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ABSTRACT

Online learning is very important for processing sequential data and helps alleviate the computation
burden on large scale data as well. Especially, one-pass online learning is to predict a new coming
sample's label and update the model based on the prediction, where each coming sample is used only
once and never stored. So far, existing one-pass online learning methods are globally modeled and do not
take the local structure of the data distribution into consideration, which is a significant factor of
handling the nonlinear data separation case. In this work, we propose a local online learning (LOL)
method, a multiple hyperplane Passive Aggressive algorithm integrated with online clustering, so that all
local hyperplanes are learned jointly and working cooperatively. This is achieved by formulating a
common component as information traffic among multiple hyperplanes in LOL. A joint optimization
algorithm is proposed and theoretical analysis on the cumulative error is also provided. Extensive
experiments on 11 datasets show that LOL can learn a nonlinear decision boundary, overall achieving

notably better performance without using any kernel modeling and second order modeling.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We are concerning the one-pass online learning without
keeping any tracks of passed samples. The key idea is to update
current model by retaining the new learned model close to the
current one and meanwhile imposing a margin separation on the
most recent sample. After prediction and updating current model,
the sample is abandoned, which means it could not be used for
training again. Therefore, one-pass training reduces the consum-
ing of memory so greatly that it is very practical in some cir-
cumstances. For example, a closed-circuit television camera with
very limited resources is allowed to learn from video stream in
one-pass manner to enhance its performance of recognition.
Hence, one-pass online learning reduces the burden of the learn-
ing system and makes machine learning models more applicable
and flexible.

One of the most widely known one-pass online learning
methods is the first-order Passive-Aggressive (PA) method [1],
which updates a marginal classifier according to the feedback of
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the prediction of each sequential data point. In order to explicitly
consider the uncertainty of weights of linear classifier, confidence-
weighted (CW) learning [2] as well as its variants soft confidence-
weighted (SCW-I, SCW-II) [3], adaptive regularization of weight
vectors (AROW) [4] have been recently investigated. However, the
Passive-Aggressive and its related confidence-weighted learning
methods still assume that samples are almost linearly separable,
which is not always true since data points are always nonlinearly
separable in the original input space.

To address the nonlinear separation problem in online learning,
there are indeed some nonlinear algorithms, but not all of them
are one-pass based. These algorithms include direct application of
kernel trick on online linear classifiers [5,6], budget-based online
models [7-10], and kernel approximation mapping based models
[11] by using random Fourier features or Nystrom method. How-
ever, limitations exist in these methods, including (1) memory
overflow after processing a large amount of data due to keeping
historical wrong classified samples as support vectors (SVs) in
[5,6], (2) large computational burden caused by processing on SVs
in the budget in [7-10], and (3) data-independence and not
adaptation to data stream in [11].

In offline learning, besides kernelizing linear classification
models to solve the linearly non-separable problems, local classi-
fiers have also been investigated recently to assign data samples to
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a set of prototypes and then infer the weights for model combi-
nation of local classifiers. Locally linear support vector machine
(LLSVM) [12], and local deep kernel learning (LDKL) [13] were
proposed to solve non-linear classification tasks using aweighted
combination of multiple local hyperplanes, whose weights can be
determined by local coding. As an extreme, the 1-nearest proto-
type classifier (1-NN) [14] combines prototype learning and
nearest neighbor search to perform classification. Local classifiers
has better adaptability to various types of data distribution than
kernel classifiers, and the advantage of combining local classifiers
is to avoid kernel modeling, so as to avoid computational expen-
sive for large scale data. However, existing works mentioned above
are not specifically designed for online learning tasks. Hence how
to derive online local learning and how local online approach
works for on-the-fly classification are still unknown.

In this paper, we propose a novel online approach by jointly
learning multiple local hyperplanes to nonlinearly process
sequential data in an one-pass manner. In particular, we extend
the single hyperplane Passive-Aggressive method to a multiple
local hyperplanes one. All local hyperplanes will be connected by a
common component and optimized simultaneously. In our mod-
eling, the local specific components of hyperplanes allow our
model to make more accurate prediction locally (i.e. sensitive to a
probe data point), while the common component shared by these
local hyperplanes alleviates the over-fitting caused by the local
information. A novel optimization algorithm is proposed and the
theoretical relationship between the single and multiple hyper-
plane Passive Aggressive algorithms is derived from the aspect of
cumulative error. We call our proposed model the local online
learning (LOL) method. Our method achieves notable better per-
formance on various tasks, especially on multi-class classification
tasks, such as Multi-PIE Identity recognition of 249 subjects,
achieving more than 95% accuracy and at least 13% higher than the
compared methods. The details will be discussed in the experi-
ment section (Section 5).

It is indeed that there are related online developments in pat-
tern recognition such as online tracking [15], online face recogni-
tion [16,17], incremental object matching [18], and online action
recognition [19]. There are also works on using sequential algo-
rithm to learn a classifier when only limited source is available for
computation such as [20]. However, these models are not gen-
erally designed to make themselves be applicable for other
applications, or they only conduct the learning when the size of
dataset is increasing but are not one-pass based suitable for
locality sensitive classification. Compared to these work, we aim to
learn an online classifier for general purpose and make it suitable
for one-pass online learning.

