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Linear Dependency Modeling
for Classifier Fusion and Feature Combination

Andy J Ma, Pong C Yuen, Senior Member, IEEE, and Jian-Huang Lai

Abstract—This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling
techniques were developed under a specific distribution of classifiers or by estimating the joint distribution of the posteriors. This
paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution,
and overcome the difficulty in estimating the high-dimensional joint density. In this paper, we prove that feature dependency can be
modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property,
two methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived
and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM
are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets
are used for experiments. Experimental results show that LCDM and LFDM with dependency modeling outperform existing classifier
level and feature level combination methods under non-normal distributions and on four real databases, respectively. Comparing the
classifier level and feature level fusion methods, LFDM gives the best performance.

Index Terms—Linear dependency modeling, feature dependency, classifier level fusion, feature level fusion, multiple feature fusion.
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1 INTRODUCTION

MANY computer vision and pattern recognition ap-
plications face the challenges of complex scenes

with clustered backgrounds, small inter-class variations
and large intra-class variations. To solve this problem,
many algorithms have been developed to extract lo-
cal or global discriminative features such as SIFT [1],
HOG [2], Laplacianfaces [3]. Instead of extracting a high
discriminative feature, fusion has been proposed and the
results are encouraging [4] [5]. One popular approach to
make use of all features is to train a classifier for each
of them, and then combine the classification scores to
draw a conclusion. While many classifier combination
techniques [6] [7] [8] have been studied and developed
in the last decade, it is a general assumption that classifi-
cation scores are conditionally independent distributed.
With this assumption, the joint probability of all the
scores can be expressed as the product of the marginal
probabilities. The conditionally independent assumption
could simplify the problem, but may not be valid in
many practical applications.

In [9], instead of taking the advantage of conditionally
independent assumption, the classifier fusion method is
proposed by estimating the joint probability distribution
of multiple classifiers and performance is improved.
However, when the number of classifiers is large, it

• A. J. Ma and P. C. Yuen are with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong.
E-mail: {jhma, pcyuen}@comp.hkbu.edu.hk

• J.-H. Lai is with the School of Information Science and Technology,
Sun Yat-Sen University, Guangzhou 510006, China. He is also with the
Guangdong Province Key Laboratory of Information Security, Guangzhou
510006, China.
E-mail: stsljh@mail.sysu.edu.cn

needs numerous data to accurately estimate the joint
distribution [10]. On the other hand, Terrades et al. [11]
proposed to combine classifiers in a non-Bayesian frame-
work by linear combination. Under dependent normal
assumption (DN), they formulated the classifier com-
bination problem into a constraint quadratic optimiza-
tion problem. Nevertheless, if normal assumption is
not valid, the combination will not be optimal. Apart
from these methods, LPBoost [12] and its multi-class
variants [5] aim at determining the correct weighting for
linear classifier combination to improve the classification
performance. In [13], multi-class LPBoost is extended
to online setting, so that it does not need to solve the
linear programming (LP) problem from scratch for every
new sample added to the system. These boosting based
combination methods can implicitly model dependency
as well.

All the above-mentioned methods perform the fusion
based on classifier scores and implicitly assume that the
feature dependency can be reflected by the classifier
dependency. However, the Data Processing Inequality
(DPI) [14] indicates that feature level contains more
information than that in classifier level, so feature lev-
el dependence modeling should be performed directly.
The key problem is that the dimension of feature is
normally large and it is very hard to estimate the joint
probability distribution in feature level. Multiple Kernel
Learning (MKL) [15] can be considered as a feature level
fusion method and finds the optimal combination of
kernels of different features. To solve the complexity
problem, fast methods [16] [17] are proposed. Recently,
variants of MKL have been developed and used for
object recognition [18] [19] [20]. MKL can be considered
as dependency modeling technique based on the kernel
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matrices, but dependency information may lose when
original features are converted into kernel matrices.

In this paper, we develop a novel framework for de-
pendency modeling, and propose two methods, namely
Linear Classifier Dependency Modeling (LCDM) and
Linear Feature Dependency Modeling (LFDM), for clas-
sifier level and feature level fusion, respectively. Inspired
by the Bayesian model with independent assumption,
we prove that linear combination of the posterior prob-
abilities of each classifier can model dependency under
mild assumptions. Under the framework of linear depen-
dency modeling, it can be shown that more information
is available in feature level for modeling dependency,
so we generalize LCDM to feature level and propose
LFDM. Finally, the optimal models for LCDM and LFDM
are obtained by solving a standard linear programming
problem, which maximizes the margins between the
genuine and imposter posterior probabilities. The con-
tributions of this paper are three-fold.
• We prove that feature dependency can be modeled

by a linear combination of the posterior probabilities
of each feature/classifier under mild assumptions. This
conclusion is obtained by adding small dependency
terms to the naive Bayesian probability, expanding the
product formulation and neglecting the terms of order
two and higher.
• We develop a novel framework for dependency

modeling, and propose two novel LCDM and LFDM
for classifier level and feature level fusions, respectively.
LCDM is developed based on the linear classifier com-
bination property, and LFDM is derived by generalizing
LCDM to feature level. The optimization problems of
LCDM and LFDM are formulated as standard linear
programming problems, which therefore, have analytical
solutions. LCDM and LFDM model dependency explic-
itly. Moreover, they are derived without any assumption
on classifier and feature distribution and will not suffer
from the difficulty in high-dimensional joint distribution
estimation.
• We show that the feature level combination method,

