into one million or more clusters. Another emerging ap-

plication of large-scale clustering is to organize a large cor-
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pus of web images for various purposes such as web image

browsing/exploring.

The standard k-means algorithm, Lloyd’s algorithm [6,

11, 12], is an iterative refinement approach that greedily

minimizes the sum of squared distances between each point

and its assigned cluster center. It consists of two iterative

steps, the assignment step and the update step. The as-

signment step aims to find the nearest cluster for each point

by checking the distance between the point and each clus-

ter center; The update step re-computes the cluster centers

based on current assignments. When clustering n points

into k clusters, the assignment step costs O(nk). For appli-

cations with large nk, the assignment step in exact k-means

becomes prohibitively expensive.

Various approaches have been proposed for approxi-

mate k-means in large-scale applications. The hierarchi-

cal k-means (HKM) uses a clustering tree instead of flat k-

means [16] to reduce the number of clusters in each assign-

ment step. It first clusters the points into a small number

(e.g., 10) of clusters, then recursively divides each cluster

until a certain depth h is reached. The leaves in the re-

sulted clustering tree are considered to be the final clus-

ters. For h = 6, one obtains one million clusters. It was

shown in [16] that generating large codebooks by HKM

substantially improved image retrieval performances. How-

ever, when assigning a point to a cluster (e.g., quantizing a

feature descriptor), it is possible that an error could be com-

mitted at a higher level of the tree, leading to a sub-optimal

cluster assignment and thus sub-optimal quantization.

Another approximate k-means (AKM) algorithm is pro-

posed in [18], again for learning visual codebooks. In [18]

approximate nearest neighbor (ANN) search replaces the

exact nearest neighbor (NN) search in the assignment step

when searching for the nearest cluster center for each point.

In particular, the current cluster centers in each k-means

iteration are organized by a forest of k-d trees to per-

form an accelerated approximate NN search. Refined-AKM

(RAKM) [17] further improves the convergence speed by

by enforcing constraints of non-increasing objective val-

ues during the iterations. Both AKM and RAKM require

a considerable overhead of constructing k-d trees in each
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k-means iteration, thus a trade-off between the speed and

the accuracy of the nearest neighbor search has to be made.

More importantly, we observe that active points, defined as

the points whose cluster assignments change in each iter-

ation, often locate at or near boundaries of different clus-

ters. Points near cluster boundaries present the worst case

for ANN search to return their accurate nearest neighbors.

Without expensive back-tracking in k-d trees, ANN search

results are error-prone for active points.

In this paper, we propose a novel and effective approxi-

mate k-means algorithm. The idea is to identify those active

points at or near cluster boundaries to improve both the effi-

ciency and accuracy in the assignment step of the k-means

algorithm. We generate a neighborhood set for each data

point by pre-assembling the data points using multiple ran-

dom partition trees [25]. A cluster closure is then formed

by expanding each point in the cluster into its neighborhood

set, as illustrated in Figure 2. When assigning a point x to

its nearest cluster, we only need to consider those clusters

that contain x in their closures. Typically a point belongs to

a small number of cluster closures, thus the number of can-

didate clusters are greatly reduced in the assignment step.

We show that the computational complexity of assigning a

new cluster to a point is only O(1), in contrast to O(log k)
for AKM or RAKM. Another obvious advantage of our ap-

proach is that we only need to organize the data points once

as the data points do not change during the iterations, in

contrast to AKM or RAKM that needs to construct the k-

d trees at each iteration as the cluster centers change from

iteration to iteration.

We evaluate our algorithm by complexity analysis, the

performance on clustering real data sets, and the per-

formance of image retrieval applications with codebooks

learned by clustering. Our proposed algorithm achieves sig-

nificant improvements compared to the state-of-the-art, in

both accuracy and running time. When clustering a real

data set of 1M 384-dimensional GIST features into 10K
clusters, our algorithm converges more than 2.5 faster than

the state-of-the-art algorithms. In the image retrieval appli-

cation on a standard dataset, our algorithm learns a code-

book with 750K visual words that outperforms the code-

books with 1M visual words learned by other state-of-the-

art algorithms – even our codebook with 500K visual words

is superior over other codebooks with 1M visual words.