The remainder of this paper is organized as follows: Section 2
briefly reviews the related one-pass online learning algorithms.
Sections 3 and 4 detail the proposed local online learning algo-
rithms and the corresponding theoretical analysis. Experimental
results are presented in Section 5. Finally we draw the conclusion
in Section 6.

2. Related work
2.1. Passive Aggressive algorithm (PA)

Like Perceptron [21], the first order Passive-Aggressive algo-
rithm (PA)[1] focuses on learning linear classification model for
each new sample x e R¢, formed as
g(x) = sign(w’x), (D

where sign function outputs the prediction label (-1 or +1) of
the input and w is a weight vector. Passive-Aggressive method

aims to use the pre-learned globally linear hyperplane to guide the
prediction of new observed sample x; labeled with y, e {—1,1} at
time step t by solving the following problem:

W, 1 =arg min% Ilw—wl? st ZP%w;(X;,y,)) =0 )
w

where w; is the model/hyperplane at time step t before update.
Here, ¢P? is the hinge loss function, ie. #P%(w;(X;,y;))=
max{0, 1 -y, - w'x,}. In practice, a non-negative slack variable ¢ is
introduced so that the above optimization problem becomes
Wi 1 =arg mianw—wt 12 +CE,
w2
>0 3)

s.t. 2P%(wW; (X, ¥) <& and

where C is a positive parameter. This optimization problem can be
understood as searching a new optimal hyperplane that does not
differ from the current one too much in order to meet the loss
constraint with respect to a new input sample. The solution of the
problem (3) is given by

pa

“t @

Wi 1 =We 1Y Xe, 1= min{C,W
¢

where 7, is the learning rate. Obviously, Passive-Aggressive
method learns a globally linear decision function without con-
sidering the local distribution of data.

2.2. Confidence weighted online learning algorithm family

Confidence weighted algorithm (CW) [2], soft confidence
weighted algorithms (SCW-I, SCW-II) [3] and adaptive regular-
ization of weight vectors (AROW) [4] were proposed to explore the
underlying structure of features. Confidence-weighted learning is
actually inspired by Passive-Aggressive learning but holds a
Gaussian distribution assumption over the weights. Confidence
weighted algorithm assumes that a Gaussian distribution with
mean u e R and covariance matrix X e R%*? is imposed on linear
weights . The distribution is obtained by minimizing the Kullback-
Leiber divergence between the new distribution (parameterized
by N (i, 1, X¢+1)) and the old one (parameterized by N (u,, X¢)) in
a Passive-Aggressive way, forcing the probability of accurate pre-
diction of current sample X; greater than a threshold # below

W q, Xer1)=arg IglinDKL(N(ﬂ’ Z)NW,Zr)) st Pry s Ve
(n.2)

-W'x) = 0] =7
)
The problem (5) has a solution of the following form:
Pio1 =He+ Ay BeXe, Dpp1 =D — P DeX{ X Xy (6)

Soft confidence-weighted (SCW-I, SCW-II) [3] and adaptive reg-
ularization of weight vectors (AROW) [4] are extensions of con-
fidence weighted algorithm [2], sharing the same update form but
with different rules to learn the coefficients. These methods model
the globally linear weight with a distribution and thus introduce
variations of linear hyperplanes into the modeling. However, this
modeling is still globally linear.

2.3. Online kernel (approximation) algorithms

Inspired by the successful application of kernel tricks [22] to
enhance the linear classifiers, some researchers intend to employ
kernel tricks for online linear classifier learning. Correspondingly,
a lot of kernel approximation methods have been developed to
reduce the computational complexity caused by the employment
of kernel tricks [23,24]. However, these method need to keep all
historical wrong classified samples as support vectors (SVs).
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Alternatively, online learning with a budget [7-9] is also proposed
by maintaining a limit on the number of SVs, based on some
strategies for balancing sacrifice of accuracy and computational
burden. However, keeping SVs albeit limited in a budget makes
these methods not strictly one-pass because these methods would
revisit the passed samples to adjust their model. For example,
budgeted online learning algorithm with a certain removal strat-
egy needs to check which SVs to remove and therefore the cost of
each update is expensive.

While kernelization provides opportunity for solving nonlinear
classification problem, it introduces heavy computational burden
with the growth of numbers of support vectors (SVs). To solve the
problem, budgeted online learning algorithms such as Budgeted
Stochastic Gradient Descent (BSGD) [10] which limits the number
of SVs were proposed to bound the number of SVs. BSGD describes
a budgeted version of kernelized SGD for SVM by controlling the
number of SVs through one of several budget maintenance stra-
tegies, such as removal of SVs.