LFDM, outperforms the classifier level fusion method,
LCDM, in two ways. First, we prove that feature level
contains more information about the label than that in
classifier level under the proposed linear dependency
modeling framework. Thus, if dependency in feature
level can be modeled, LFDM outperforms LCDM. Sec-
ond, we analyze the sensitivity to the density estimation
errors for these two methods, and induce that the upper
bound of the error factor in LFDM is much smaller
than that in LCDM. Consequently, LFDM is better than
LCDM in the worst case.

The rest of this paper is organized as follows. We
will first review the exiting works relative to our model.
Section 3 will report our proposed method. Experimen-
tal results and conclusion are given in Sections 4 and
Sections 5 respectively. The preliminary version of this
paper has been reported in [21].

2 RELATED WORKS

In this section, we review the combination methods with
and without independent assumption.

2.1 Review of Combination Models Under Indepen-
dent Assumption

In [6], a theoretical framework was developed for com-
bining classifiers. According to Bayesian theory, under
the assumption that classifier scores are distributed in-
dependently, the posteriori probability is given by [6]

Pr(ωl|x⃗1, · · · , x⃗M ) =
Pr(ωl)

∏M
m=1 Pr(x⃗m|ωl)

Pr(x⃗1, · · · , x⃗M )

=
P0

Pr(ωl)M−1

M∏
m=1

Pr(ωl|x⃗m)

(1)

where ωl denotes the label, M is number of features,
x⃗m is the m feature, and P0 =

∏M
m=1 Pr(x⃗m)

Pr(x⃗1,··· ,x⃗M ) . Product rule
was then derived by (1). Moreover, if the discriminatory
information is highly ambiguous due to high levels of
noise, it may be suitable to assume that posteriori proba-
bility of each classifier will not deviate dramatically from
the prior probability [6]. In this situation, the posterior
probabilities can be expressed as

Pr(ωl|x⃗m) = Pr(ωl)(1 + δlm) (2)

where δlm is a small term. Substituting Pr(ωl|x⃗m) by (2)
and expanding the product term in (1), Sum rule was
induced [6], i.e.

Pr(ωl|x⃗1, · · · , x⃗M )

= P0[(1−M)Pr(ωl) +
M∑

m=1

Pr(ωl|x⃗m)]
(3)

Based on the Product rule and Sum rule, Kittler et al. [6]
justified that the commonly used classifier combination
rules, i.e. Max, Min, Median and Majority Vote, can be
derived. It was shown that Sum rule outperforms other
classifier combination schemes in their experiments.

Besides the combination rules developed under the
Bayesian framework [6], Nandakumar et al. [8] proposed
to find the optimal combination of the match scores
based on the likelihood ratio test. In their approach, the
distribution of each genuine or impostor match score is
estimated by the finite Gaussian mixture model [22], and
the joint distribution is computed by taking advantage
of the Product rule (1) under the conditionally indepen-
dent assumption. Apart from the likelihood ratio based
fusion method [8], Terrades et al. [11] tackle the classifier
combination problem using a non-Bayesian probabilistic
framework. Under the assumptions that classifiers can
be combined linearly and the scores follow independent
normal (IN) distribution, the IN combination rule was
derived [11].
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2.2 Review of Combination Models Without Inde-
pendent Assumption
Without conditionally independent assumption, the pos-
terior probability of classifiers can be computed by join-
t distribution estimation. For example, in [9], Parzen
window density estimation [23] is used to estimate the
joint density of the posterior probability by a selected
set of classifiers. When a large number of samples are
available and the number of classifiers is small, the
density estimated using Parzen window approach is
very close to the true one [9]. While this may not be
the case for many practical applications, the error in the
estimated density could be very large. As a result, many
other combination methods were developed based on
linear model.

In [11], it is assumed that classifier scores follow multi-
variate normal distribution. When the match scores are
not conditionally independent, the covariance matrix is
not diagonal. In this case, the dependency modeling
method [11] under dependent normal (DN) assumption
was formulated into a constraint quadratic programming
problem, and relies on a numerical method to solve it.