2. Related work

Various approaches have been proposed to speed up ex-

act k-means. An accelerated algorithm is proposed by using

the triangle inequality [3], but requires O(k2) extra storage,

rendering it impractical for a large number of clusters. The

approach in [9] presents a filtering algorithm. It begins by

storing the data points in a k-d tree and maintains, for each

node of the tree, a subset of candidate centers. The candi-

dates for each node are pruned or filtered, as they propagate

to the children, which eliminates the computation time by

avoiding comparing each center with all the points. But as

this paper points out, it works well only when the number

of clusters is small.

An alternative solution to speed up k-means is based on

sub-sampling the data points. One way is to run k-means

over sub-sampled data points, and then to directly assign

the remaining points to the clusters. An extension of the

above solution is to optionally add the remaining points in-

crementally, and to rerun k-means to get a finer clustering.

The former scheme is not applicable in many applications.

As pointed in [18], it results in less accurate clustering

and lower performance in image retrieval applications. The

Coremeans algorithm [7] uses the latter scheme. It begins

with a coreset and incrementally increases the size of the

coreset. As pointed out in [7], Coremeans works well only

for a small number of clusters. Consequently, those meth-

ods are not suitable for large-scale clustering problems, es-

pecially for problems with a large number of clusters.

In the community of document processing, Canopy clus-

tering [14], which is closely related to our approach, first di-

vides the data points into many overlapping subsets (called

canopies), and clustering is performed by measuring ex-

act distances only between points that occur within a com-

mon canopy. This eliminates a lot of unnecessary distance

computations. Canopy clustering, however, suffers from

the canopy creation whose cost is high for visual features.

More importantly, it is non-trivial (1) to define a meaningful

and efficient approximate distance function for visual data,

and (2) to tune the parameters for computing the canopy,

both of which are crucial to the effectiveness and efficiency

of Canopy clustering. In contrast, our approach is simpler

and more efficient because random partitions can be created

with a cost of only O(n log n). Moreover, our method can

adaptively update cluster member candidates, in contrast to

static canopies in [14].

Object discovery and mining from spatially related im-

ages is one topic that is related to image clustering [2, 10,

19, 20, 22], which also aims to cluster the images so that

each group contains the same object. This is a potential ap-

plication of our scalable k-means algorithm that we intend

to investigate in the future.

There are some other complementary works in improv-

ing k-means clustering. In [21], the update step is speeded

up by transforming a batch update to a mini-batch update.

The high-dimensional issue has also been addressed by us-

ing dimension reduction, e.g., random projections [1, 5] and

product quantization [8].

3. K-means with cluster closures

Given a set of points {x1,x2, · · · ,xn}, where each

point is a d-dimensional vector, k-means clustering aims
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Figure 1. The distribution of the distance

ratio. It shows that most active points
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some cluster boundaries.
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Figure 2. Illustration of uniting neighbor-

hoods to obtain the closure. The black
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Figure 3. The coverage of the active

points by the closure w.r.t. the neighbor-

hood size. A neighborhood of size 50 has

about 90% coverage.

to partition these n points into k (k 6 n) groups, G =
{G1,G2, · · · ,Gk}, by minimizing the within-cluster sum of

squared distortions (WCSSD):

J(C,G) =
∑k

j=1

∑
xi∈Gj

‖xi − cj‖22, (1)

where cj is the center of cluster Gj , cj = 1
|Gj |

∑
xi∈Gj

xi,

and C = {c1, · · · , ck}. In the following of this paper, we

use group and cluster interchangeably.

3.1. Lloyd algorithm, HKM, and AKM

Minimizing the objective function in Equation 1 is NP-

hard in many cases [13]. Thus, various heuristic algo-

rithms are used in practice, and k-means (or Lloyd’s algo-

rithm) [6, 11, 12] is the most commonly used algorithm. It

starts from a set of k cluster centers (obtained from priors or

random initialization) {c(1)1 , · · · , c(1)k }, and then proceeds

by alternating the following two steps:

• Assignment step: Given the current set of k cluster

centers, C(t) = {c(t)1 , · · · , c(t)k }, assign each point xi

to the cluster whose center is the closest to xi:

z
(t+1)
i = argminj ‖xi − c

(t)
j ‖2. (2)

• Update step: Update the points in each cluster,

G(t+1)
j = {xi|z(t+1)

i = j}, and compute the new cen-

ter for each cluster, c
(t+1)
j = 1

|G
(t+1)
j

|

∑
xi∈G

(t+1)
j

xi.