An alternative way to solve the problem is two recently pro-
posed methods, namely Fourier Online Gradient Descent (FOGD)
and Nystrom Gradient Descent (NGOD) [11], which integrate ker-
nel approximation techniques into online learning. These methods
adopt kernel feature mappings on input space, where the corre-
sponding inner product space is induced by the desired mercer
kernel, such as Gaussian kernel. After the mapping, they learn a
linear prediction model in the feature space afterwards. The key
difference between FOGD and NOGD is that FOGD adopts Random
Fourier feature sampling technique, while NOGD adopts Nystrém
method to set up the kernel feature mapping. More specifically, for
processing the sample Xx; at time step t, FOGD performs online
learning in the following space:

z; =[cos (ulx,), sin(ulx,), ..., cos (uhx,), sin (uhx,)], 7

where u; is sampled from a Gaussian distribution N(0, o ~2I).
NOGD learns in another space below

2e = [K(X1, X0), KXo, Xo), ..., K(xg, X0V D, /2, ®)
where the Nystrom method samples k columns from kernel matrix
K consisting of the first B samples, i.e. Xy, ...,Xg (B<T), and V, D
are derived from the singular value Decomposition (SVD) of K, =
VkaV£ where K, is the best rank-k approximation [11] of K.
Fourier feature sampling is obviously data independent, while
Nystrom sampling is only applied to the first portion (small if the
data stream is large) of the data stream. Therefore, there is no
guarantee that these methods could adapt to the change of data
distribution, since the kernel approximation methods they used
are only based on the early data distribution in a data stream and
do not take any future data distribution change into consideration
as more and more data points are accessed.

3. Local online learning
3.1. The model

The proposed local online learning (LOL) aims to learn multiple
hyperplanes locally on one-pass data points. LOL consists of two
parts: (1) developing a multiple hyperplane Passive-Aggressive
algorithm to learn multiple hyperplanes locally and jointly, mak-
ing the online learning locally sensitive to data distribution;
(2) incorporating online clustering in order to assign each probe
sample to its specific prototype domain, which is the region of the
prototype closest to the probe sample. The prototype domain is
the description of data distribution for our online learning method.
We detail our model below.

Inspired by recent local prototype methods [25,12,14] and the
joint local multiple hashing modeling [26] which are offline
methods, we develop a new online learning approach based on the
following k local prototype model:

k

f =" fix) - 1(xe D(P)) 9
i=1

where k is the number of prototypes, D(P;) denotes domain of the

ith prototype P;, 1(-) is an indicator function whose value is 1 if

X e D(P;) or 0 otherwise, and f;(x) is defined as

fi)=wix (10

Although data is not always globally linearly separable, it is still
possible that they are locally linearly separable. Eq. (9) assumes
that the combined linear prediction model achieves locally sensi-
tive classification depending on where the test data point locates.

Now, we start to develop local online learning (LOL) based on (9).
Assume that each local component w; can be factorized into two
components: a common component w shared by all local compo-
nents and prototype specific component u;, ie. w;=w+u;,
i=1,...,k. The key idea of our model is to optimize the common
component w and the local components u; separately and connect
them by balancing the extent of their update using a balance para-
meter A. For online learning, both common component and local
components are updated by passively neglecting correct classified
samples but aggressively adjusting all components to fit the wrong
classified samples. Updating the common component w bridges all
local hyperplanes, while updating each local components if necessary
helps refine prototype specific hyperplane (i.e. the local hyperplane).
To this end, for a new input data x; labeled with y, e {—1, 1} at time
step t, we propose to optimize the following objective function for our
LOL problem:

. j« 2
W1, Wi, ..., Uy = arg mins llw—well
wW,uq,..., Uy

k
+%Z ha—u;, 12 st A2%w, g, .. (X, Y,) =0 an
i=1

where w; and u;; are the common component and the ith local
component at time step t before update, respectively, and the loss
function is

0 . 1
f’“’(w,ul,...,uk;(xt,yo):{ Y )= (12)

1-y,-f(X;) otherwise

To make (11) more practical, a slack variable is introduced into the
above optimization problem to achieve soft-margin maximization

LA
W1, Upp 1.0 Uppy = arg mins |l w—w |2
w,ug,.. Uy

1 k
+5 7w 12+ CEs b AN WLy, (K y) < € E>0
i=1

13)

Since w is the common component of our target local hyper-
planes that require the hyperplane of each local prototype to align
with, w builds the information traffic and controls the shared
information among different prototypes. In this way, the learned
local hyperplanes are not separated in each prototype. It is
therefore able to avoid over-fitting in each local prototype.

Fig. 1 shows that Passive-Aggressive method (PA) updates the
model when a wrong prediction is made. In comparison Fig. 2
shows that in local online learning (LOL) a new sample is assigned
to a prototype domain first and then the local model is updated if
the local model makes a wrong prediction. Fig. 3 shows an
example of decision boundary learned by PA and LOL, which
shows LOL is able to learn nonlinear boundary locally.
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Fig. 1. Example of how PA processes new input samples: (b) is the decision boundary (hyperplane) updated from (a), and (c) is the hyperplane update from (b).

Independent local online learning (I-LOL): When we eliminate
the common component w from the Criterion (13), i.e. setting
w =0, then the proposed local online learning (LOL) becomes a
direct extension of Passive-Aggressive method learned on different
prototype domains adaptively. Here, we denote such a simplified
version as independent local online learning (I-LOL). However, we
show in our experiments that such a simplified local online
learning is not always optimal. As shown in our experiments, on
8 datasets among all, lower test errors could be obtained if all
these local hyperplanes are learned jointly rather than
independently.