Besides the probabilistic fusion methods [9] [11], LP-
Boost and MKL can be used to combine different kinds
of features to improve the recognition performance [5].
A multi-class variant of the two-class LPBoost [12] is
presented in [5] and denoted as LP-B. This linear com-
bination method determines the correct weights Bl

m by
learning the following linear programming (LP) problem

min
B,ρ,ξ

− ρ+
1

νJ

J∑
j=1

ξj

s.t. i)
M∑

m=1

Byj
mhm,yj (x⃗

j)

−
M∑

m=1

Bl
mhm,l(x⃗

j) ≥ ρ− ξj , ∀j, ωl ̸= yj

ii) ξj ≥ 0, ∀j

iii)
M∑

m=1

Bl
m = 1, ∀l

(4)

where x⃗j and yj denote object j and the corresponding
label, ρ represents the margin, ξj is the slack variable
for object j, and hm,l gives the confidence by feature
m on class l. Different from LP-B, MKL can learn the
classifiers and combination weights simultaneously. In
the setting of MKL for feature combination, kernel Km

is constructed by feature m, so feature fusion problem is
formulated as multiple kernel combination. Since both
LPBoost and MKL are developed without independent
assumption and follow the linear combination rule simi-
lar to DN, they can model feature dependency implicitly.

3 LINEAR DEPENDENCY MODELING

With conditionally independent assumption, the posteri-
ori probability can be computed as in (1) or (3). However,

as discussed in Section 1, this assumption may not be
true in many practical applications. Thus, in this paper,
we remove the independent assumption and study the
dependent case. In this section, we propose a new linear
dependency modeling method to model dependency. We
first derive the model in classifier level and then proceed
to feature level. Finally, we present a learning method
to learn the optimal linear dependency model under
marginal criterion.

3.1 Linear Dependency Modeling in Classifier Level

Let us consider the case that there exists m′, s.t.
Pr(ωl|x⃗m′) = 0 and Pr(ωl|x⃗m) = 1 for 1 ≤ m ≤ M ,
m ̸= m′. In this case, there are M − 1 classifiers giving
strong confidences on assigning the class label as ωl, and
one classifier concludes other label. When M ≫ 1, we
can ignore the m′ classifier giving Pr(ωl|x⃗m′) = 0, and the
posterior probability Pr(ωl|x⃗1, · · · , x⃗M ) is expected to be
large. However, with conditionally independent assump-
tion, from (1), the posterior probability by all classifiers
becomes zeros. This means, in this case, the posterior
probability only depends on one single classifier which
satisfies Pr(ωl|x⃗m′) = 0 and the other classifiers will not
have any contribution on it.

In order to avoid the posterior probability to be zero
and dominated only by one classifier, we add a term to
Pr(ωl|x⃗m′). This action also affect the posterior probabili-
ty of some classifiers. So, for all classifiers, we add terms
to model the dependency between them. Moreover, the
classifier scores with dependency terms cannot deviate
much from the original scores. Otherwise the original
decision by each single classifier will take little effect on
the final decision. Therefore, the values of the depen-
dency terms must be small. Under the assumption that
posterior probability of each classifier will not deviate
dramatically from the prior as in Sum rule [6], δlm,
m = 1, · · · ,M given by (2) are small values. In this
context, we define the small dependency term for feature
m and class ωl as the multiplication of dependency
weight αl

m, prior probability Pr(ωl) and small value δlm.
In order to ensure that the dependency term αl

mPr(ωl)δ
l
m

is still not too large and bounded by the fixed values of
prior probability Pr(ωl) and small number δlm, we restrict
|αl

m| ≤ 1, so that |αl
mPr(ωl)δ

l
m| ≤ |Pr(ωl)δ

l
m|.

Adding dependency term αl
mPr(ωl)δ

l
m to each

Pr(ωl|x⃗m), the posterior probability becomes

Pr(ωl|x⃗1, · · · , x⃗M )

=
P0

Pr(ωl)M−1

M∏
m=1

(Pr(ωl|x⃗m) + αl
mPr(ωl)δ

l
m)

(5)

In the above equation (5), αl
m, m = 1, · · · ,M are the

weights to model the dependency between classifiers.
If all the classifiers are independent with each other,
αl
m = 0 for m = 1, · · · ,M and the posterior probability

with dependency terms given by (5) becomes the Prod-
uct model as in (1) with the independent assumption. On
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the other hand, when classifiers are dependent, αl
m ̸= 0

and the posterior formulation (5) models dependency.
Since the product formulation (5) may suffer from the

outlier problem, we further expand it as follows. With
the definition of the small number δlm in (2), dependency
model (5) becomes

Pr(ωl|x⃗1, · · · , x⃗M ) = P0 ∗ Pr(ωl)
M∏

m=1

(1 + βl
mδlm) (6)

where βl
m = αl

m + 1, 0 ≤ βl
m ≤ 2. Since the terms

δl1, · · · , δlM defined by (2) are assumed to be small, the
second and higher order terms of them can be neglected.
If we expand the product term in the right hand side of
(6), the posterior probability becomes

Pr(ωl|x⃗1, · · · , x⃗M ) = P0 ∗ Pr(ωl)(1 +

M∑
m=1

βl
mδlm) (7)

Substituting δlm by (2) into (7), we obtain

Pr(ωl|x⃗1, · · · , x⃗M )

= P0 ∗ (
M∑

m=1

βl
m[Pr(ωl|x⃗m)− Pr(ωl)] + Pr(ωl))

(8)

This gives the linear dependency model with summa-
tion instead of multiplication, which less suffers from
outliers.