The computational complexity for the above assignment

step and the update step is O(nk) and O(n), respectively.

Hierarchical k-means uses a divide-and-conquer strat-

egy. It divides the data points into a few (e.g., a constant

number k̄, much smaller than k) subsets (clusters), and then

recursively divides each subset. In each recursion, each

point can only be assigned to one of the k̄ clusters, and the

depth of the recursions is O(log n). The computational cost

is O(n logn) (ignoring the small constant number k̄).

Approximate k-means [18] organizes the k cluster cen-

ters using a forest of random k-d trees, with which the as-

signment can then be efficiently done by the ANN search.

The cost of the assignment step is reduced to O(k log k +
Mn log k) = O(Mn log k), with M being the number of

accessed nearest cluster candidates in the k-d trees.

3.2. Fast assignment with cluster closures

K-means clustering partitions the data space into

Voronoi cells – each cell is a cluster and the cluster center

is the center of the cell. In the assignment step, each point

x is assigned to its nearest cluster center. We call points

that change cluster assignments in an iteration active points.

In other words, x changes cluster membership from the i-

th cluster to the j-th cluster because d(x, cj) < d(x, ci),
where d(·) is the distance function.

We observe that active points are close to the boundary

between cj and ci. To verify this, we define distance ratio

for an active point x as: r(x) = 1 − d(x,cj)
d(x,ci)

. The distance

ratio r(x) is in the range of (0, 1], since we only compute

distance ratio for active points. Smaller values of r mean

closer to the cluster boundaries. Figure 1 shows the distri-

bution of distance ratios when clustering 1M GIST features

from the Tiny image data set (described in 4.1) to 10K clus-

ters. We can see that most active points have small distance

ratios, e.g. more than 90% of the active points have a dis-

tance ratio less than 0.15 (shown in the red area), and thus

lie near to cluster boundaries.

During the assignment step, we only need to identify the

active points and change their cluster memberships. The

above observation that active points lie close to cell bound-

aries suggests a novel approach to speed up the assignment

step by identifying active points around cell boundaries.

Assume for now that we have identified the neighbor-

hood of a given pointx, a set of points containing x’s neigh-

boring points and itself, denoted by Nx. We define the clo-

sure of a cluster G as:

Ḡ =
⋃

x∈G
Nx. (3)

Figure 2 illustrates the relationship between the cluster, the

neighborhood points, and the closure.

If active points are on the cluster boundaries, as we have

observed, then by increasing the neighborhood size Nx, the

group closure Ḡ will be accordingly expanded to cover more

active points that will be assigned to this group G in the as-

signment step. Figure 3 shows the recall (of an active point

being covered by the closure of its newly assigned cluster)

vs. the neighborhood size of Nx over the Tinyimage data set
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describe in Section 4.1. Similar results are also observed in

other data sets. As we can see, with a neighborhood size as

small as 50, about 90% of the active points are covered by

the closures of the clusters to which these active points will

be re-assigned.

We now turn to the question of how to efficiently com-

pute the neighborhood Nx of a given point x used in Equa-

tion 3. We propose an ensemble approach using multiple

random spatial partitions. A single approximate neighbor-

hood for each point can be derived from a random partition

(RP) tree [25], and the final neighborhood is assembled by

combining the results from multiple random spatial parti-

tions. Suppose that a leaf node of a single RP tree, contains

a set of points V = {xj}, we consider all the points in V
to be mutually neighboring to each other. Thus the neigh-

borhood of a point x in the set V can be straightforwardly

computed by Nx = V .

Since RP trees are efficient to construct, the above neigh-

borhood computation is also efficient. While the group clo-

sure from one single RP tree may miss some active points,

using multiple RP trees effectively handles this problem.