3.2. Optimization

Updating Hyperplanes for local online learning (LOL): Although
LOL has to update quite a lot of local components and a common
component, we show in the following that after certain transfor-
mation, LOL can be easily solved by the Passive-Aggressive algo-
rithm (PA) itself, although LOL is a local model and PA is a
global model

Let
N . T T af T T] !
xf_L/I,O,O,...,xt,...,O (14)
where the (i+1)th component of X; is X;. Accordingly, the global
and local components could be represented as follow:

W= [ﬂwT,u{,ug, ol .4.,u[]T (15)
By using (Eqs. (14) and 15), the objective function (13) could be

rewritten as
W= argwmin <%Hv~v —W, 12 +CZ§> st AW (X, y)) <& E=0.
(16)

In this way, we convert local online learning (LOL) into the same
mathematical form as Eq. (3). However, we shall emphasize that
LOL is intrinsically different from Passive-Aggressive method (PA),

= Pos. sample
== Neg. sample

LOL learns locally sensitive online classifier but PA method is not.
Then, as in [1], we first define the Lagrangian
- N RV .
LOW, &7, 7) = arg ming | W — W 12+ CE—n(Z " (W: Re.y)) — &) 7 - &
w
17)

where 7 and y are Lagrange multipliers. The optimal solution is
obtained when the gradients equal to zero. By solving (17), we
obtain

W =W,+7,X; (18)
flol

17t=min{C,7~ 2} (19)
beal

The optimal update for the new w has the form of a gradient
descent step with a step size 7,.

Updating Prototypes for local online learning (LOL): Different
from Passive-Aggressive method (PA), local online learning (LOL) is
relying on quantizing input data to different prototype domains.
Since LOL is developed for online learning, not all samples are
provided in advance and thus it is necessary to update the pro-
totype domain online. In order to process data points x; for pro-
totyping in a sequential order: t=1,2,..., we adopt a sequential
version of K-means [27] which uses the first k data points as initial
prototypes, then assigns a new data point X, t > k to the closest
prototype learned from step t—1, and finally updates the corre-
sponding prototype after the assignment. The rule of online
update of prototypes could be written as

1
Pi=Pi+_(Xe—Pi) (20)
1

where P; is the ith prototype and n; is the total number of previous
samples assigned to the ith prototype. After we predict the nearest
prototype of x;, the ith one for example, then the original proto-
type P; is updated. It could be viewed that the prototype P; moves
towards the sample x; at time t. It is worth mentioning that due to
the sequential manner of clustering we use, it might be probably
that noisy clustering could affect the performance of our online

= Pos. sample
== Neg. sample

4= Pos. sample
== Neg. sample

Fig. 2. Example of how local online learning (LOL) processes new input samples: (b) is the decision boundary (hyperplane) updated from (a), and (c) is the hyperplane

update from (b).
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Fig. 3. Decision boundaries learned on SVMGUIDET1 dataset after PCA Projection into a two-dimensional space: a globally linear one learned by Passive-Aggressive method

(left) and a piece-linear one by our local online learning (right).

learning. However, our experiments in a latter section will show
that the gap caused by sequential K-means and the offline K-
means (if available) is small enough to be tolerated after sufficient
training.

Algorithm 1.

Input: aggressiveness parameter: C >0
the number of prototypes: k

1: initialize wg : Wy =0

2:fort=1,2,...do

3:  receive instance: x; ¢ R?

4: if t <k then

5: initialize prototype: P; —X;,n; =1 [* initialize k
prototypes®/

6: else

7 get the nearest prototype: i« arg rrljin(Dist(Pj,x[))
8:  update prototype: P; < P;+p(Xc —Py), i< ni+1

9: end if

10: %X, =[x",07,....x"((i+ 1)th position), ...,
11: predict: y, = sign(W!X,)

12: receive correct label: y, e {—1,1}

13: compute loss: £ = max{0, 1 —y,(W'&X,)}
14: set:n, = mm{C i }

X2

OT]T,f(t e de

15: update: W, =W+, X;
16: end for
Output: model: W e R¥

4. Theoretical analysis

We analyze the relative error rate of local online learning (LOL)
as compared to one of Passive-Aggressive method [1]. Let

WP = [\/_w 0’0", .. 0,...,0T] 21

Based on the definition of X, in (14), we have W' X, = w'x, and
thus #P4(w; (X¢, y,)) = £ (WP?; (X¢, y,)), where #P? is the hinge loss
function defined in (2) and #°! is hinge loss function defined in
(15). Hence, local online learning (LOL)((16)) is actually equivalent
to linear Passive-Aggressive method if we constrain the projection

in (11) in the set Q={[«/IWT,0T,0T,...,0T, L0we Rd} as

follows:

WP, =arg min (1 WP — Wb Hz) st AW (X, y,)) =0, (22)

wheo

Hence, the best solution W?® of Passive-Aggressive method (PA)
may be actually a suboptimal solution of local online learning
(LOL), i.e.

AW (Re,y)) < £ (W

R, yp) = AW (Xe, ) (23

This shows LOL would not obtain a higher error rate than PA.
Beyond the above, we can further have the following relationship
between the cumulative errors of LOL and PA with respect to Eqgs.
(2) and (11).