After that, the summation of weights
∑M

m=1 β
l
m should

be normalized with respect to class label l. So
∑M

m=1 β
l
m

is a constant Q, i.e.
∑M

m=1 β
l
m = Q. Constant Q is set to

be M due to the following two reasons.
First, the general dependency model given by (8)

includes the independent case. When the independent
assumption holds, βl

m = 1 for all m, which results in
Q =

∑M
m=1 β

l
m = M .

Second, constraint
∑M

m=1 β
l
m = M gives a balance

between under-learning and over-learning, which is e-
laborated as follows. With constraint 0 ≤ βl

m ≤ 2 for
the dependency model, Q can be chosen from 0 to
2M . When Q = 0, all dependency weights βl

m become
zero. In this case, the classifier scores Pr(ωl|x⃗m) do
not have any contribution to the posterior probability
Pr(ωl|x⃗1, · · · , x⃗M ). And the classification only depends
on the prior probability Pr(ωl), which is not reasonable.
Thus, the range for constant Q should be 0 < Q ≤ 2M .
When Q is too large, e.g. Q = 2M , the coefficients βl

m are
all equal to two and need not to be determined by the
distribution of scores. Thus, the model may suffer from
under-learning problem. On the other hand, if Q is too
small, e.g. 0 < Q ≤ 2, there may have only one non-zero
coefficient with value Q. Under this situation, if there
is a strong classifier which is ”perfect” for the training
data, all the coefficients are zero except the one for the
”perfect” classifier. While multiple classifiers/features
provide complementary information for the class label
and the ”perfect” classifier may not be suitable for
the testing data, the model suffers from over-learning

problem. Thus, Q cannot be too large nor too small. And
the constraint

∑M
m=1 β

l
m = M with a moderate constant

M helps to reduce the problem of under-learning and
over-learning.

Finally, the Linear Classifier Dependency Model (L-
CDM) is summarized as equation (8) with constraints
0 ≤ βl

m ≤ 2 and
∑M

m=1 β
l
m = M . When classifiers are

independent with each other, βl
m = 1 for m = 1, · · · ,M

and LCDM becomes the Sum rule as in (3). On the other
hand, when classifiers are dependent, βl

m ̸= 1 and LCDM
models dependency.

3.2 Linear Dependency Modeling in Feature Level
Given the feature vectors x⃗1, · · · , x⃗M , where x⃗m =
(xm1, · · · , xmNm) and Nm is the dimension of feature
m. Pr(ωl|x⃗m) can be computed by the joint probabili-
ty Pr(xm1, · · · , xmNm |ωl). Since x⃗1, · · · , x⃗M are normally
high dimensional vectors, it needs numerous samples to
estimate the joint density [10]. In general, the probability
is hard to determine accurately.

In classifier combination methods [6] [11], the posteri-
or probabilities Pr(ωl|x⃗m) are viewed as scores calculated
from certain classifiers, such as support vector machines
(SVM). In this scenario, classifiers are trained individu-
ally for a single feature under certain criteria. However,
there is no guarantee that they are optimal after fusion.

In the scenario that feature vectors are given,
Pr(ωl|xmn) can be computed by one-dimensional prob-
ability estimation. Let us denote S = (s11, · · · , sLM ) and
F = (f1

11, · · · , fL
MNM

), where slm = Pr(ωl|x⃗m) and f l
mn =

Pr(ωl|xmn). In the classification problems, information
from S in classifier level or F in feature level is used to
infer the class label L. From the aspect of information
quantity of S and F about L, we have the following
proposition. (Please refer to Appendix A in the supple-
mental material for the proof of this proposition.)

Proposition 1. Under the framework of linear dependency
modeling by (8), I(S,L) ≤ I(F ,L), where S and F are
the random vectors of the classification scores and features
respectively, L is the label viewed as a random variable, and
I(·, ·) represents the mutual information.

The above proposition indicates the relationship between
classifier level and feature level fusion from the informa-
tion quantity aspect. And this proposition implies that
feature level contains more information about the class
label than that in classifier level.

Based on the above analysis, we propose to model the
dependency in feature level. Let us consider the posterior
probability by all features Pr(ωl|x⃗1, · · · , x⃗M ) again. Given
the feature vectors x⃗1, · · · , x⃗M , it can be rewritten as

Pr(ωl|x⃗1, · · · , x⃗M )

= Pr(ωl|x11, · · · , x1N1
, · · · , xM1, · · · , xMNM

)
(9)

With the representation (9), each element in the feature
vector can be viewed as a single classifier. Similar to the
analysis in Section 3.1, the dependency term for each
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xmn can be written as αl
mnPr(ωl)δ

l
mn, where αl

mn satisfies
|αl

mn| ≤ 1 and each δlmn is a small number, s.t.

