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PSLT: A Light-weight Vision Transformer with
Ladder Self-Attention and Progressive Shift

Gaojie Wu, Wei-Shi Zheng*, Yutong Lu and Qi Tian

Abstract—Vision Transformer (ViT) has shown great potential for various visual tasks due to its ability to model long-range
dependency. However, ViT requires a large amount of computing resource to compute the global self-attention. In this work, we
propose a ladder self-attention block with multiple branches and a progressive shift mechanism to develop a light-weight transformer
backbone that requires less computing resources (e.g. a relatively small number of parameters and FLOPs), termed Progressive Shift
Ladder Transformer (PSLT). First, the ladder self-attention block reduces the computational cost by modelling local self-attention in
each branch. In the meanwhile, the progressive shift mechanism is proposed to enlarge the receptive field in the ladder self-attention
block by modelling diverse local self-attention for each branch and interacting among these branches. Second, the input feature of the
ladder self-attention block is split equally along the channel dimension for each branch, which considerably reduces the computational
cost in the ladder self-attention block (with nearly 13 the amount of parameters and FLOPs), and the outputs of these branches are then
collaborated by a pixel-adaptive fusion. Therefore, the ladder self-attention block with a relatively small number of parameters and
FLOPs is capable of modelling long-range interactions. Based on the ladder self-attention block, PSLT performs well on several vision
tasks, including image classification, objection detection and person re-identification. On the ImageNet-1k dataset, PSLT achieves a
top-1 accuracy of 79.9% with 9.2M parameters and 1.9G FLOPs, which is comparable to several existing models with more than 20M

parameters and 4G FLOPs.

Index Terms—Multimedia Information Retrieval, Light-weight Vision Transformer, Ladder Self-Attention.

1 INTRODUCTION

Convolutional neural networks (CNNs) have shown
considerable promise as general-purpose backbones for
computer vision tasks. Since AlexNet [1] was proposed
for the ImageNet image classification challenge [2], CNN
architectures have become increasingly powerful, with more
careful designs [3], [4], [5], deeper connections [6], [7] and
wider dimensions [8]. Thus, CNNs appear to be indispens-
able for various computer vision tasks. CNNs are successful
due to the inductive bias implied in convolutional com-
putations, and this inductive bias ensures that CNNs are
generalizable as investigated in [9], [10].

Another prevalent architecture that has shown extraor-
dinary achievements in computer vision tasks is the vision
transformer. In the transformer, which was first proposed
for sequence modelling and transduction tasks in natural
language processing [11], [12], features can interact globally
by modelling attention of long-range dependency. Vision
Transformer (ViT) models global interaction by computing
attention among the feature map according to the projected
query, key and value of each pixel. ViT has shown these
achievements due to the considerable amount of computing
resource in the model. However, models with large number
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of parameters are difficult to deploy in edge-computing
devices with limited memory storage and computing re-
sources, such as FPGAs. And models with large number
of FLOPs always require much time for inference, because
FLOPs measures the number of float-point operations for
inference.

In this work, we aim to develop a light-weight vision
transformer backbone with a relatively small number of
parameters and FLOPs. Existing methods [13], [14], [15],
[16] have focused on reducing the number of float-point
operations by evolving the form of computing self-attention;
however, the receptive field in the window-based self-
attention block is restricted in most of these methods [15],
[16], and only pixels divided in the same windows can
interact with each other in the window-based self-attention
block. Therefore, the interactions between pixels in different
windows cannot be modelled in one block.

Thus, we propose a light-weight ladder self-attention
block with multiple branches and a progressive shift mech-
anism is introduced to enlarge the receptive field explicitly.
The expansion of the receptive field for the ladder self-
attention block is accomplished according to the following
strategy. First, diverse local self-attentions are modelled
by steering pixels at the same spatial position to model
interactions with pixels in diverse windows for different
branches. Second, the progressive shift mechanism trans-
mits the output features of the current branch to the sub-
sequent branch. The self-attention in the subsequent branch
is computed with the participation of the output features
in the current branch, allowing interactions among features
in different windows in the two branches. As a result,
the ladder self-attention block with the progressive shift
mechanism can model long-range interactions among pixels
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divided in different windows. In addition, in the ladder
self-attention block, each branch only takes an equal pro-
portion of input channels of the block, which considerably
reduces the number of parameters and FLOPs. And all the
channels in these branches are aggregated in the proposed
pixel-adaptive fusion module to generate the output of the
ladder self-attention block. Based on the above designs, we
developed a light-weight general-purpose backbone with a
relatively small number of parameters.

The overall framework of our model is shown in Figure
1. According to the conclusion of [9], [10] that the convo-
lution in the early stages helps the model learn better and
faster. PSLT adopts light-weight convolutional blocks in the
early stages and the ladder self-attention blocks in the latter
stages. Our PSLT has several important characteristics:

1) PSLT uses light-weight ladder self-attention blocks,
which greatly reduce the number of trainable pa-
rameters and FLOPs. The ladder self-attention block
first divides the input feature map into several equal
proportions along the channel axis. Then, each part
of the feature map is sent to an individual branch to
compute the self-attention similarity.

2) The ladder-self attention block is designed to ac-
quire large receptive field, requiring relatively small
number of computing resources. PSLT models lo-
cal attention on each branch for computing effi-
ciency; and more importantly, without introducing
extra parameters, PSLT adopts the progressive shift
mechanism to model interactions among pixels in
different windows to enlarge the receptive field of
each ladder self-attention block. The progressive
shift mechanism forms a block shaped like a ladder.

Our proposed PSLT achieves excellent performance on
visual tasks such as image classification, object detection
and person re-identification with a relatively small number
of trainable parameters. With less than 10 million parame-
ters and 2G FLOPs, PSLT achieves a top-1 accuracy of 79.9%
on ImageNet-1k image classification at input resolution
224 x 224 without pretraining on extra large dataset.

We notice that recently there exist light-weight trans-
formers [17], [18], [19] that combine local interaction (convo-
lution) and global self-attention in one block. In this work,
we provide another perspective, and our PSLT is capable
of modelling long-range interaction by effectively incorpo-
rating diverse local self-attentions and evolving the self-
attention of the latter branches in the ladder self-attention
block with a relatively small number of parameters and
FLOPs.

In summary, our contributions are as follows:

o We propose a light-weight ladder self-attention block
with multiple branches and considerably less param-
eters. A pixel-adaptive fusion module is developed
to aggregate features from multiple branches with
adaptive weights along both the spatial and channel
dimensions.

e We propose a progressive shift mechanism in the
ladder self-attention block to enlarge the receptive
field. The progressive mechanism not only allows
modelling interaction among pixels in different win-
dows for long-range dependencies, but also reduces

the number of parameters necessary to obtain the
value for computing self-attention in the following
branch.

o We develop a general-purpose backbone (PSLT) with
a relatively small number of parameters. PSLT is
constructed with light-weight convolutional blocks
and the ladder self-attention blocks, improving its
generalization ability.

2 RELATED WORK

A comparison of various models is shown in Table 1. Our
PSLT was manually developed and has a relatively small
number of parameters, and PSLT does not utilize a search
phase before training. In the following section, we detail
some related works.

2.1 Convolutional Neural Networks

Since the development of AlexNet [1], CNNs have become
the most popular general-purpose backbones for various
computer vision tasks. More effective and deeper convo-
lutional neural networks have been proposed to further
improve the model capacity for feature representation, such
as VGG [6], ResNet [3], DenseNet [7] and ResNext [5].
However, neural networks with large scales are difficult
to deploy in edge devices, which have limited memory
resources. Thus, various works have focused on designing
light-weight neural networks with less trainable parameters.

- Light-weight CNN. To decrease the number of trainable
parameters, MobileNets [20], [21], [22] substitute the stan-
dard convolution operation with a more efficient combi-
nation of depthwise and pointwise convolution. ShuffleNet
[23] uses group convolution and channel shuffle to further
simplify the model. The manual design of neural networks
is time consuming, and automatically designing convolu-
tional neural architectures has shown great potential for
developing high-performance neural networks [24], [25],
[26]. EfficientNet [27] investigates the model width, depth
and resolution with a neural architecture search [24], [25],
[28].

Although CNNSs can effectively model local interactions,
adaptation to input data is absent in standard convolution.
Usually, the adaptive methods are capable of improving
model capacity by the dynamic weights or receptive fields
with respective to different input images. RedNet [29] pro-
duces dynamic weights for distinct input data. Deformable
convolution [30] produces an adaptive location for the con-
volution kernels. Our proposed backbone (PSLT) inherits
the virtue of convolution that implies inductive bias when
modelling local interactions, and PSLT takes advantage of
self-attention [11] to model long-range dependency and
adapt to input data with dynamic weights.