Theorem 1. Let (X1,Y;), .-.,(Xr,Y7) be a series of samples where X;
eR%y, e {+1,—1}) and x| <R for all t. Assume that there exists a
vector ' such that £ (@' Xe,¥) =0 forall t=1,2,...,T. Then
the relation between cumulative errors of local online learning (LOL)
and that of Passive-Aggressive method (PA) can be further described

below

lol\2 ~ lol (fpa
;(f Y < ( ) (IIu [ +Z TARE (24)
where /1ol = A0\W"': (%,.y,)), %=l WP; (R, y,), and X, is a

mapping of X, as defined in (14).

Proof. By using the Lemma 1 in [1], we first have

T
STnelA —pltix %) < 16112
t=1

ol lol

where 7lel = XWX 1v0) I(V\l\,lX ‘H"“”f” By using Eq. (23), we have 7 < #"* and
thus 7/ < —;—fpa(vﬁj:tflx“y‘)) =1;. Then

o lol
2Pt —np - 1Xe 17 < 1@, (25)
i=1
That is

T lol\2 pa
Zz(f} )2 (¢t )25” lol |2 26)
AR IR
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Since %1% = (1 %) X112 < (1 +1)R2, we have

o2 1 lol ()
Z(f ) Sj(l 1) (Iu I +Z |2> 27)

-1 th

5. Experimental results
5.1. Datasets

We evaluated our method on 11 benchmark datasets from
different fields,including two digit datasets (MNIST' and USPS?),
two face datasets (CBCL-Face® and the first section of CMU Multi-
PIE [28]), the dataset of KDDCUP 2008, and other datasets as
SVMGUIDET1, IJCNN1 and LETTER from LIBSVM website.* It is worth
noting that in the following, the Multi-PIE dataset will be used for
two purposes. One is for pose classification (15 different poses)
and we denote the Multi-PIE dataset as “Multi-PIE Pose” in this
case. Another is for classifying identities (249 subjects) and we
denote the Multi-PIE dataset as “Multi-PIE Identity” in such a case.
More characteristics about these datasets are summarized in
Table 2. Since online learning is designed for large scale problem,
we also introduced two large scale classification tasks: (1) mal-
icious urls detection and (2) web spam detection. We denote the
dataset we used for malicious urls detection as “URL”.> We per-
formed classification on such a dataset to detect malicious urls.
The dataset “URL” has 2.4 million urls and 3.2 million features
collected in a real-time system [29], a typical task which offline
kernel machines could not afford. As for the dataset we used for
web spam detection, we denote it as“WEBSPAM”.° WEBSPAM
contains 350,000 records (web spam pages) collected by a fully
automated web spam collection method [30] and we adopted the
normalized unigram version available on the LIBSVM site.

Since the update form of the second order methods (see Eq.
(6)) needs to keep a covariance matrix of the weight vector, which
makes the training slow and even infeasible. For example, com-
putation of the URL dataset with 3.2 million features yields a very
large full covariance matrix consuming 381 GB. In order to com-
pare these methods on “URL”, we have to perform dimension
reduction. In this paper, we performed Gaussian random projec-
tion [31] to reduce the data dimension for all methods to 100
dimension on URL.

About the training and testing on all dataset except
KDDCUP2008, Multi-PIE Pose, Multi-PIE Identity and URL, we
followed the existing training and testing division rules in
literatures.’ Since there is no default training and testing protocols
for KDDCUP2008,2 Multi-PIE-Pose, and Multi-PIE-Identity, we
conducted as follows. For KDDCUP2008, we randomly selected 3/4
of the samples for training and the rest for testing. For Multi-PIE-
Pose and Multi-PIE-Identity, we randomly divided them into half
for training and another half for testing. For URL, we used the data
samples collected in the first 100 days for training and the
remaining 21 days’ data samples for testing. For all the datasets
except WEBSPAM and URL, experiments were run 10 times with
different permutations of training set (i.e. sequences in different
orders) and the averaged results are reported. As for URL data
samples which were captured already in the order of time, due to

http://yann.lecun.com/exdb/MNIST]/.
http://www-i6.informatik.rwth-aachen.de/keysers/USPS.html.
http://cbcl.mit.edu/software-datasets/FaceData2.html.
http://wwww.csie.ntu.edu.tw/cjlin/libsvmtools/datasets.
http://sysnet.ucsd.edu/projects/url/.
6 http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html.
7 http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.
8 The original test dataset does not contain label information.

1
2
3
4

5

the use of random projection, we performed 10 performed Gaus-
sian random projection, computed the performance, and the
average result was finally reported. The first 200,000 records of
WEBSPAM were used for training and the remaining 150,000
records were for testing.

5.2. Measurement

t ~

Cumulative error: It is defined by M This measure is to
tell how the online learning is trained on sequential training data.
It reflects (1) the cumulative error rate caused by the online model
for processing new input training data points before time step t
and (2) how the accuracy of prediction changes over the data
sequence.

Test error: Different from the Cumulative error, traditional test
error (on the unseen test set) is also tested on the final model after
online training (on training set) process. It is necessary because
the test error indicates the generalization ability of the learned
online model on unseen data.

Cumulative error sometimes will be much higher than test error
on the same dataset, because it is largely affected by initial wrong
predictions.