Pr(ωl|xmn) = Pr(ωl)(1 + δlmn) (10)

Then, the posterior probability analogous to (5) is given
by

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM )

=
P ′
0

Pr(ωl)M−1

M∏
m=1

Nm∏
n=1

(Pr(ωl|xmn) + αl
mnPr(ωl)δ

l
mn)

(11)

where P ′
0 =

∏M
m=1

∏Nm
n=1 Pr(xmn)

Pr(x⃗1,··· ,x⃗M ) . With (10), the above
equation can be rewritten as

Pr(ωl|x11, · · · , x1N1
, · · · , xM1, · · · , xMNM

)

= P ′
0 ∗ Pr(ωl)

M∏
m=1

Nm∏
n=1

(1 + γl
mnδ

l
mn)

(12)

where γl
mn = αl

mn + 1. As δlmn defined in (10) measures
the difference between posterior Pr(ωl|xmn) and prior
Pr(ωl), δlmn is assumed to be small. By expanding the
product in (12) and neglecting the terms of second and
higher orders, it has

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

= P ′
0 ∗ Pr(ωl)(1 +

M∑
m=1

Nm∑
n=1

γl
mnδ

l
mn)

(13)

Substituting δlmn by (10) into (13), the posterior probabil-
ity with dependency modeling in feature level is given
as

Pr(ωl|x11, · · · , x1N1 , · · · , xM1, · · · , xMNM
)

= P ′
0 ∗ (

M∑
m=1

Nm∑
n=1

γl
mn[Pr(ωl|xmn)− Pr(ωl)] + Pr(ωl))

(14)

At last, applying the analysis for the LCDM constraints
in Section 3.1 to feature level, we have two constraints,∑M

m=1

∑Nm

n=1 γ
l
mn =

∑M
m=1 Nm and 0 ≤ γl

mn ≤ 2, for the
proposed Linear Feature Dependency Model (LFDM).

3.3 Learning Optimal Linear Dependency Model
The optimal LCDM and LFDM can be learned by differ-
ent criteria to optimize the classification performance. In
this section, we consider the marginal criterion, and give
detailed derivations on how to learn the optimal LFDM.
Similar derivations can be applied to LCDM.

Let the training samples and corresponding labels be
x⃗j = (xj

11, · · · , x
j
1N1

, · · · , xj
M1, · · · , x

j
MNM

) and yj , j =
1, · · · , J , respectively. If all the training samples are cor-
rectly classified, Pr(yj |xj) > maxωl ̸=yj Pr(ωl|xj). Under
this condition, the difference between the genuine and
imposter probabilities Pr(yj |xj) − maxωl ̸=yj Pr(ωl|xj) is
large. In turn, the performance will be good. Considering
the marginal criterion, and inspired by LPBoost [12] and

its multiclass generalization [5], the objective function to
learn the best model is defined as

min
γ,ρ,ξ

− ρ+
1

νJ

J∑
j=1

∑
ωl ̸=yj

ξlj

s.t. i) Pr(yj |xj)− Pr(ωl|xj) ≥ ρ− ξlj ,∀j, ωl ̸= yj

ii) Pr(ωl|xj) ≥ 0, ∀j, ωl

iii) ξlj ≥ 0, ∀j, ωl ̸= yj

(15)

where ν is a constant parameter, ν ∈ (0, 1). Let us
denote Pr(ωl|xj

mn) − Pr(ωl) in (14) as pj,lmn and K =∑M
m=1 Nm. Suppose the prior probabilities are the same,

i.e. Pr(ωl) = 1
L , ∀ωl, where L is the number of classes.

Adding the normalization and range constraints to γl
mn

as mentioned in Section 3.2, substituting (14) into (15),
and ignoring P ′

0 as a constant respective to class label,
the optimization problem (15) becomes

min
γ,ρ,ξ

− ρ+
1

νJ

J∑
j=1

∑
ωl ̸=yj

ξlj

s.t. i)
M∑

m=1

Nm∑
n=1

γyj
mnp

j,yj
mn

−
M∑

m=1

Nm∑
n=1

γl
mnp

j,l
mn ≥ ρ− ξlj , ∀j, ωl ̸= yj

ii)
M∑

m=1

Nm∑
n=1

γl
mnp

j,l
mn +

1

L
≥ 0, ∀j, ωl

iii) ξlj ≥ 0, ∀j, ωl ̸= yj

iv)
M∑

m=1

Nm∑
n=1

γl
mn = K, ∀l

v) 0 ≤ γl
mn ≤ 2, ∀l,m, n

(16)

Optimization problem (16) is theoretically sound and
purely derived from (15) mathematically. However, ac-
cording to the following proposition, optimization prob-
lem (16) may not have feasible solution in practice.
(Please refer to Appendix B in the supplemental material
for the proof of this proposition.)
Proposition 2. If there exist j0 and l0, s.t. Pr(ωl0 |xj0

mn) <
Pr(ωl0)(1− 1

KL ), ∀m,n, then constraints ii) and iv) in (16)
cannot be hold at the same time.
When the fusion is performed in feature level, K will
be a very large number, i.e. 1

KL is very small. In this
situation, The condition in the above proposition is likely
to be satisfied. Thus, optimization problem (16) will not
have feasible solution, and one of the two constraints
should be removed.