2.2 Vision Transformer

Transformers [11], [12] are widely used in natural language
processing, and the transformer architecture for computer
vision tasks has evolved since ViT [31] was proposed for im-
age classification. ViT has one-stage structure that produces
features with only one scale. PiT [39] adopts depthwise
convolution [20] to decrease the spatial dimension. CrossViT
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TABLE 1
Comparison of various general-purpose backbones. “T” indicates that
the model adopts the transformer architecture. “Adaptive” indicates that
the model can adapt to the input image. “Light” denotes that the model
has a relatively small number of parameters and FLOPs. “NAS”
denotes that the model needs another search process before training
from scratch.

Model Architecture|Adaptive|Light| NAS
VGG [6] CNN X X X
ResNet [3] CNN X X X
DenseNet [7] CNN X X X
MobileNet [20] CNN X v X
ShuffleNet [23] CNN X v X
EfficientNet CNN 4 X v
RedNet [29] CNN v X X
ViT [31] T v X X
PS-VAT [32] T v X | x
Swin [15] T v X X
VOLO [33] T v X X
PVT [14] T v X | x
MobileViT [19] T v v X
EfficientFormer [34] T v v v
CoATNet CNN+T v X X
CvT [35] CNN+T v X X
CMT [13] CNN+T v X X
Conformer [36] CNN+T v X X
BossNet [26] CNN+T v X v
LeViT [37] CNN+T v v X
Mobile-Former [38] | CNN+T v v X
PSLT (Ours) CNN+T v v X

[40] models multi-scale features via small and large patch
embedding sizes. Recent transformer architectures [13], [14],
[15], [37], [41] have adopted hierarchical structures like
popular CNNs to yield multi-scale features through patch
merging to progressively reduce the number of patches. To
mitigate the issue that the tokenization in ViT [42] may de-
struct the object structure, PS-ViT [32] locates discriminative
regions by iteratively sampling tokens.

Since self-attention requires a large amount of comput-
ing resources to model long-range interactions, recent works
[15], [16], [43] have approximated global interaction by mod-
elling local and long-range dependency. SwinTransformer
[15] divides the feature map into multiple windows, self-
attention is only conducted for interactions among pixels in
the same window, and the shift operation is proposed for
long-range interactions. VOLO [33] generates the outlook
attention matrix for a local window. DAT [44] generates de-
formable attention similar to deformable convolution [30].
Twins [45] first reduces the size of the feature map and then
conducts self-attention and upsamples the feature map to
its original size. PVT [14], ResT [46] and CMT [13] maintain
the size of the query while reducing the size of the key
and value to process the self-attention operation. CSWin [47]
adopts the cross-shaped window self-attention mechanism
for computing efficiency.

- CNN + Transformer The combination of convolution and
self-attention has shown great potential in computer vision
tasks. CoATNet [9] investigates the best method for allo-
cating the convolutional blocks and transformer blocks in

TABLE 2
Comparison of light-weight vision transformers. “T” indicates that the
model adopts the transformer architecture. “Local” indicates the
modelling of local interaction. “Global” indicates the modelling of
long-range interaction. “GSA” denotes that the model adopts global
self-attention. “LSA” denotes that the model adopts local self-attention.

Model Architecture | Local | Global
Mobile-Former [38] CNN+T CNN | GSA
MobileViT [19] CNN+T CNN | GSA
EdgeViT [17] CNN+T CNN | GSA
EdgeNext [18] CNN+T CNN | GSA
PSLT (Ours) CNN+T LSA LSA

different stages to achieve the optimal model generalization
ability and capacity. BossNet [26] uses a neural architecture
search method [24] to automatically determine the best
method to combine the convolutional block and transformer
block. LeViT [37] proposes a hybrid neural network for
fast inference image classification. LeViT utilizes convolu-
tion with a kernel size of 3 to halve the feature size four
times and downsamples during the self-attention operation
to reduce the number of float-point operations. CvT [35]
introduces depthwise and pointwise convolution to replace
the fully connected layer, yielding the query, key and value
in the multi-head self-attention mechanism. Conformer [36]
uses a dual network structure with convolution and self-
attention for enhanced representation learning. CMT [13]
also introduces depthwise and pointwise convolution in
multi-head self-attention mechanism, and an inverted resid-
ual FEN is used in place of a standard FFN for improvement.
MPVIiT [48] combines the convolution and multi-scale self-
attention for multi-scale representation.

- Light-weight vision transformers. The achievements of
vision transformers rely on the large number of comput-
ing resource (parameters and FLOPs). Mobile-Former [38]
leverages the advantages of MobileNet for local processing
and the advantages of the transformer for global interaction.
EdgeViT [17] and EdgeNeXt [18] also combine local interac-
tion (convolution) and global self-attention. MobileViT [19]
is also a light-weight general-purpose vision transformer for
mobile devices. MobileViT leverages a multi-scale sampler
for efficient training. LVT [49] also develops enhanced self-
attention for computing efficiency.

In this work, we propose a light-weight ladder self-
attention block requiring a relatively small number of pa-
rameters and FLOPs. Instead of combining convolution and
global self-attention for local and global interactions in a
block, our ladder self-attention block enlarges the receptive
field by modelling and interacting the diverse local self-
attentions, as shown in Table 2. And modelling local self-
attention is more computationally efficient than modelling
global self-attention. Then we develop a light-weight trans-
former backbone with the ladder self-attention block in the
last two stages and light-weight convolutional blocks in the
first two stages, and the allocation of self-attention blocks
and convolutional blocks is proved with better performance
in CoAtNet [9].
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3 PROGRESSIVE SHIFT LADDER TRANSFORMER
(PSLT)

3.1 Overall Architecture

In this work, we aim to develop a light-weight trans-
former backbone and expand the receptive field of the basic
window-based self-attention block. We propose a ladder
self-attention block with multiple branches. Each branch
takes an equal proportion of input features and adopts
the window-based self-attention, considerably reducing the
number of parameters and float-point operations in the
ladder self-attention block.

A progressive shift mechanism is formed to enlarge the
receptive field of the ladder self-attention block with the
following strategy. Each branch shifts the obtained features
in different directions and divides the shifted features into
multiple windows. In this manner, the output features of
each branch can be aggregated from diverse windows.
Furthermore, the latter branch takes the output feature of
the previous branch as input for computing self-attention,
allowing pixels in different windows of various branches
to interact with one another. With the progressive shift
mechanism, the light-weight ladder self-attention block is
capable of modelling long-range interactions. Because the
output feature of each branch is integrated with pixels in
different spatial windows, a pixel-adaptive fusion module is
developed to effectively integrate the output features of all
the branches with adaptive weights along both the spatial
and channel dimensions.

Based on the above considerations, we finally develop
a light-weight general-purpose backbone with a relatively
small number of trainable parameters based on the pro-
posed ladder self-attention block, termed Progressive Shift
Ladder Transformer (PSLT). An overview of PSLT is shown
in Figure 1. PSLT leverages the advantages of convolution
for local interaction and self-attention for long-range inter-
action. An input image is passed through a stem convolu-
tion layer and four stages consisting of convolutional blocks
or the proposed ladder self-attention blocks. The output
feature of the final stage is sent to the global average pooling
layer and classifier.

To ensure that PSLT is applicable to various computer vi-
sion tasks, we adopt a four-stage architecture following the
Swin Transformer [15] to yield the hierarchical features. To
improve the model generalization ability and capacity, PSLT
adopts light-weight convolutional blocks in MobileNetV2
[21] with a squeeze-and-excitation (SE) block [50] in the
first two stages and ladder self-attention in the final two
stages. In the final two stages, the proposed light-weight
ladder self-attention blocks are applied to model long-range
interactions. Note that the input feature is downsampled
at the beginning of each stage, and these stages jointly
yield multi-scale features similar to prevalent convolutional
architectures. With these hierarchical representations, PSLT
can be easily applied as the backbone model in existing
frameworks for various computer vision tasks. For image
classification, the output feature of the final stage, with
abstract semantics representing the global information, is
transmitted to the global average pooling layer and classi-
fier.

In addition, in contrast to splitting the input RGB image
into non-overlapping patches (Patch Partition) for the initial
representation, as is performed in most commonly used
vision transformer architectures, PSLT applies the popular
stem with three convolution layers for feature extraction, as
splitting the image into non overlapping patches may divide
the same part of an object into different patches. The 3 x 3
convolution in the first process is capable of modelling local
interactions with the implied inductive bias.