5.3. Compared methods

We compared the proposed method with the first order Passive
Aggressive Algorithm (PA) and the second order confidence
weighted family such as confidence weighted algorithm (CW) [2],
soft confidence-weighted algorithms (SCW-I, SCW-II) [3], and
adaptive regularization of weight vectors (AROW) [4]. Additionally,
we also compared our method with Pegasos [32], a widely used
linear SVM. Different from the original Pegasos algorithm using

Table 1
Characteristics of the compared methods.

Methods Second order Using kernel Non-linear Local
PA [1] No No No No
Pegasos [32] No No No No
CW [2] YES No No No
SCW-I [3] YES No No No
SCWH-II 3] YES No No No
AROW [4] YES No No No
BSGD [10] No Yes Yes No
FOGD [11] No Yes Yes No
NOGD [11] No Yes Yes No
I-LOL No No Yes Yes
LOL No No Yes Yes

Table 2

Description of the datasets.
Dataset #Training #Testing #Features #Classes
SVMGUIDE1 3089 4000 4 2
CBCL Face 6977 24,045 361 2
[JCNN1 49,990 91,701 22 2
KDDCUPO08 95,470 31,824 127 2
WEBSPAM 200,000 150,000 254 2
URL 1,976,130 420,000 100 2
USPS 7291 2007 256 10
LETTER 15,000 5000 16 26
MNIST 60,000 10,000 780 10
Multi-PIE Pose 74,700 74,700 100 15
Multi-PIE Identity 74,700 74,700 100 249



http://yann.lecun.com/exdb/MNIST/
http://www-i6.informatik.rwth-aachen.de/keysers/USPS.html
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://wwww.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
http://sysnet.ucsd.edu/projects/url/
http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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Table 3

Part I: Comparison of test errors (%) for different methods (bold texts indicate the best results).
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Method SVMGUDIE1 CBCL Face [JCNN1 KDDCUP2008 WEBSPAM (%) URL
PA 30.35% + 0.107 7.12% + 0.059 34.98% + 0.038 38.74% + 0.047 7.56 15.99% + 0.052
Pegasos 37.49% + 0.126 20.84% +0.182 25.48% + 0.068 45.75% + 0.030 11.58 16.10% + 0.023
cw 50.09% + 0.243 3.64% + 0.003 46.41% + 0.028 34.52% +0.030 10.66 36.46% + 0.089
SCW-I 21.42%+0.010 3.20% + 0.001 46.96% + 0.079 25.95% + 0.103 6.58 9.01% + 0.019
SCW-II 22.63% + 0.002 3.08% + 0.001 61.59% +0.314 44.89% + 0.022 7.77 9.31%+ 0.019
AROW 21.51% + 0.002 3.22% +0.001 34.27% + 0.005 43.98% + 0.011 7.25 9.28% + 0.020
BSGD 5.73% + 0.009 2.14% + 0.004 4.36% + 0.000 0.57% + 0.001 5.27 20.00% + 0.023
FOGD 7.68% +0.013 6.47% + 0.037 11.48% + 0.070 0.70% + 0.001 5.68 9.72% + 0.013
NOGD 5.75% + 0.009 6.38% +0.017 11.99% + 0.063 0.73% + 0.003 14.82 10.56% + 0.012
[-LOL 6.54% + 0.021 5.34% +0.010 4.10% + 0.006 0.65% + 0.001 5.56 8.70% + 0.007
LOL 5.26°% + 0.014 3.68% +0.014 3.15% + 0.006 0.69% + 0.002 4.95% 7.20% + 0.007

Table 4

Part II: Comparison of test errors (%) for different methods. Bold texts indicate the best results.
Method USPS LETTER MNIST Multi-PIE Pose Multi-PIE Identity
PA 12.36% + 0.015 34.17%+0.017 12.31%+0.011 4.22% +0.003 43.64% + 0.003
Pegasos 20.87% + 0.081 60.74% + 0.049 21.73% + 0.082 15.01% + 0.025 83.35% + 0.013
cw 10.78% + 0.004 93.57% + 0.038 12.56% + 0.003 4.26% + 0.001 31.17%+ 0.001
SCW-I 9.73% + 0.003 37.33%+ 0.019 19.59% + 0.008 4.37% + 0.000 78.43% + 0.004
SCW-II 9.29% + 0.002 26.34% + 0.003 12.04% + 0.004 3.54% + 0.000 29.04% + 0.002
AROW 9.06% + 0.004 33.03% + 0.007 29.26% + 0.090 6.63% + 0.001 31.49% + 0.002
BSGD 14.03% + 0.008 29.28% + 0.059 4.33%+ 0.002 8.99% + 0.000 46.18% + 0.102
FOGD 9.84% + 0.024 19.24% + 0.016 6.57% + 0.002 3.58% + 0.004 18.17% + 0.007
NOGD 9.29% + 0.015 23.16% + 0.015 10.07% + 0.005 10.78% + 0.012 79.45% + 0.014
[-LOL 10.19% + 0.008 20.83% + 0.012 4.82% + 0.002 3.48% + 0.002 31.95% + 0.009
LOL 7.88% + 0.008 17.69% + 0.011 3.03% + 0.001 2.15% + 0.001 4.62% + 0.003