We simply unite the neighborhoods of x from all the RP

trees:

Nx =
⋃

l
Vl.

Here Vl is a set of points in the leaf from the l-th RP tree

that contains x. Note that a point x may belong to multiple

group closures. Also note that the neighborhood of a given

point is computed only once.

With the group closures {Ḡj} computed from Equa-

tion 3, the assignment step can be done by verifying whether

a point belonging to the closure Ḡj should indeed be as-

signed to the cluster Gj :

• Initialization step: Initialize the distance array D[1 :
n] by assigning an positive infinity value to each entry.

• Closure-based assignment:

For each cluster closure {Ḡj}:

For each point xs
i ∈ Ḡj , s = 1, 2, ..., |Ḡj|:

if: ‖xs
i − c

(t)
j ‖22 < D[i],

then: z
(t+1)
i = j,

D[i] = ‖xs
i − c

(t)
j ‖22.

Here c
(t)
j is the cluster center of Gj at the t-th iteration,

i is the global index for x and s is the index into Ḡj for

point xi.

In the assignment step, we only need to compute the dis-

tance from the center of a cluster to each point in the cluster

closure. A point typically belongs to a small number of

cluster closures. Thus, instead of computing the distances

from a point x to all cluster centers in exact k-means, or

constructing k-d trees of all cluster centers at each iteration

to find the approximate nearest cluster center, we only need

to compute the distance from x to a small number of clus-

ter centers whose cluster closures contain x, resulting in a

significant reduction in computational cost. Moreover, the

fact that active points are close to cluster boundaries is the

worst case for k-d trees to find the nearest neighbor. On the

contrary, such a fact is advantageous for our algorithm.

3.3. Analysis

Convergence. The following shows that our algorithm al-

ways converges. Since the objective function J(C,G) is

lower-bounded, the convergence can be guaranteed if the

objective value does not increase at each iterative step.

Theorem 1 (Non-increase). The value of the objective func-

tion does not increase at each iterative step, i.e.,

J(C(t+1),G(t+1)) 6 J(C(t),G(t)). (4)

Proof. In the assignment step for the (t + 1)-th iteration, {c
(t)
k }

computed from the t-th iteration are cluster candidates. xi would

change its cluster membership only if it finds a closer cluster cen-

ter, thus we have ‖xi−c
(t)

z
(t+1)
i

‖2 6 ‖xi−c
(t)

z
(t)
i

‖2, and Equation 4

holds for the assignment step.

In the update step, the cluster center will then be update based

on the new point assignments. We now show that this update will

not increase the within-cluster sum of squared distortions, or in a

more general form:

∑
x∈Gj

‖x− c̄j‖
2
2 6

∑
x∈Gj

‖x− c‖22, (5)

where c̄j is the j-th updated cluster center c̄j = 1
|Gj |

∑
x∈Gj

x,

and c is an arbitrary point in the data space. Equation 5 can be

verified by the following:

∑
x∈Gj

‖x− c‖22

=
∑

x∈Gj

‖(x− c̄j) + (c̄j − c)‖22

=
∑

x∈Gj

‖x− c̄j‖
2
2 + 2(c̄j − c)T

∑
x∈Gj

(x− c̄j)

+ |Gj |‖c̄j − c‖22

=
∑

x∈Gj

‖x− c̄j‖
2
2 + |Gj |‖c̄j − c‖22

>
∑

x∈Gj

‖x− c̄j‖
2
2. (6)

Thus Equation 4 holds for the update step.

Accuracy. Our algorithm obtains the same result as the

exact Lloyd’s algorithm if the closures of the clusters are

large enough, in such a way all the points that would have

been assigned to the j-th cluster when using the Lloyd’s al-

gorithm belong to the cluster closure Ḡj . However, it should

be noted that this condition is sufficient but not necessary.

In practice, even with a small neighborhood, our approach
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often obtains results similar to using the exact Lloyd’s algo-

rithm. The reason is that the missing points, which should

have been assigned to the current cluster at the current iter-

ation but are missed, are close to the cluster boundary thus

likely to appear in the closure of the new clusters updated

by the current iteration. As a result, these missing points are

very likely to be correctly1 assigned in the next iteration.