Different from existing light-weight transformer [38],
which greatly reduces the number of parameters in back-
bones and introduces multiple parameters in the classifi-
cation head, PSLT has less parameters in the classification
head. Our experiments show that PSLT uses only 6% (0.57 M
of 9.2 M) of the parameters in the classification head, which
is considerably lower than Mobile-Former-294M [38] using
40% (4.6 M of 11.4 M) of the parameters in the classification
head of the two fully connected layers.

3.2 Ladder Self-Attention Block

To model interaction among pixels in different windows, we
propose a ladder self-attention block with multiple branches
and model long-range interaction among pixels in different
branches through the progressive shift mechanism. Since
the feature maps are integrated in diverse spatial windows
in each branch of the ladder self-attention block, a pixel-
adaptive fusion module is developed for effective feature
fusion among these branches. The difference of processing
feature maps in these branches allows the proposed block to
obtain diverse information, and the proposed pixel-adaptive
fusion module is capable of efficiently aggregating the di-
verse information. In the following section, we describe the
details of the ladder self-attention block.

3.2.1 Progressive Shift for the Ladder Self-Attention Block

The ladder self-attention block divides the input feature
map into several equal proportions along the channel di-
mension and sends these features to multiple branches.
Take the ladder self-attention block in Figure 1 for example;
the input feature map with d channels is divided into
three parts, each with % channels for each branch. PSLT
adopts window-based self-attention to only compute sim-
ilarity among pixels in the same windows, thus ensuring
computing efficiency. Different from SwinTransformer [15]
that stacks even number of window-based self-attention
blocks to enlarge the receptive field with shift operation,
our PSLT adopts the progressive shift mechanism to model
diverse local interactions in each branch and to interact in-
formation among these branches, which explicitly enlarges
the receptive field of each ladder self-attention block. In this
manner, PSLT acquires large receptive field with a relatively
small number of parameters and FLOPs.

For long-range interaction, PSLT proposes a progressive
shift mechanism for the ladder self-attention block. First, the
input features in the first branch are processed by the PSA
with the W-MHSA without the shift operation, as shown
in Figure 3 (a). And the features of the other two branches
are shifted differently to model diverse local interactions,
namely pixels from two windows in one branch may be
divided in the same window in the other branches. The
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Fig. 1. lllustration of prevalent transformer architectures for image classification. (a) ViT [31] with only one stage. (b) Swin Transformer [15], which
uses window-based multi-head self-attention and multi-stage blocks. (c) Our proposed PSLT adopts light-weight ladder self-attention (SA) blocks
in the final two stages to model long-range dependency of pixels divided in different windows in the same block, and the light-weight convolutional
blocks (MobileNetV2 [21] block with a squeeze-and-excitation (SE) block [50]) are adopted in the first two stages. The details of PSLT are described
in Section 3, and the structures of the PSW-MHSA and pixel-adaptive fusion module are shown in Figure 3. “Shift 1” and “Shift 2” denotes shift
operations with different directions. “d1” and “d2” denote the number of channels, and d; = 3da.

Block i

: —_—
l aggregation
Block i+1
(a) W-MHSA (b) PSW-MHSA

Fig. 2. lllustration of the window partition for pixel interactions in each
block. (a) The original W-MHSA generates windows according to only
one strategy to model local attention in each block. (b) The PSW-MHSA
produces different windows with multiple strategies and fuses these
features to aggregate information from diverse spatial windows.

shift direction or stride of the two branches is different from
each other to model long-range interactions. An illustration
of modelling interaction in different windows is shown in
Figure 2. Second, the progressive shift manner transmits
the output feature of the current branch to the subsequent
branch. As shown in Figure 3 (b), the PSW-MHSA takes

both the output feature of the previous branch and the
current input feature as input for self-attention computation
to model interactions among the branches.

More specifically, the PSW-MHSA applies the same shift
and window partition operations to both the input feature
of the current branch and the output feature of the previous
branch. A 1 x 1 convolution is applied to the input fea-
ture to yield the query and key to compute the similarity
among the feature points. Instead of yielding the value in
the same manner, the PSW-MHSA takes the output of the
previous branch as the value directly for the self-attention
computation. The PSW-MHSA progressively delivers the
output features of the branches, allowing it to model long-
range dependency because after the local interactions are
modelled, the pixels constrained in the divided windows
of the current branch can interact with pixels outside the
window in the following branches.

Instead of consecutive connection of local self-attention
and shifted local self-attention for long-range interaction
[15], our PSW-MHSA enables building backbone with arbi-
trary number of ladder self-attention blocks instead of even
number of blocks. In this way, the ladder self-attention block
can model long-range interactions among pixels in different
windows with the help of multiple branches, and the train-



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

W-MHSA Ladder self-attention block 4 Pixel-Adaptive Fusion Module
PSW-MHSA (e t
MLP
[ i ]
. » shift [»{ wp () +———
Cv ) e O—
Q K .
[ J | J 06 ) )| || wes ]
d
[ 1x1 Conv ] [ 1x1 Conv ] [ 1x1 Conv ] E@ [1X1 Conv] [1X1 Conv] [ ;C ]
ta, | d T d; dy/2 dyi/2 T;—le/z ’
d,/2
Window Wi | ( FC J
Partition Partition
k dy
E____S_E'_ft____j - [ : Concatenate ]
di/2 dy/2 di/2
I
Input d, [ Input ] [ Input ]

(a) W-MHSA

(b) PSW-MHSA (c) Pixel-Adaptive Fusion Module

Fig. 3. Example of detailed blocks in PSLT. (a) Window-based multi-head self-attention in the Swin Transformer [15]. (b) The ladder self-attention
block with two branches for example. The progressive shift mechanism transmits output feature of the previous branch to the subsequent branch,
which further enlarges the receptive field. Only the PSW-MHSA is illustrated in detail; LayerNrom and Light FFN are shown in Figure 1 and omitted
here for simplicity. “WP” indicates the window partition. (c) The pixel-adaptive fusion module in the ladder self-attention block. “Weights” denotes the
adaptive weights along the channel and spatial dimensions, which is the output of the second fully connected layer. The details of the PSW-MHSA

are described in Section 3.2.1.

ing cost (number of trainable parameters) is decreased .
Formally, the ladder self-attention blocks are computed
as

O, = PSW-MHSA (I}, O;_1)
QrKi,

PSW-MHSA(I, O;_1) = softmax( Nz

)Oi—1 + I )
O, = LFEN(LN(Oy))

O = PAFM(Oy),t =0,1,2, ....

The output (Oy) of the PSW-MHSA in the t-th branch is
computed according to the input feature of the ¢-th branch
(I) and the output feature of the (¢ — 1)-th branch (O;_1).
In the PSW-MHSA, the query (Q;,) and the key (kK7,) are
projected from I}, and O;_; is directly applied as the value.
The first branch is computed as Oy = MHSA(Iy), as shown
in Figure 3 (a). Then, the Light FFN (LFFN) and layer norm
(LN) are applied to produce the output of the ¢-th branch
(Oy). Finally, a pixel-adaptive fusion module (PAFM) is
developed to generate the output of the ladder self-attention
block (O) according to the outputs of all branches.

- Complexity analysis. Our intention is to build a light-
weight backbone, and the PSW-MHSA is proposed for mod-
elling long-range dependency. Here, we roughly compare
the number of trainable parameters and computation com-
plexity of the W-MHSA and PSW-MHSA. Taking the input

of h X w X dy as an example, each window has M x M
non-overlapping patches, and B branches are contained in
the PSW-MHSA. Then, the number of trainable parameters
in the W-MHSA and PSW-MHSA are:
H(W-MHSA) = 4d3
382 &2
B "B
The computational complexity of the W-MHSA and PSW-
MHSA are:
Q(W-MHSA) = 4hwd3 + 2M?*hwd,

3hwd?  hwd?

B B2
As can be seen, when B = 1, the PSW-MHSA has the same
number of trainable parameters and complexity as the W-
MHSA. When B > 1, the number of trainable parameters

and the computation complexity are both considerably re-
duced (B is set to 3 by default).

(2)
$(PSW-MHSA) =

®)

Q(PSW-MHSA) = + 2M?hwd; .

3.2.2 Light FFN

As presented in Figure 1 (b), the output of the MHSA is
processed by the FEN. To further decrease the number of
trainable parameters and float-point operations in PSLT, a
Light FEN is proposed to replace the original FFN, as shown
in Figure 1 (c). In contrast to the original FFN, which uses
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a fully connected layer with d channels for both the input
and output features, the Light FNN first projects the input
with dy channels to a narrower feature with % channels.
Then, a depthwise convolution is applied to model local
interactions, and a pointwise convolution is adopted to

restore the channels.