sub-sampling k samples in each iteration, we used it in an online
way, i.e. sampling one sample in each iteration and that sample is
then removed from the sample pool. To fairly evaluate the per-
formance with several online learning algorithms, we adopted the
implementation of LIBOL [33] for the compared methods and
followed similar parameter setting for the methods in [3]. As for
budgeted stochastic gradient descent method (BSGD), we used the
BudgetedSVM toolbox [34]. To show that the proposed method
local online learning (LOL) is benefited from locality sensitive
modeling without using kernel, we also compare some kernel
approximation online learning methods Fourier Online Gradient
Descent (FOGD) and Nystrom Gradient Descent (NGOD) [35] and
an budgeted stochastic gradient descent method (BSGD) [10].
Finally, we compare the proposed local online learning (LOL) with
Independent local online learning (I-LOL) , the independent ver-
sion without a common component to bridge local hyperplanes, to
show the benefit of modeling the common component shared by
all local hyperplanes. The characteristics of the compared methods
are summarized in Table 1.

Parameter setting: The parameter C in Passive-Aggressive
method (PA), soft confidence-weighted (SCW-I, SCW-II) was
determined by cross validation from {274,273, ...,23,2%}; the
parameter # in CW, SCW-I, SCW-II was cross-validated from
{0.5,0.55,...,0.9,0.95}. The balancing parameter A in Pegasos was
cross-validated in {10~4,1073, ..., 10%, 10%}. The size of budget B of
budgeted stochastic gradient descent method (BSGD), Fourier
Online Gradient Descent (FOGD), Nystrém Gradient Descent
(NGOD) was set to 200, and D in FOGD was set as 10 x B and k in
NOGD was set as B. The kernel bandwidth was set by cross vali-
dation over the range {1, 10,100, 1000} and the learning rate was
set to 0.0001. In order to determine the optimal parameters for our
online model on this dataset, we first performed a cross validation

by repeatedly and randomly split the whole training set into two
equal halves: one for training and the other for validation data. For
each split, a set of online models with different parameter sets
were learned on the training data and then tested (test error) on
the validation data. Then the parameters with the best average
results over 10 random splits were selected to train our final
online model on the whole training set. We report the test error of
the learned model on the unseen test set in Tables 3 and 4.

Since the local online learning (LOL) is not very sensitive to the
parameters, we adopt a group of fixed parameters for all the tasks.
The number of prototypes k is set to 60, the balancing parameter 1 is
set to 1.0 and the aggressive parameter C is set to 1.0. The influence of
A and k would be further evaluated in Section 5.4.4. In the Indepen-
dent local online learning (I-LOL), parameters C and k are set as the
same as LOL. In the multi-class classification problems, FOGD, NOGD ,
I-LOL and our LOL adopt one-vs-all strategy to predict the result.

To show our adopted sequential K-means holds a close perfor-
mance to the “offline” K-means,” we also performed experiment on
6 datasets with the pre-trained prototypes via offline K-means, i.e.
the prototypes are fixed before online training and no prototype
update is made during the online learning process. The number of
prototypes is set to the same value as the sequential one.

5.4. Results

5.4.1. Comparison to online linear classifiers
From Tables 3 and 4 and Fig. 4, we show that local online
learning (LOL) consistently outperforms Passive-Aggressive

9 For comparison, we have to assume all the sequential data samples have been
observed and the offline K-means can be run.
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method (PA). Always, LOL algorithm has a much lower error rate
than PA. Pegasos has a close performance to PA and thus is also
clearly inferior to LOL. This shows that exploring local hyperplanes
during online update is very important for addressing the non-
linearly separable data problem, while only preserving a global
hyperplane is a notable weakness in PA. The results have provided
empirical supports for our theoretical analysis in the previous
section that LOL is able to achieve lower error rate.

We then compare local online learning (LOL) with the second-
order algorithms, i.e. confidence weighted algorithm (CW) , soft
confidence-weighted (SCW-I, SCW-II) and adaptive regularization
of weight vectors (AROW). They are all Passive-Aggressive like
methods, but they are second-order, because they learn the
weights of projection under Gaussian distribution. As shown in
Table 3 and Fig. 4, compared to LOL, LOL still performs better and
obtains notable improvements on SVMGUIDE1, IJCNNI,

KDDCUP2008 and WEBSPAM. Although all the linear models
perform rather well on URL, LOL still has stable improvement as
compared to the second order algorithms. On USPS and MNIST,
which consist of 10 classes, the second order methods still work
well. On the LETTER dataset that consists of 26 classes, the gap
between LOL and these second order methods are large. In the
Multi-PIE pose recognition task of 15 poses, their performances are
still comparable to LOL, but for the identity classification of 249
people, they fail to keep high accuracy while the performance of
LOL has only a slight increase of test error from 2.1% to 4.6%.
Regarding the result of two real-world datasets: WEBSPAM and
URL, LOL also outperforms the compared methods. Although the
second order methods apply confidence weighting on features,
they are still limited since they assume that data points are almost
linearly separable. Hence, with the increase of the diversity of
classes, the impact of local modeling is much more obvious.
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Fig. 6. Test error of local online learning (LOL) with respect to the value of 4 with fixed number of prototypes k = 60.