Complexity. Consider a point xi and its neighborhood

Nxi
, the possible groups that may absorb xi are G̃xi

=
{Gj| ∃ xj s.t. xj ∈ Gj and xj ∈ Nxi

}. As a result, we have

|G̃xi
| 6 |Nxi

|. In our implementation, we use balanced

random bi-partition trees, with each leaf node containing c

points (c is a small number). Suppose we use m random

partition trees. Then the neighborhood size of a point will

not be larger than M = cm. As a result, the complexity

of the closure-based assignment step is O(nM). In con-

trast, the assignment step in AKM [18] costs O(nM log k)
if M NN candidates are accessed, which is much more ex-

pensive. For the complexity of constructing trees, our ap-

proach constructs a RP-tree in O(n log n) and AKM costs

O(k log k) to build a kd-tree. However, our approach only

needs a small number (typically 10 in our clustering exper-

iments) of trees through all iterations, but AKM requires

constructing a number (e.g., 8 in [18]) of trees in each iter-

ation, which makes the total cost more expensive.

3.4. Implementation details

We use an adaptive scheme that incrementally creates

random partitions to automatically expand the group clo-

sures on demand. At the beginning of our algorithm, we

only create one random partition tree. After each iteration,

we compute the reduction rate of the within-cluster sum of

squared distortions. If the reduction rate in successive iter-

ations is smaller than a predefined threshold, a new random

partition tree is added to expand points’ neighborhood thus

group closures. We compare the adaptive neighborhood

scheme to a static one that computes the neighborhoods al-

together at the beginning (called static neighborhoods). As

shown in Figure 4, we can see that the adaptive neighbor-

hood scheme performs better in all the iterations and hence

is adopted in the later comparison experiments.

The closure-based assignment step can be implemented

in another equivalent way. For each point x, we first iden-

tify the candidate centers by checking the cluster member-

ships Zx of the points within the neighborhood of x. Here

Zx = {z(y) | y ∈ Nx}, and z(y) is the cluster member-

ship of point y. Then the best cluster candidate for x can

be found by checking the clusters {cj | j ∈ Zx}. In this

equivalent implementation, the assignments are computed

independently and can be naturally parallelized. The update

step computes the mean for each the cluster independently,

1“Correctly” w.r.t. assignments if produced by Lloyd’s algorithm.
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which can be naturally parallelized as well. Thus, our al-

gorithm can be easily parallelized. We show the clustering

performance with the parallel implementation (using multi-

ple threads on multi-core CPUs) in Figure 5.

4. Experiments

4.1. Data sets

SIFT. The SIFT features are collected from the Caltech 101

data set [4]. We extract maximally stable extremal regions

for each image, and compute a 128-dimensional SIFT fea-

ture for each region. We randomly sample 1 million features

to form this data set.

Tiny images. We generate three data sets sampled from

the tiny images [24]: 1M tiny images, 200K tiny images,

and 500K tiny images. The 1M tiny images are randomly

sampled without using category (tag) information. We sam-

ple 1K (1.25K) tags from the tiny images and sample about

200 (400) images for each tag, forming 200K (500K) im-

ages. We use a 384-dimensional GIST feature to represent

each image.

Shopping images. We collect about 5M shopping images

from the Internet. Each image is associated with a tag to

indicate its category. We sample 1K tags and sample 200
images for each tag to form the 200K image set. We use a

576-dimensional HOG feature to represent each image.

Oxford 5K . This data set [18] consists of 5062 high res-

olution images of 11 Oxford landmarks. The collection

has been manually annotated to generate a comprehensive

ground truth for 11 different landmarks, each represented by

5 possible queries. This gives a set of 55 queries over which

an object retrieval system can be evaluated. The images, the

SIFT features, and the ground truth labeling of this data set

is publicly available2. This data set and the next data set

will be used to demonstrate the application of our approach

to object retrieval.