- Complexity analysis. Taking the input of an FFN layer
of size h X w X d as an example, the number of trainable
parameters of the FFN and LFFN are:

$(FEN) = d?
_d} 9dy @)
G(LFFN) = % + ==,

The computational complexity of the FEN and LFFN are:

Q(FEN) = hwd;
hwd3 n Yhwds ®)

Q(LFEN) = — T

In general, the number of input feature channels dy is
substantially larger than 2; thus, the LFEN is more compu-
tationally economical than the FFN, as it has less trainable
parameters and float-point operations.

3.2.3 Pixel-Adaptive Fusion Module

PSLT divides the input feature map equally along the
channel dimension for the multiple branches to decrease
the number of parameters and computation complexity. To
model long-range dependency, the progressive shift mech-
anism in the ladder self-attention block divides the same
pixel into different windows in each branch. Because the
output features of the branches are produced by integrating
feature information in different windows, PSLT proposes a
pixel-adaptive fusion module to efficiently aggregate multi-
branch features with adaptive weights along the spatial and
channel dimensions.

More specifically, the output features of all the branches
are concatenated and sent to two fully connected layers to
yield the weights for each pixel. The weights indicate the
importance of the features from all the branches for each
pixel in the feature map. To ensure that the number of train-
able parameters is not increased, the first fully connected
layer halves the number of channels. The features are then
multiplied by the weights and then sent to a fully connected
layer for feature fusion along the channel dimension.

Different from the conventional squeeze-and-excitation
block [50] measuring only the importance of the channels,
we introduce the pixel-adaptive fusion module to integrate
the output features of all branches with adaptive weights in
both the spatial and channel dimensions for two reasons.
First, because the pixels in each branch are divided into
different windows, the pixels at various spatial locations
contain distinct information. Second, along the channel
dimension, the input feature map is split equally for each
branch, so the pixel information at the same spatial location
is different among the branches. The experimental results
show that our proposed pixel-adaptive fusion module is
more suitable for feature fusion than the squeeze-and-
excitation block [50].

TABLE 3
Specification for PSLT. “conv2d” and “MBV2Block” indicate the
standard convolutional operation and the light-weight block in the
MobileNetV2 [21] with the squeeze-and-excitation layer [50]. “conv2d|”
and “MBV2Block+SE” denote the operation or block for downsampling
with stride 2. “FC” denotes the fully connected layer. PSLT has a total
of 9.223M parameters according to the table.

Stage| Input Block #OutStride#Params
2242 x 3| 3 x 3 conv2d] 36 | 2

Stem|; 192 36| 3 x 3convad x2 | 36 | 1 |%018M
1122 x 36] MBV2Block+SE| | 72 | 2

11562 x 72| MBV2Block+SE x2 | 72 | 1 |%122M
562 x 72| MBV2Block+SE| |[144| 2

2 [282 x 144] MBV2Block+SE x2 | 144 | 1 |0.817M
282 x 144 MBV2Block+SE| |288| 2

3 [142 x 288[Ladder SA block x10[288 | 1 |3.879M
142 x 288 2 x 2conv2d| [576] 2

4 72 x 576 | Ladder SA block x3|576 | 1 3.808M
72 x 576 7 x 7, pool 576 1

head| 12 | 576 FC 1000 1 |0%7M

3.3 Network Specification

Table 3 shows the architecture of PSLT, which contains
9.2M trainable parameters for image classification on the
ImageNet dataset [2]. PSLT stacks the light-weight convo-
lutional blocks (MBV2Block+SE) in the first two stages and
the proposed ladder self-attention blocks in the final two
stages. PSLT starts with three 3 x 3 convolution as stem to
produce the input feature of the first stage. In both stage
1 and stage 2, the first convolutional block has a stride of
2 to downsample the input feature map. The final block in
stage 2 is utilized to downsample the input feature map of
stage 3. A 2 x 2 convolution is applied to downsample the
feature map of stage 4. Each time the size of the feature map
is halved, the number of feature channels doubles.

Finally, the classifier head uses global average pooling
on the output of the last block. The globally pooled feature
passes through a fully connected layer to yield an image
classification score. Without the classifier head, PSLT with
multi-scale features can easily be applied as a backbone in
existing methods for various visual tasks.

- Detailed configuration. Following SwinTransformer [15],
the window size is set to 7 x 7, and the window partition
and position embedding is produced with the mechanism
similar to [15]. The number of heads in PSW-MHSA is set
to 4 and 8 in the last two stages respectively. The stride in
the shift operation (shown in Figure 1 (c)) in PSW-MHSA
is set to 3. The shift operation is similar to that in [15], but
the shift direction is different from each other in the last two
branches.
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4 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed
PSLT by conducting experiments on several tasks, including
ImageNet-1k image classification [2], COCO objection detec-
tion [51] and Market-1501 person re-identification [52].

4.1 Image Classification
4.1.1 ImageNet Results

- Experimental setting. We evaluate our proposed PSLT
on ImageNet [2] classification. The ImageNet dataset has
1,000 classes, including 1.2 million images for training and
50 thousand images for validation. We train our PSLT on
the training set, and the top-1 accuracy on the validation
set and the ImageNet-V2 [53] is reported. For a fair com-
parison, we follow Mobile-Former [38] when performing
the ImageNet classification experiments. The images were
randomly cropped to 224 x 224. The data augmentation
methods include horizontal flipping [54], mix-up [55], auto-
augmentation [56] and random erasing [57]. Our PSLT was
trained from scratch on 8 A6000 GPUs with label smoothing
[58] using the AdamW [59] optimizer for 450 epochs with
a cosine learning rate decay. The distillation is not adopted
for training. The initial learning rate was set to 6 x 1074, and
the weight decay was set to 0.025 by default. For images in
the validation set, we adopted the center crop, with images
cropped to 224 x 224 for evaluation.
- Experimental results. Table 4 shows a comparison of the
performance of our proposed PSLT and the performance
of several convolution-based models and transformer-based
models. The first block shows the performance of our
proposed PSLT. The second block in Table 4 presents the
performance of models with less than 10M parameters,
including light-weight convolutional neural networks and
recently proposed transformer-based models. Compared to
an efficient convolution-based model with a similar num-
ber of parameters (ShuffleNetV2 + WeightNet [61]), PSLT
achieves a significantly higher top-1 accuracy (79.9% vs.
75.0%) with slightly fewer parameters (9.2M vs. 9.6M) but
more FLOPs (1.9G vs. 307M). With a similar number of
parameters (9.2M vs. 9.5M) and FLOPs (1.9G vs. 2.0G),
PSLT achieves a top-1 accuracy that is 2% higher than the
pure transformer-based DeiT-2G (79.9% vs. 77.6%). Several
recent works have focused on leveraging the advantages
of CNNs and transformer-based architectures to improve
model generalization ability and capacity, including LeViT
[37] and CMT [13]. It should be noted that our proposed
PSLT (trained for 450 epochs without distillation) achieves a
higher top-1 accuracy (79.9% vs. 78.6%) than LeViT (trained
for 1,000 epochs with distillation) with a similar number
of parameters. With a similar number of parameters (4.3M
vs. 4.2M) and FLOPs (876M vs. 0.6G), PSLT-Tiny achieves
a slightly higher top-1 accuracy (74.9% vs. 74.4%) than
EdgeViT-XXS [17]. And PSLT achieves comparable perfor-
mance to MPVIiT-T [41] with a similar number of FLOPs.
Although our PSLT shows slightly inferior performance
compared to the EfficientNet (79.9% vs. 80.1%) with simi-
lar number of parameters, the EfficientNet is obtained by
the carefully designed neural architecture search algorithm,
which is time-consuming. And our PSLT achieves higher
performance than the EfficientNet on the experiments of

COCO for object detection in Table 6 and instance segmenta-
tion in Table 7. Furthermore, our PSLT still achieves higher
performance than EfficientFormer-L1 which automatically
finds efficient transformers with similar neural architecture
search algorithm to EfficientNet.

Compared to those recently developed lightweight net-
works [17], [18], [19], [37], [48], our PSLT provides a different
perspective for acting as an effective backbone with a rela-
tively small number of parameters and FLOPs. The above
experimental results demonstrate that PSLT with diverse
local self-attentions for long-range dependency is capable
of achieving comparable performance, and modelling the
local self-attention requires less computing resources than
modelling the global self-attention.