5.4.2. Comparison to online kernel (approximation) classifiers

We also compare the recently proposed online kernel learning
methods such as Fourier Online Gradient Descent (FOGD),
Nystrom Gradient Descent (NGOD) and budgeted stochastic gra-
dient descent method (BSGD) [10]. The results are presented in
Tables 3 and 4 and Fig. 4. For two-class classification task, the
comparison results show that the proposed local online learning
(LOL) obtains lower test error on all datasets except KDDCUP2008,
and notable improvements are gained on [JCNN1, e.g. LOL gaining
3.15% test error while FOGD and NOGD gain about 12%. Compared
to BSGD, although BSGD achieves slightly better results on CBCL-
Face and KDDCUP2008, LOL is only slightly inferior to BSGD
especially on the KDDCUP2008 dataset. While FOGD, NOGD and
BSGD have an improvement on WEBSPAM but close performance
on URL comparing to the linear models, our proposed LOL holds
steady and lower error on these two real-world datasets.

For the multi-class classification task, the gap is more clear. LOL
significantly outperforms FOGD, NOGD and BSGD on all the multi-
class datasets. On Multi-PIE, the proposed method achieves the
lowest test error, obtaining a notable and clear margin. Especially,

on Multi-PIE identity, there are 249 classes and only the proposed
LOL achieves a test error about 5%, while the others are higher
than 18%.

Although the proposed LOL is not a kernel based method, the
gain of superiority of LOL is due to the fact that LOL can directly
model the classification decision boundary locally and adapted to
the change of data stream. Nevertheless, the comparison here
shows that our local online learning modeling can be an robust
alternative approach to generalize the online linear learning for
handling nonlinearly separable sequential data.

5.4.3. Comparison to independent local online learning (independent
local online learning (I-LOL)) classifiers

To show the importance of the joint learning of local hyper-
planes in local online learning, we compare local online learning
(LOL) and independent local online learning (I-LOL). Tables 3 and 4
and Fig. 4 show that although I-LOL could also model local infor-
mation from data, it is obvious that I-LOL performs worse overall
than LOL due to the lack of joint learning in I-LOL that there is no
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shared/common information between local prototype domains,
especially in the Multi-PIE Identity task.

5.4.4. Evaluation of parameters

Here, we would study the influence of two key parameters in
local online learning (LOL), namely the number of prototypes k
and the balance parameter A in Eq. (13).

Regarding the number of prototypes used in LOL algorithm,
Fig. 5 shows how test error varies with different numbers of
prototypes k. We here selected six of the datasets to display the
results. It is indeed that a specific value of k is preferred for LOL to
achieve higher accuracy on some datasets, such as SVMGUIDE],
[JCNN1. On some datasets, such as USPS and MNIST, their results
are not so sensitive to the value of k.

But fortunately, in these cases, the difference of prediction
ability is very small among different k values; for example,
whatever value the k is, the results of MNIST are almost the same
(97 + 0.06%).

Regarding the balance parameter A, Fig. 6 shows that the test
error first decreases as 4 increases but raises again after 1 keeps
growing. As mentioned in the previous sections, A balances the
globally shared common component and those local ones. Hence,
making a suitable amount of information shared across local
hyperplanes will be beneficial to online performance.

5.4.5. Effect of sequential clustering in LOL

Fig. 7 shows the performance comparison between our pro-
posed LOL using sequential clustering and the LOL using the pre-
trained prototypes learned by offline K-means. At the beginning of
training, there is indeed clear difference between them. However,
after training for a while, the gap becomes smaller and smaller,
and the difference vanishes when sufficient training samples have
been processed on large-scale dataset. On one hand, as long as
more samples are processed online, sequential clustering is
approximating the offline K-means and would not lower the
effectiveness of LOL. On the other hand, for real world online

learning, it is hard to perform an offline clustering over a large
dataset in advance, and thus performing sequential clustering
seems to be a proper and effective way for clustering sequential
stream data.

5.4.6. Summary
From the experimental results above, we summarize the find-
ings and observations as follows:

(1) Existing online linear models cannot tackle the nonlinear
separation problem,;

(2) The local approach proposed in this work achieves notably

better performance, especially on data with large variations

(e.g. Multi-PIE datasets);

Compared to the kernel online learning, our results suggest

that a local modeling can be an alternative way to deal with

the nonlinear data separation problem for one-pass online

learning, retaining better and more stable performance;

It is important to learn all the local hyperplanes jointly (via a

common component shared among them), rather than

learning them independently.

(3)

6. Conclusion

To address the nonlinearly separable case in the one-pass
online learning, we propose a local online learning (LOL)
method. LOL learns from sequential data and updates locally
sensitive model, so that for each test point a local boundary would
be explored for classification, thus solving the nonlinearly separ-
able problem. More importantly, by formulating a share compo-
nent as information traffic among them, LOL learns those local
decision boundaries (i.e. local hyperplanes) jointly but not inde-
pendently. Theoretical analysis on the connection between LOL
and the global Passive-Aggressive is also given. Our results show
that LOL can be an alternative approach that is easy to compute for
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generalizing online learning for solving nonlinear separation pro-
blem without using kernel approximation and any second order
modeling.
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