Ukbench 10K . This data set is from the Recognition

Benchmark introduced in [16]. It consists of 10200 images

split into four-image groups, each of the same scene/object

2 http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/index.html
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Figure 7. Clustering performance in terms of normalized mutual information (NMI) vs. time, on the dataset of (a) 200K tiny images, (b)

500K tiny images, and (c) 200K shopping images.

taken at different viewpoints. The data set, the SIFT de-

scriptors, and the ground truth is publicly available3.

4.2. Evaluation metric

We use two metrics to evaluate the performance of vari-

ous clustering algorithms, the within-cluster sum of squared

distortions (WCSSD) which is the objective value defined

by Equation 1, and the normalized mutual information

(NMI) which is widely used for clustering evaluation. NMI

requires the ground truth of cluster assignments G for points

in the data set. Given a clustering result X , NMI is defined

by NMI(G,X ) = I(G,X )√
H(G)H(X )

, where I(G,X ) is the mu-

tual information of G and X and H(·) is the entropy.

In object retrieval, image feature descriptors are quan-

tized into visual words using codebooks. A codebook of

high quality will result in less quantization errors and more

repeatable quantization results, thus leading to a better re-

3http://www.vis.uky.edu/˜stewe/ukbench/

trieval performance. We apply various clustering algo-

rithms to constructing visual codebooks for object retrieval.

By fixing all the other components and parameters in our

retrieval system except the codebook, the retrieval perfor-

mance is an indicator of the quality of the codebook. For

the Oxford 5K dataset, we follow [18] to use mean aver-

age precision (mAP) to evaluate the retrieved images. For

the ukbench 10K dataset, the retrieval performance is mea-

sured by the average number of relevant images in the top 4
retrieved images, ranging from 0 to 4.

4.3. Clustering performance comparison

We compare our proposed clustering algorithm with four

approximate k-means algorithms, namely hierarchial k-

means (HKM), approximate k-means (AKM), refined ap-

proximate k-means (RAKM) and Canopy algorithm. The

exact Lloyd’s is much less efficient and prohibitively costly

for large data sets, so we do not report its results. We use the

implementation of HKM available from [15], and the public
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release of AKM4. The RAKM is modified from the above

AKM release. For Canopy algorithm, we conduct principal

component analysis over the features to project them to a

lower-dimensional subspace to achieve a fast canopy con-

struction. For a fair comparison, we initialize the cluster as-

signment by a random partition tree in all algorithms except

HKM The time costs for constructing trees or other initial-

ization are all included in the comparisons. All algorithms

are run on a 2.66GHz desktop PC using a single thread.

Figure 6 shows the clustering performance in terms of

WCSSD vs. time. The experiments are performed on two

data sets, the 1M 128-dimensional SIFT data set and the

1M 384-dimensional tiny image data set, respectively. The

results are shown for different number of clusters, ranging

from 500 to 10K . Our approach consistently outperforms

the other four approximate k-means algorithms – it con-

verges faster to a smaller objective value.

Figure 7 shows the clustering results in terms of NMI vs.

time. We use three labeled datasets, the 200K tiny images,

the 500K tiny images and the 200K shopping images. Con-

sistent with the WCSSD comparison results, our proposed

algorithm is superior to the other four clustering algorithms.

4.4. Empirical analysis

We conduct empirical studies to understand why our pro-

posed algorithm has superior performance. In particular

we compare our proposed approach with AKM [18] and

RAKM [17] in terms of the accuracy and the time cost of

cluster assignment, using the task of clustering the 1M Tiny

image data set into 2000 clusters. To be on the same ground,

in the assignment step the number of candidate clusters for

each point is set the same. For (R)AKM, the number of

candidate clusters is simply the number of points accessed

in k-d trees when searching for a nearest neighbor. For

our proposed algorithm, we partition the data points with

RP trees such that the average number of candidate clusters

is the same as the number of accessed points in k-d trees.

Figure 8(a) compares the accuracy of cluster assignment by

varying the number of candidate clusters. We can see that

our approach has a much higher accuracy in all cases, which

has a positive impact on the iterative clustering algorithm to

make it converge faster. Figure 8(b) compares the time of

performing one iteration, by varying the number of candi-

date clusters M for each point. We can see that our algo-

rithm is much faster than (R)AKM in all cases, e.g., taking

only about half the time of (R)AKM when M = 50. This is

as expected since finding the best cluster costs O(1) for our

algorithm but O(log k) for kd-trees used in (R)AKM.