The third block in Table 4 shows the performance of
models with 10M ~ 20M parameters. PSLT outperforms
pure transformer-based architectures with a similar number
of parameters and FLOPs (9.2M/1.9G), including PvT-Tiny
(13.2M/1.9G) and DeiT-2G (6.5M/2.0G), and PSLT achieves
a slightly higher top-1 accuracy than Swin-2G (79.9% vs.
79.2%) with slightly fewer parameters. PSLT slightly outper-
forms CNN-based models and transformer-based models,
where PSLT achieves a higher top-1 accuracy than Mobile-
Former (79.9% vs. 79.3%) with significantly fewer parame-
ters (9.2M vs. 14.0M) and more FLOPs (1.9G vs. 508M), and
PSLT achieves a top-1 accuracy that is 3% higher than ConT-
S (79.9% vs. 76.5%) with a similar number of parameters and
FLOPs. PSLT also achieves comparable performance to the
searched light-weight model EfficientFormer-L1 [34] (79.9%
vs. 79.2%), where PSLT requires a relatively smaller number
of parameters (9.2M vs. 12.2M) and FLOPs (1.9G vs. 2.4G).

The last block in Table 4 shows the performance of mod-
els with more than 20M parameters for reference, including
the commonly used ResNet and its evolved architectures.
Compared to the pure transformer models, PSLT achieves
a comparable top-1 accuracy to PVT-S (79.9% vs. 79.8%)
with nearly 50% fewer parameters (9.2M vs. 24.5M) and
FLOPs (1.9G vs. 3.8G). PSLT-Large with smaller amount of
parameters and FLOPs (16.0M/3.4G) also outperforms re-
cent transformer structures, including DeiT-S (22.0M/4.6G),
PS-ViT-B/10 (21.3M/3.1G) and BossNet-TO0 (3.4G). And the
PSLT-Large also achieves a slightly higher top-1 accuracy
than Swin [15] (81.5% vs. 81.3%) with fewer parameters
(16.0M vs. 29.0M) and FLOPs (3.4G vs. 4.5G).

The ImageNet classification experiments show that our
proposed PSLT outperforms both convolution-based and
transformer-based models with similar number of parame-
ters. These results validate the effectiveness of the proposed
ladder self-attention block.

4.1.2 CIFAR Results

- Experimental setting. The CIFAR-10/100 [70] datasets
contain 10/100 classes, including 50,000 images for training
and 10,000 images for testing, with an image resolution of
32 x 32. We trained PSLT from scratch on the training set,
and the top-1 accuracy on the test set is reported. PSLT was
trained for 300 epochs using the AdamW [59] optimizer
with cosine learning rate decay using an initial learning rate
of 5 x 107* and a weight decay of 0.025.

- Experimental results. Table 5 shows the image classifi-
cation performance of the vision transformer models on
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TABLE 4
Image classification performance on the ImageNet without pretraining. Models with similar number of parameters are presented for comparison.
“Input” indicates the scale of the input images. “Top-1” (“V2 Top-1”) denotes the top-1 accuracy on ImageNet (ImageNet-V2). “#Params” refers to
the number of trainable parameters. “#FLOPs” is calculated according to the corresponding input size. “+” indicates that the performance is cited
from Mobile-Former [38]. “*” indicates that the model was trained with distilling from an external teacher. “{” denotes extra techniques are applied,

such as multi-scale sampler [19] and EMA [2]. “PAcc” (“FAcc”) is the ratio of Top-1 accuracy to the number of parameters (FLOPSs).

Model NAS | Input | #Params | #FLOPs | Top-1 | PAcc (%/M) | FAcc (%/G) | V2 top-1
PSLT-Tiny(Ours) X 2242 4.3M 876M | 74.9% 17.42 85.5 63.0%
PSLT(Ours) X 2242 9.2M 1.9G 79.9% 8.68 42.05 68.6%
PSLT-Large(Ours) X 2242 16.0M 3.4G 81.5% 5.1 24.0 70.3%
MobileNetV3 [22] v 2242 4.0M 155M | 73.3% 18.33 472.9 -
EdgeViT-XXS [17] X 2242 4.1M 0.6G 74.4% 18.14 124 -
Mobile-Former [38] X 2242 4.6M 96M 72.8% 15.83 758.3 -
MobileViTv2-S [19]* X 2562 49M 1.8G 78.1% 15.94 43.39 -
LVT [49] X | 2242 | 55M 09G | 74.8% 13.6 83.11 -
MobileViT-S [19]i X 2562 5.6M 2.0G 78.4% 14 39.2 -
EdgeNeXt-S (18] X 2242 5.6M 965M | 78.8% 14.07 81.66 -
MPVIT-T [48] X 2242 5.8M 1.6G 78.2% 13.48 48.88 -
HRFormer-T [60] X 2242 8.0M 1.8G 78.5% 9.81 43.61 -
LeViT [37]* X 2242 9.2M 406M 78.6% 8.54 193.6 66.6%
EfficientNet [27] v 2242 9.2M 1.0G 80.1% 8.71 80.1 68.8%
RedNet-26 [29] X 2242 9.2M 1.7G 75.9% 8.25 44.65 -
CMT-Ti [13] X 1922 9.5M 0.6G 79.2% 8.34 132 -
ShuffleV2+Weight [61] X 2242 9.6M 307M | 75.0% 7.81 244.3 -
ConT-S [62] X 2242 10.1M 1.5G 76.5% 7.57 51 -
Coat-Lite mini [63] X 2242 11.0M 2.0G 79.1% 7.19 39.55 -
Shunted-T [64] X 2242 11.5M 2.1G 79.8% 6.94 38 -
GC ViT-XXT [65] X 2242 12.0M 2.1G 79.6% 6.63 37.9 -
PoolFormer-S12 [66] X 2242 12.0M ~4.2G | 77.2% 6.43 18.38 -
EfficientFormer-L1 [34] v 2242 12.2M 2.4G 79.2% 6.49 33 -
Swin-2G [15] " X 2242 12.8M 2.0G 79.2% 6.19 39.6 -
PvT-Tiny [14] X 2242 13.2M 1.9G 75.1% 5.69 39.53 —
ResT-Small [46] X 2242 13.7M 1.9G 79.6% 5.81 41.89 -
Mobile-Former [38] X 2242 14.0M 508M | 79.3% 5.66 156.1 -
HRNet-W18 [67] X 2242 21.3M 4.0G 76.8% 3.56 19.2 -
PS-ViT-B/10 [32] X 2242 21.3M 3.1G 80.6% 3.78 26 -
A-ViT-S [68] X 2242 22.0M 3.6G 78.6% 3.57 21.83 -
DeiT-S [69] X 2242 22.0M 4.6G 79.8% 3.63 17.35 68.5%
BossNet-T0 [26] v 2242 -- 3.4G 80.8% - 23.76 -
PVT-S [14] X 2242 24.5M 3.8G 79.8% 3.24 21 -
Res2Net-50 [4] X 2242 25.0M 4.2G 78.0% 3.12 18.57 -
ResNet-50 [3] X 2242 25.6M 4.1G 76.2% 2.98 18.59 -
RedNet-101 [29] X 2242 25.6M 4.7G 79.1% 3.09 16.83 -
VOLO [33] X 2242 27.0M 6.8G 84.2% 3.12 12.38 -
CrossFormer-T [16] X 2242 27.8M 2.9G 81.5% 2.93 28.1 -
Swin [15] X 2242 29.0M 45G 81.3% 2.80 18.07 -
WRN [8] X 2242 68.9M - 78.1% 1.13 - -
ViT-B/16 [31] X 3842 86M 55.5G 77.9% 091 14 67.5%

the CIFAR-10 and CIFAR-100 datasets. As shown in the
table, our PSLT achieves comparable performance com-
pared to the commonly-used convolutional neural networks
with a small amount of parameters. Compared with WRN
[8], PSLT achieves comparable performance on the CI-
FAR10/100 with similar amount of parameters but higher
top-1 accuracy on ImageNet with much less parameters in
Table 4. Compared to the vision transformers, our PSLT
shows higher model generalization ability with fewer train-
ing images, where PSLT achieves relatively higher top-1

accuracy on both CIFAR-10 (95.43% vs. 95.0%) and CIFAR-
100 (79.1% vs. 78.63%) than MOA-T with less trainable
parameters (8.7M vs. 30M).

4.2 Objection Detection

- Experimental setting. We conduct objection detection ex-
periments on COCO 2017 [51], which contains 118k images
in the training set and 5k images in the validation set
of 80 classes. Following PVT [14], which uses standard
settings to generate multi-scale feature maps, we evaluate
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TABLE 5
Image classification performance of the models on the CIFAR-10/100
without pretraining. The top-1 accuracy rate on CIFAR-10/100 is
reported. “+” denotes that results were taken from [71]. “FLOPs” is not
reported for the compared methods in literatures.