Constraint ii) in (15) is to ensure that the posterior
probability is non-negative. From (15) to (16), the pos-
terior probability is substituted with (14). Let us check
the derivation from (12) to (14). We can see that equa-
tion (14) is the first order approximation to the posterior
probability. Since the summation of the neglected terms
of second and higher orders may be positive or negative,
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constraint ii) in (16) cannot guarantee that the posterior
probability is non-negative. On the other hand, since γl

mn

is less than or equal to 2 and δlmn is a small number,
e.g. |δlmn| ≤ 1

2 , the posterior probability in product
formulation is always non-negative according to (12).
Thus, we remove the constraint ii) in (16). Consequently,
the final optimization problem becomes

min
γ,ρ,ξ

− ρ+
1

νJ

J∑
j=1

∑
ωl ̸=yj

ξlj

s.t. i)
M∑

m=1

Nm∑
n=1

γyj
mnp

j,yj
mn

−
M∑

m=1

Nm∑
n=1

γl
mnp

j,l
mn ≥ ρ− ξlj , ∀j, ωl ̸= yj

ii) ξlj ≥ 0,∀j, ωl ̸= yj

iii)

M∑
m=1

Nm∑
n=1

γl
mn = K, ∀l

iv) 0 ≤ γl
mn ≤ 2,∀l,m, n

(17)

The optimal LFDM is learned by (17). Similarly, the
optimal LCDM can be obtained by applying (8) into (15)
and following the same derivation procedures from (15)
to (17). The optimization problem for LCDM is given as

min
β,ρ,ξ

− ρ+
1

νJ

J∑
j=1

∑
ωl ̸=yj

ξlj

s.t. i)
M∑

m=1

βyj
mhj,yj

m

−
M∑

m=1

βl
mhj,l

m ≥ ρ− ξlj , ∀j, ωl ̸= yj

ii) ξlj ≥ 0, ∀j, ωl ̸= yj

iii)
M∑

m=1

βl
m = M, ∀l

iv) 0 ≤ βl
m ≤ 2,∀l,m, n

(18)

where hj,l
m = Pr(ωl|x⃗j

m)− Pr(ωl). The optimization prob-
lems (18) and (17) for LCDM and LFDM are standard
linear programming problems. Thus, the solutions can
be determined by any off the shelf techniques, e.g. [24].
Since our experiments are performed in the Matlab
environment, a Matlab build-in function with the interior
point method is employed.

3.4 Sensitivity to Density Estimation Error

In order to compare the proposed LCDM and LFDM for
dependency modeling in classifier level and feature level
respectively, we study the error sensitivity properties of
these two methods.

In the LCDM model, we implicitly assume that the
posterior probability Pr(ωl|x⃗m) is known or computed
correctly. However, this may not be the case, because

the number of samples is limited in training stage. Let
us denote the estimated probability as P̂r(ωl|x⃗m). The
density estimation error for the true density is given by

elm = P̂r(ωl|x⃗m)− Pr(ωl|x⃗m) (19)

In practice, the estimated probabilities are used instead
of the true ones. Consequently, according to (8), the
LCDM model is changed to

P̂r(ωl|x⃗1, · · · , x⃗M )

= P0 ∗ [Pr(ωl)(1−M) +
M∑

m=1

βl
mP̂r(ωl|x⃗m)]

(20)

Substituting P̂r(ωl|x⃗m) with (19) into (20), it has

P̂r(ωl|x⃗1, · · · , x⃗M ) =P0 ∗ [Pr(ωl)(1−M)

+ (1 + Ec)
M∑

m=1

βl
mPr(ωl|x⃗m)]

(21)

where Ec is the error factor in LCDM and given by the
following equation

Ec =

∑M
m=1 β

l
melm∑M

m=1 β
l
mPr(ωl|x⃗m)

(22)

Similarly, in the LFDM model, the error factor is given
by

Ef =

∑M
m=1

∑Nm

n=1 γ
l
mnϵ

l
mn∑M

m=1

∑Nm

n=1 γ
l
mnPr(ωl|xmn)

(23)

where ϵlmn = P̂r(ωl|xmn)− Pr(ωl|xmn).
Since it is hard to compare the error factors Ec in

LCDM and Ef in LFDM directly, we investigate the
upper bounds instead. Denote Bc and Bf as the upper
bounds of Ec and Ef respectively. We have the following
equations

Ec ≤
∑M

m=1 β
l
m|elm|∑M

m=1 β
l
mPr(ωl|x⃗m)

= Bc (24)

Ef ≤
∑M

m=1

∑Nm

n=1 γ
l
mn|ϵlmn|∑M

m=1

∑Nm

n=1 γ
l
mnPr(ωl|xmn)

= Bf (25)

By analyzing the denominators and numerators of Bc

in (24) and Bf in (25) respectively, it can be shown that
Bf is smaller than Bc, which is elaborated as follows.