We perform another empirical study to investigate the

bucket size parameter in the RP tree, using the task of clus-

tering the SIFT dataset into 10K clusters. Figure 9(a) shows

the results in terms of WCSSD vs. the number of iterations,

4http://www.robots.ox.ac.uk/˜vgg/software/fastcluster/
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Figure 8. Comparison of accuracy and time in the assignment step

when clustering the 1M Tiny image data set into 2000 clusters.

(a) accuracy vs. the number of cluster candidates; (b) time for one

iteration vs. the number of cluster candidates.

with bucket sizes set to 5, 10, 20, 40, respectively. A larger

bucket size leads to a larger WCSSD reduction in each iter-

ation, because it effectively increases the neighborhood size

for each data point. Figure 9(b) shows the result in terms of

WCSSD vs. time. We observe that at the beginning, bucket

sizes of 10 and 20 perform even better than the bucket size

of 40. But eventually, the performance of various bucket

sizes are similar. The difference between Figure 9(a) and

Figure 9(b) is expected, as a larger bucket size leads to a

better cluster assignment at each iteration, but increases the

time cost for one iteration. In our comparison experiments,

a bucket size of 10 is adopted.

4.5. Evaluation using object retrieval

We compare the quality of codebooks built by HKM,

(R)AKM, and our approach, using the performance of ob-

ject retrieval. AKM and RAKM perform almost the same

when the number of accessed candidate centers is large

enough, so we only present results from AKM.

We perform the experiments on the UKBench 10K
dataset which has 7M local features, and on the Oxford 5K
dataset which has 16M local features. Following [18], we

perform the clustering algorithms to build the codebooks,

and test only the filtering stage of the retrieval system, i.e.,

retrieval is performed using the inverted file (including the

tf-idf weighting).

The results over the UKbench 10K dataset are obtained

by constructing 1M codebook, and use the L1 distance met-

ric. The results of HKM and AKM are taken from [16]

and [18], respectively. From Table 1, we see that for the

same codebook size, our method outperforms other ap-

proaches. Besides, we also conduct the experiment over

subsets of various sizes, which means that we only consider

the images in the subset as queries and the search range is

also constrained within the subset. The performance com-

parison is given in Figure 10, from which we can see our

approach consistently gets superior performances.

The performance comparison using the Oxford 5K
dataset is shown in Table 2. We show the results of using the

bag-of-words (BoW) representation with a 1M codebook
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Figure 9. Clustering performance vs. the bucket size of a RP tree.

Method Scoring Average

levels Top

HKM 1 3.16

HKM 2 3.07

HKM 3 3.29

HKM 4 3.29

AKM 3.45

Ours 3.50

Table 1. A comparison of our

approach to HKM and AKM on

the UKbench 10K data set us-

ing a 1M -word codebook.
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Figure 10. A comparison of our

approach to HKM and AKM on

the UKbench 10K data set with

various subset sizes.

and using spatial re-ranking [18]. Our approach achieves

the best performance, outperforming AKM in both the BoW

representation and spatial re-ranking. We also compare the

performance of our approach to AKM and HKM using dif-

ferent codebook sizes, as shown in Table 3. Our approach is

superior compared to other approaches with different code-

book sizes. Different from AKM that gets the best perfor-

mance with a 1M -word codebook, our approach obtains the

best performance with a 750K-word codebook, indicating

that our approach is producing a higher quality codebook.

5. Conclusions

There are three factors that contribute to the superior per-

formance of our proposed approach: (1) We only need to

consider active points that change their cluster assignments

in the assignment step of the k-means algorithm; (2) Most

active points locate at or near cluster boundaries; (3) We

can efficiently identify active points by pre-assembling data

points using multiple random partition trees. The result is

a simple, easily parallelizable, and surprisingly efficient k-

means clustering algorithm. It outperforms state-of-the-art

on clustering large-scale real datasets and learning code-

books for image retrieval.
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