Model Input | #Params | CIFAR-10 | CIFAR-100
ResNet [3] | 327 | 194M | 92.07% -
WRN-40-4 [8] | 322 | 89M | 95.47% 78.82%
ResNeXt-29 [5]| 322 | 68.1IM | 96.43% 82.69%
DenseNet [7] | 322 | 272M | 94.17% 76.58%
PVT-T [14]" | 322 13M 91.0% 72.80%
Swin [15]* 322 | 275M | 94.41% 78.07%
MOA-T [71] | 322 30M 95.0% 78.63%
PSLT (Ours) | 322 | 87M | 95.43% 79.1%

our proposed PSLT as a backbone with two standard de-
tectors: RetinaNet [73] (one-stage) and Mask R-CNN [74]
(two-stage). During training, our backbone (PSLT) was first
initialized with the pretrained weights on ImageNet [2], and
the newly added layers were initialized with Xavier [75].
Our PSLT was trained with a batch size of 16 on 8 GeForce
1080Ti GPUs. We adopt the AdamW [59] optimizer with an
initial learning rate of 1 x 10~%. Following the common PVT
settings, we adopted a 1x or 3x training schedule (12 or 36
epochs) to train the detection models. The shorter side of the
training images was resized to 800 pixels, while the longer
side of the images is set to a maximum of 1,333 pixels. The
shorter side of the validation images was fixed to 800 pixels.
With the 3x training schedule, the shorter side of the input
image was randomly resized in the range of [640, 800].

- Experimental results. Table 6 shows the performance of
the backbones on COCO val2017; the backbones were initial-
ized with pretrained weights on ImageNet using RetinaNet
for object detection. As shown in the table, with a similar
number of trainable parameters, PSLT achieves comparable
performance. With the 1x training scheduler, PSLT outper-
forms Mobile-Former, where PSLT achieving a higher AP
(41.2 vs. 38.0) with slightly more parameters (19.1 M vs. 17.9
M) and FLOPs (192 G vs. 181G). The last block of Table
6 presents models with more than 30M parameters; PSLT
achieves higher AP (41.2 vs. 40.4) than PVT-S with consid-
erably fewer parameters (19.1 M vs. 34.2M) and FLOPs (192
G vs. 226 G). Compared with the commonly used backbone
ResNet-50, PSLT achieves a considerably higher AP (41.2 vs.
35.3) with nearly 50% less trainable parameters (19.1 M vs.
37.7 M) and fewer FLOPs (192 G vs. 239 G). With the 3x
training scheduler, PSLT shows higher performance with a
similar number of parameters, where PSLT achieving a 1.7-
point higher AP than PVT-S (43.9 vs. 42.2) with considerably
fewer parameters.

Similar results are shown in Table 7, including segmen-
tation experiments on Mask R-CNN. With the 1x train-
ing scheduler, PSLT outperforms ResNet-50, where PSLT
achieving 2.8 points higher box AP (40.8 vs. 38.0) and 2.9
points higher mask AP (37.3 vs. 34.4) with fewer parameters
(28.9M vs. 44.2M) and FLOPs (211 G vs. 253 G). PSLT shows
comparable performance to PVT-S (40.8 vs. 40.4 box AP and
37.3 vs. 37.8 mask AP) with considerably fewer parameters
(289M vs. 44.1M) and FLOPs (211G vs. 305G). Similar

results are observed with the 3x training scheduler; PSLT
outperforms PVT-T, where PSLT achieving 2.9 points higher
AP’ and 1.5 points higher AP™ with a smaller number
of parameters (28.9M vs. 32.9M) and FLOPs (211 G vs. 240
G). Moreover, PSLT achieves comparable performance to
ResNet-50, which has more than 40M parameters.

For a fair comparison with Swin [15], we implement our
PSLT-Large with the same experimental setting as Swin [15]
with Sparse R-CNN [72] framework (in Table 6) and with
Mask R-CNN [74] framework (in Table 7). Our PSLT-Large
achieves comparable performance with less parameters and
FLOPs.

4.3 Semantic Segmentation

- Experimental setting. Semantic segmentation experiments
are conducted with a challenging scene parsing dataset,
ADE20K [76]. ADE20K contains 150 fine-grained semantic
categories with 20210, 2000 and 3352 images in the training,
validation and test sets, respectively. Following PVT [14],
we evaluate our proposed PSLT as a backbone on the basis
of the Semantic FPN [77], a simple segmentation method
without dilated convolution [78]. In the training phase, the
backbone was first initialized with the pretrained weights
on ImageNet [2], and the newly added layers were initial-
ized with Xavier [75]. Our PSLT was trained for 80k itera-
tions with a batch size of 16 on 4 GeForce 1080Ti GPUs. We
adopted the AdamW [59] optimizer with an initial learning
rate of 2 x 10~%. The learning rate follows the polynomial
decay rate with a power of 0.9. The training images were
randomly resized and cropped to 512 x 512, and the images
in the validation set were rescaled, with the shorter side set
to 512 pixels during testing.

- Experimental results. Table 8 shows the semantic segmen-
tation performance on the ADE20K validation set for back-
bones initialized with pretrained weights on ImageNet with
Sematic FPN [77]. As shown in the table, PSLT outperforms
the ResNet-based models [3], where PSLT achieving a 2.3%
points higher than ResNet-50 (39.0% vs. 36.7%) with nearly
half the number of parameters (13.0M vs. 28.5M) and 20%
less FLOPs than ResNet-50 (32.0G vs. 45.6G). With almost
the same number parameters and FLOPs, PSLT achieves a
2.3% points higher than PVT-T (39.0% vs 36.7%).

For a fair comparison with Swin [15], we implement
our PSLT-Large with the same experimental setting as Swin
[15] with UperNet [79] framework. Our PSLT-Large achieves
comparable performance with less parameters and FLOPs.

4.4 Person Re-identification

- Experimental setting. Person re-identification (RelD) ex-
periments are conducted with Market-1501 [52], a dataset
that contains 12,936 images of 751 people in the training set
and 19,732 images of 750 different people in the validation
set. All the images in the Market-1501 dataset were captured
with six cameras. We trained our PSLT on the training set
to classify each person, similar to an image classifier with
751 training classes. The output feature of the final stage
in PSLT was utilized to compute the similarity between
the query image and the gallery images for validation, and
the rank-1 accuracy and mean average precision (mAP) are
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TABLE 6

Object detection performance on COCO. The AP value on the validation

set is reported. “MS” denotes that multi-scale training [14] was used. “+”

indicates that the result is taken from [14]. FLOPs is calculated at input resolution 1280 x 800. “*” denotes that the model is trained based on
Sparse R-CNN [72] following [15].

RetinaNet 1x RetinaNet 3x + MS
Backbone | #Params |#FLOPS 55— 5 5 7p AP, AP, [AP APy ADP.|APs APy AP,
PSLT(Ours) 19AM | 192G 412 613 440 |255 450 548 (439 643 469 | 276 476 569
Mobile-Former [38] | 17.9M 181G |38.0 583 403|229 412 49.7| - - - — — -
EfficientNet [27] 20.0M | 151.2G |40.5 605 43.1 [222 448 56.6 424 620 456 (241 46.1 58.3
ResNet-18 [3]T | 21.3M | 168G |318 49.6 33.6 | 163 342 432|354 539 376|195 382 468
PVT-T [14] 23.0M 221G [36.7 569 389 [226 38.8 50.0(394 598 420|255 420 521
RedNet-50 [29] | 27.8M | 210G |383 582 405|211 418 509| - - - | - - _
ConT-M[62] | 270M | 217G |379 581 402 |230 406 504| - - - | — - -
PVT-S [14] 34.2M 226G 404 613 43.0 |25.0 429 55.71422 62.7 450|262 452 572
ResNet-50 [3]" | 37.7M | 239G [363 553 386 | 193 400 488|390 584 418|224 428 516
PSLT-Large (Ours)*| 97.6M | 147.7G | - - — — — — 482 672 528|323 511 624
Swin [15]* 110.0M | 172.0G | - — — — — - 1479 673 523 — — -
TABLE 7

Object detection and instance segmentation performance on COCO. APY and AP™ denote the bounding box AP and mask AP on the validation

set, respectively. “MS” denotes that multi-scale training [14] was used. “

+” indicates that the result was taken from [14]. FLOPs is calculated at

input resolution 1280 x 800.