We first consider the denominators of Bc in (24) and
Bf in (25). According to (2) and the normalization con-
straint, the denominator in (24) can be approximated by

M∑
m=1

βl
mPr(ωl|x⃗m) = Pr(ωl)

M∑
m=1

βl
m(1 + δlm)

≈ Pr(ωl) ∗M
(26)

Similarly, the denominator in (25) can be approximated
by

M∑
m=1

Nm∑
n=1

γl
mnPr(ωl|xmn) ≈ Pr(ωl) ∗

M∑
m=1

Nm (27)
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Fig. 1. Algorithm 1: The training procedure of LCDM.

Since 1 ≪ Nm, we get

M∑
m=1

βl
mPr(ωl|x⃗m) ≪

M∑
m=1

Nm∑
n=1

γl
mnPr(ωl|xmn) (28)

This equation shows that the denominator in Bc is much
smaller than that in Bf . On the other hand, we compare
the numerators of Bc in (24) and Bf in (25). It is reported
in [10] that density estimation in high dimensional space
is much difficult than that in one-dimensional space.
And, the required sample size increases dramatically
with dimension to achieve the given estimation accuracy.
That means the absolute value of the estimation error in
classifier level is much larger than that in feature level,
i.e. |ekt | ≫ |ϵlmn|. If |ekt | > 2Nm|ϵlmn|, according to the
range and normalization constraint, the numerator in Bc

is larger than that in Bf , i.e.

M∑
m=1

βl
m|elm| >

M∑
m=1

Nm∑
n=1

γl
mn|ϵlmn| (29)

With (28) and (29), we have Bf ≪ Bc. This means the
upper bound of the error factor in feature level is much
smaller than that in classifier level. Thus, LFDM is better
than LCDM in the worst case.

3.5 Remarks

In this section, we summarize our proposed methods
and indicate their advantages over exiting methods for
dependency modeling.

Fig. 2. Algorithm 2: The training procedure of LFDM.

• LCDM is an ”optimal” classifier-level fusion method
in the sense of classifier dependency modeling given
in Section 3.1. The training procedure of LCDM is
described in Fig. 1.

• LFDM is an ”optimal” feature-level combination
method in the sense of feature dependency modeling
given in Section 3.2. The algorithmic procedure of
LFDM is shown in Fig. 2.

• Considering hj,l
m in (18) and pj,lmn in (17) as classification

scores, the derived formulations (18) and (17) look
like the objective function of LP-B in [5]. Though
the goal and the starting points of this paper are
different from boosting methods, we come up with a
similar optimization problem with different constraints
(0 ≤ βl

m ≤ 2 in classifier level or 0 ≤ γl
mn ≤ 2 in

feature level). Boosting methods aim at finding the
correct weighting for classifier combination, while our
objective is to model the feature dependency. Without
the range constraint 0 ≤ βl

m ≤ 2 or 0 ≤ γl
mn ≤ 2, the

dependency weight βl
m or γl

mn can be a large value, so
that the derivation from (6) to (7), or from (12) to (14)
is invalid. On the other hand, this causes the posterior
probability in product form given as (6) or (12) be
negative. Thus, the constraint 0 ≤ γl

mn ≤ 2 is very
important for dependency model. This can be observed
from the experimental results.

• Compared to the dependency modeling technique by
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estimating the joint probability [9], LCDM or LFDM
does not need to estimate the joint distribution of
the scores or features. Consequently, our methods do
not suffer from the difficulty in the joint distribution
estimation in high dimensions.

• Compared to the combination rule under dependent
normal (DN) assumption [11], LCDM and LFDM are
derived without any assumption on classifier and fea-
ture distribution. In many practical applications, data
may not follow normal distribution, so our methods
could have better performance in the non-normal cas-
es.

• Compared to the linear combination methods, LP-
Boost [5] [12] and MKL [15] [16] [17], our methods
are derived from a probabilistic framework and model
dependency explicitly.

• Compared to feature level fusion method, MKL [15]
[16] [17], LFDM models the dependency with the
feature vectors directly and does not rely on the k-
ernel matrices. In the situation that some elements in
the feature vectors are noisy, the constructed kernels
will be noisy as well. Since the combination by MKL
is based on the noisy kernels, the performance may
degrade, but the proposed LFDM will not suffer from
this problem.