Mask R-CNN 1x Mask R-CNN 3x + MS
Backbone | #Params | #FLOPS \rmr—rpr —pr 0 pm apm Apm [ APY APL, AP |AP™ AP APE
PSLT (Ours) | 280M | 211G |408 61.8 449 | 373 59.0 399 |427 63.1 471 | 389 605 419
EfficientNet [27] | 302M | 169.3G |40.1 612 435 | 364 580 389 |421 633 455|380 602 406
RedNet-50 [29] | 342M | 224G 402 614 437|361 581 382 | - - - | - - -
ResNet-18 [3]7 | 312M | —— [340 540 367|312 510 327|369 571 400|336 539 357
PVT-T [14] 329M | 240G [367 592 393|351 567 373|398 622 430|374 598 399
PVT-S [14] 441M | 305G |404 629 438 | 378 60.1 403 [430 653 469 | 399 625 428
ResNet-50 [3]7 | 442M | 253G |38.0 586 414|344 551 367 |410 617 449 | 371 584 401
PSLT-Large (Ours)| 356M | 2423G |441 659 483 | 39.6 626 424 |467 680 515 | 418 650 452
Swin [15] 480M | 267.0G |437 66.6 477 | 39.8 633 427 [460 681 503 | 416 651 449
TABLE 8 TABLE 9

Semantic segmentation performance of different backbones on the
ADE20K. The mean intersection over union (MloU) is reported. “+”
indicates that the result is taken from [14]. “*” denotes that the model is
trained based on UperNet [79] following [15].

Backbone Semantic FPN
#Params Input FLOPs mloU
PSLT (Ours) 13.0M 5122 32.0G 39.0%
ResNet-18 [3]T 155M 5122 322G 32.9%
PVT-T [14] 17.0M 5122 332G 35.7%
ResNet-50 [3]" 285M 5122 456G 36.7%
PVT-S [14] 282M 5122 445G 39.8%
PSLT-Large(Ours)* | 47.8M 5122 229.9G 46.1%
Swin [15]* 60M 5122 945G 46.1%

reported. For a fair comparison, we follow Bag of Tricks [80]
to perform the RelD experiments. The data augmentation
techniques that we apply to the training images include
horizontal flipping, central padding, randomly cropping to
256 x 128, normalizing by subtracting the channel mean and
dividing by the channel standard deviation, and random
erasing [57]. The data augmentation techniques applied to
the test images include resizing to 256 x 128 and normal-
izing by subtracting the channel mean and dividing by the

Performance of the models on the Market-1501 when the models are
first pretrained on ImageNet. “Rank-1" indicates the rank-1 accuracy
rate. “mAP” denotes the mean Average Precision. “FLOPSs” is not
reported for the compared methods in literatures.

Model Input |#Params|Rank-1|mAP
OSNet [81] 256 x 128| 22M | 94.8% | 84.9
CDNet [82] (256 x 128| 1.8M | 95.1% | 86.0

Auto-RelD [83] | 256 x 128| 11.4M | 94.5% | 85.1
TransRelD [84] |256 x 128 | ~50M | 94.7% | 86.8
PCB (+RPP) [85] | 256 x 128 | ~26M | 93.8% | 81.6
VPM [86] 256 x 128| ~26M | 93.0% | 80.8
BagofTrick [80] | 256 x 128 | ~26M | 94.5% | 85.9
PSLT (Ours) |256 x 128 9.0M | 94.3% | 86.2

channel standard deviation.

The proposed PSLT was trained for 360 epochs under the
guidance of the cross-entropy loss and triplet loss [87] using
the Adam optimizer. Similarly, PSLT adopts the BNNeck
[80] structure to compute the triplet loss. The output feature
after the global average pooling layer first passed through
a BatchNorm layer before being sent to the classifier. The
feature before the BatchNorm layer was used to compute
the triplet loss, and the output score of the classifier was
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TABLE 10
Comparison of model inference. “Mem” denotes the peak memory for
evaluation. “FPS” is the number of images processed for one second.

Model #Params | #FLOPs |[Mem | FPS | Top-1
PSLT-Tiny | 4.3M 876M | 1.9G | 669.2 |74.9%
PSLT 9.2M 19G |21G| 638.2 |{79.9%
PSLT-Large | 16.0M 34G |23G | 557.7 |81.5%
DeiT-S [69] | 22.0M 4.6G | 1.8G |1456.9|79.8%
Swin [15] | 29.0M 45G |25G | 755.2 [81.3%
Swin*3 [15]| 247.2M | 38.1G | 4.8G | 2724 -

used to compute the cross-entropy loss for training. For val-
idation, the feature after the BatchNorm layer was adopted
to compute the similarity. A batch size of 64 was applied
during training. The initial learning rate is set to 1.5 x 1074,
and the learning rate was decayed by a factor of 10 at epochs
150, 225 and 300. The weight decay was set to 5 x 1074,

- Experimental results. Table 9 shows the performance on
Market-1501 of models that were pretrained on ImageNet.
The models in the first block are designed specifically for
person RelD. The second block presents the performance
of general-purpose backbones with improvement method-
ologies on Market-1501. PSLT outperforms some methods
with general-purpose backbones. PSLT achieves a higher
rank-1 accuracy (94.3% vs. 93.8%) and mAP (86.2 vs. 81.6)
than PCB (+RPP) with fewer parameters (9.0M vs. 26M). In
addition, PSLT achieves comparable performance to Auto-
RelD, which is automatically designed for person RelD.
Compared to Auto-RelD, PSLT achieves a higher mAP
(86.2 vs. 85.1) and the same rank-1 accuracy with fewer
parameters (9.0M vs. 11.4M). PSLT also shows comparable
performance to OSNet, with a slightly higher mAP (86.2 vs.
84.9) and slightly lower rank-1 accuracy (94.3% vs. 94.8%).
However, PSLT performs worse than specifically designed
state-of-the-art models (CDNet and TransRelD).

As can be seen, our PSLT achieves comparable per-
formance to general-purpose models in the second block
and slightly inferior performance to the models specifically
designed for RelD in the first block. The experimental results
demonstrate that our PSLT is generalizable to the person re-
identification tasks.

4.5 Discussion

We have shown our model performance in Table 4 and our
PSLT achieves comparable top-1 accuracy with relative less
parameters and FLOPs. Usually, the FLOPs is adopted to
measure the total float operations for processing one image.
Intuitively, the model with lower FLOPs can achieve higher
FPS which measures the amount of processed images in
one second. However, according to Table 10, the FPS for
the listed three kinds of models seems counter-intuitive. For
example, the Swin contains relatively less FLOPs than DeiT-
S but processes nearly a half amount of images as the DeiT-
S does in one second. The same phenomenon occurs when
comparing our PSLT-Large and Swin. The main reason is
that the computing optimization is not implemented for
Swin and our PSLT-Large directly on the accelerators such
as GPUs, including the window partition in Swin and PSLT-
Large and the computation of multiple branches in our

TABLE 11
Ablation study on the ImageNet without pretraining. “#Branches”
indicates the number of branches in the ladder self-attention block.

Model | #Branches | #Params | #FLOPs | Top-1
PSLT 2 11.0M 2.1G 80.2%
PSLT 3 9.2M 1.9G 79.9%
PSLT 4 8.4M 1.8G 79.0%
PSLT 6 7.5M 1.7G 77.9%

TABLE 12

Ablation study on the ImageNet without pretraining. “Shift” denotes that
the shift operation was used in the ladder self-attention block to model
diverse local self-attentions. “FD” indicates whether progressively
transmitting features is adopted. “PAFM” indicates the pixel-adaptive
fusion module.

Model | Shift | FD | PAFM | #Params | #FLOPs | Top-1
PSLT v v v 9.2M 1.9G |79.9%
-— X v v 9.2M 1.9G |79.3%
-— v X v 9.7M 2.0G |79.2%

PSLT-Large. Furthermore, we examine the FPS of Swin*3

with 3 times of the original channel dimension, and find
that the FLOPs is nearly 9 times of the Swin but the FPS
is only 1/3 of the Swin. Thus, more direct optimization on
the computing hardware (GPU) for each transformer model
could essential for the FPS. However, the optimization of the
computing hardware for fast inference can be investigated
in the future but is not the main scope of our work.

5 ABLATION STUDY

In this section, we conduct ImageNet classification exper-
iments to demonstrate that the ladder self-attention block
and progressive shift mechanism in the proposed PSLT
are effective. Here, all models were trained with an input
image resolution of 2242 following the experimental settings
described in Section 4.1.1.

- Number of branches in the ladder self-attention block.
As shown in Section 3.2, the ladder self-attention block
contains multiple branches, and more branches denotes that
the developed backbone has less trainable parameters. In the
ladder self-attention block with 6 branches, the shift stride
in each branch is set to 3 (with two directions), 1 (with two
directions), 5. The blocks with less branches are constructed
similarly to the above. Table 11 shows the performance of
PSLT with various number of branches in the ladder self-
attention blocks. Although the model with more branches
requires less computing resources, the performance of the
model gets worse. For balance, we set the number of
branches as 3 by default.

- Shift operation in the ladder self-attention block. As
described in Section 3.2.1, PSLT adopts the shift operation
in each branch of the ladder self-attention block to model
long-range interactions. The third line in Table 12 shows the
performance of PSLT without the shift operation, i.e., all shift
operations in Figures 1 and 3 are removed. The experimental
results show that with the shift operation, PSLT achieves a
higher top-1 accuracy (79.9% vs. 79.3%) without increasing
the number of training parameters or FLOPs.
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TABLE 13
Ablation study of FFN layer on ImageNet without pre-training. “LFFN”
denotes our Light FNN layer.

Model | FEN | #Params | #FLOPs | Top-1

PSLT | LFEN | 9.2M 19G | 79.9%

-— FFN 12.8M 23G | 79.7%
TABLE 14

Ablation study of the fusion module for the multiple branches on the
ImageNet without pretraining. “Module” indicates the method for feature
fusion. “Weight” denotes the existence of the adaptive weights for
feature fusion. “Pointwise” indicates the existence of a fully connected
layer for fusing the features along the channel dimension. “AW”
denotes that only the first two fully connected layers are preserved in
the pixel-adaptive fusion module. “Concat” indicates that the output
features of the multiple branches are concatenated. “SE” denotes that
the SE [50] block is adopted.

Module | Weight | Pointwise | #Params | #FLOPs | Top-1
PAFM v v 9.2M 1.9G [79.9%
FC X v 7.4M 1.7G [78.8%
AW v X 7.4M 1.7G [78.6%
Concat X X 5.6M 1.5G [77.3%
SE [50] v v 9.2M 1.7G [79.0%

- Feature delivery in the ladder self-attention block. For
long-range interactions, PSLT progressively delivers fea-
tures of previous branch, where the latter branch takes the
output features of the previous branch as its value when
computing self-attention. Here, we investigate whether de-
livering the output features is effective. A multi-branch
block is adopted, and the shift operation is still used for each
branch, i.e., only the horizontal connections in Figure 1 are
removed, and the PSW-MHSA in each branch is replaced
with the W-MHSA in Figure 3. The last line in Table 12
presents the performance of the model without horizontal
delivery. Since the value of self-attention in each branch
needs to be computed from the input feature, the number
parameters in the model without horizontal delivery is
larger than the PSLT. With the horizontal connections in
the ladder self-attention block, PSLT achieves a higher top-1
accuracy (79.9% vs. 79.2%) with slightly fewer parameters
(9.2M vs. 9.7M).

By modelling diverse local interactions and interacting
among the branches, the progressive shift mechanism is
capable of enlarging the receptive field of the ladder self-
attention block. The last two lines in Table 12 show perfor-
mance of models without the two strategies respectively.
Obviously, PSLT with the progressive shift mechanism
achieves higher performance. Besides, with similar amount
of computing resources, PSLT also outperforms the Swin-2G
as shown in Table 4, where Swin-2G is implemented in the
same way as SwinTransformer [15]. The above experimental
results show that the progressive shift mechanism improves
model capacity with large receptive field.

- Light FFN layer. For further cutting down the computing
budgets, PSLT proposes the Light FNN (LFFN) layer to
replace the original FEN layer in self-attention block. Table
13 shows the comparison between PSLT and the model
with FEN (only Light FNN layer in PSLT is replaced with
the original FFN layer), and PSLT achieves comparable

TABLE 15
Ablation study of the proposed modules for PSLT on the ImageNet
without pretraining. “V1” and “V2” denote the top-1 accuracy on
ImageNet and ImageNet-V2 validation sets respectively.

Module |LSA|LFFN|PAFM #Params|#FLOPs| V1 | V2
ViT-B [31]| X X X 86M | 55.5G |77.9%|67.5%
LSA X X 92M | 2.0G |77.2%|64.8%
+LFEN | v | V/ X 5.6M 1.5G |77.3%|64.6%
+PAFM | vV | V v 9.2M 1.9G (79.9%|68.6%

performance, where PSLT with LFEN achieves comparable
top-1 accuracay (79.9% vs. 79.7%) with relatively smaller
amount of parameters (9.2M vs. 12.8M) and FLOPs (1.9G
vs. 2.3G).

- Pixel-Adaptive Fusion Module. As described in Section
3.2.3, to effectively integrate the features of each branch in
the ladder self-attention block, PSLT adopts a pixel-adaptive
fusion module. In this module, the weight of each pixel
in the feature map is first multiplied by the feature; then,
the weighted features are integrated in a fully connected
layer to fuse the features along the channel dimension.
“AW” and “FC” denote the module without one of the
two steps, respectively. The experimental results in Table
14 demonstrate the effectiveness of our proposed pixel-
adaptive fusion module.

Furthermore, we implemented another module (“SE”

in Table 14) for comparison, which only computes the
weights along the channel dimension (a pointwise following
a squeeze-and-excitation layer). The model with only chan-
nel adaptive weights achieves top-1 accuracy of 79.0% with
9.2M parameters and 1.7G FLOPs. The experimental results
demonstrate that adaptive weights in both the spatial and
channel dimensions significantly improves performance.
- Stacking the proposed modules. As described in Section
3.1, our proposed PSLT is composed of the proposed lad-
der self-attention block, Light FFN and the pixel-adaptive
fusion module. Table 15 shows the performance of mod-
els by stacking the proposed modules one by one, which
demonstrates the effectiveness of the modules. Compared
to the ViT, although applying our ladder self-attetion (LSA)
and Light FFN (LFFN) does not improve the performance,
the number of parameters and FLOPs are largely reduced,
where the parameters have been reduced by 9 times and
15 times respectively, and the FLOPs have been reduced
by 27 times and 37 times respectively. The pixel-adaptive
fusion module (PAFM) improves the model performance by
integrating information of all branches in the block. The top-
1 accuracy of our PSLT and DeiT-S on both the ImageNet and
ImageNet-V2 wvalidation set conforms to the linear fit in [53].
Our PSLT (including DeiT-S) achieves smaller improvement over
ViT-B on ImageNet-V2 validation (2% and 1% top-1 accuracy
improvement on ImageNet and ImageNet-V2 validation set, re-
spectively). Such a phenomenon has been similarly observed in
[37], [69]. As described in [88], this shows the model generaliza-
tion ability is challenged on different validation set.

6 CONCLUSION

In this work, we propose a ladder self-attention block with
multiple branches requiring a relatively small number of
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parameters and FLOPs. To improve the computation effi-
ciency and enlarge the receptive field of the ladder self-
attention block, the input feature map is split into sev-
eral parts along the channel dimension, and a progressive
shift mechanism is proposed for long-range dependency
by modelling diverse local self-attention on each branch
and interacting among these branches. A pixel-adaptive
fusion module is finally designed to integrate features from
multiple branches with adaptive weights along both the
spatial and channel dimensions. Furthermore, the ladder
self-attention block adopts a Light FFN layer to decrease
the number of trainable parameters and float-point opera-
tions. Based on the above designs, we develop a general-
purpose backbone (PSLT) with a relatively small number of
parameters and FLOPs. Overall, PSLT applies convolutional
blocks in the early stages and ladder self-attention blocks
in the latter stages. PSLT achieves comparable performance
with existing methods on several computer vision tasks,
including image classification, object detection and person
re-identification.

Our work explores a new perspective to model long-
range interaction by effectively utilizing diverse local self-
attentions, while there are recent works [17], [18], [38], [48]
implement effective methods to combine the convolution
and global self-attention. We find that modelling local self-
attention is more environmental-friendly than modelling
global self-attention.

For future work, we will investigate the direct comput-
ing optimization of our PSLT for fast inference. And we will
investigate a new computation manner for self-attention
because the similarity computation is time consuming. For
example, we will investigate whether simple addition is
powerful enough to model interactions in the self-attention
computation. PSLT shows comparable performance with-
out elaborately selecting the hyperparameters, such as the
number of blocks, the channel dimension or the number
of heads in the ladder self-attention blocks. Furthermore,
we can automatically select parameters that significantly
improve model performance with neural architecture search
techniques.
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