4 EXPERIMENTS

In this section, we evaluate the two proposed methods,
namely Linear Classifier Dependency Modeling (LCD-
M) and Linear Feature Dependency Modeling (LFDM),
with synthetic data as well as four real image/video
databases. The real image/video databases are Oxford
Flower [25], Digit [26], Weizmann [27] and KTH [28].
First, we compare the proposed LCDM with state-of-art
classifier combination methods with synthetic data and
the Flower database in Sections 4.1 and 4.2 respectively.
Then, we evaluate LCDM with different types of clas-
sifiers and LFDM with different probability estimation
methods on the Digit database in Section 4.3. After
that, we compare the best performances with LCDM
and LFDM on Weizmann and KTH action databases
in Section 4.4. Finally, analysis on the dependencies
between classifiers or features and their relationship with
the learning results is presented in Section 4.5.

4.1 Results on Synthetic Data
Since it is impossible to know the intrinsic distributions
in practical applications, we use synthetic data to sim-
ulate the classifier scores, similar to [11] [29]. In the ex-
periments, four types of classifier distributions, namely
Independent Normal (IndNormal), Dependent Normal
(DepNormal), Independent Non-Normal (IndNonNor),
Dependent Normal (DepNonNor) are used to evaluate
LCDM and other classifier combination methods. For
each distribution, 2000 samples (500 positive and 500
negative for training and testing respectively) of 40
dimensions, which simulate 40 classifiers, are randomly

generated by Matlab built-in function. In order to avoid
the possibility that the results could be influenced by the
random number generation, we run the experiments 200
times. For multi-class methods, LP-B and the proposed
LCDM, we estimate the genuine and imposter posterior
probabilities by each classifier as in [30], i.e. Pr(+|sm)
and Pr(−|sm), where sm represents the score.

Table 1 shows the mean recognition rates and standard
deviations of the six combination methods with different
data distributions. From Table 1, we can observe that
the proposed LCDM outperforms Sum rule and LP-B
under all data distributions. This is because Sum rule is
derived under independent assumption without training
and LP-B does not model the dependency explicitly. On
the other hand, IN and DN achieve the best performance
with independent and dependent normal distribution
respectively, while the performance of LCDM is com-
parable with IN and DN. This is reasonable because IN
and DN are derived under these specific assumptions.
For the non-normal distribution, the proposed LCDM
outperforms all other methods.

4.2 Results on Oxford Flower Database
Results with synthetic data show that the proposed de-
pendency modeling method, LCDM is effective. In this
section, We evaluate the classifier combination methods
on a real database.

Oxford Flower database contains 17 different type-
s of flowers with 80 images per category [25]. Some
example images are shown in Fig. 3. Seven different
types of features including shape, color, texture, HSV,
HoG, SIFT internal, and SIFT boundary, are extracted
using the method reported in [25] [31]. Distance matrices
of these features and three predefined splits of the
database (17 × 40 for training, 17 × 20 for validation,
and 17 × 20 for testing) are available on their website1.
We follow the experiment settings in [5]. 5-fold cross
validation (CV) in the training set is used to select
the best kernel SVM classifier [32] for each feature.
The parameter introduced in the soft margin SVM is
selected from C ∈ {0.01, 0.1, 1, 10, 100, 1000}. The CV
outputs of the SVMs are used to train the weights for
classifier combination. The best parameter ν is selected
from {0.05, 0.1, . . . , 0.95} on the validation set with the
Kernel matrices exp (−d(x, x′)/λ), where d is the distance
and λ is the mean of pairwise distances.

Table 2 shows the mean accuracy and standard de-
viation for each feature in the left column and for
combination methods in the right column. From Table 2,
we can see that the proposed LCDM outperforms all
existing methods. Moreover, the recognition accuracies
of the combination methods are much higher than that
of a single feature. For example, the Sum rule can have
the accuracy of 85.39%. This implies the classifiers are
relatively independent to each other, which is due to
the reason that the features are extracted by different

1. http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/index.html
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PPPPPPTest
Method Sum [6] LPBoost [12] LP-B [5] IN [11] DN [11] LCDM

IndNormal 95.34±0.71 96.81±0.48 97.51±0.48 97.67±0.40 97.56±0.42 97.66±0.46
DepNormal 86.44±1.16 95.29±0.85 93.17±1.30 92.52±0.98 95.64±0.89 93.88±0.93
IndNonNor 74.67±1.50 90.10±1.61 89.00±0.08 84.80±1.65 91.41±1.38 93.00±0.07
DepNonNor 63.33±0.89 68.95±1.30 69.37±1.90 65.46±0.92 69.84±1.35 72.14±1.52

TABLE 1
Mean accuracy (%) and standard deviation on synthetic data.

Fig. 3. Example images from Flower database [25]. Im-
ages from the same columns are from the same classes.

Single feature Classifier Combination
feature accuracy method accuracy

Color 61.14±1.81 Sum [6] 85.39±3.14
Shape 70.16±1.28 IN [11] 85.49±1.72
Texture 62.90±2.44 DN [11] 84.22±1.91
HSV 61.44±0.47 LPBoost [12] 82.65±0.82
HoG 58.94±4.14 LP-β [5] 85.50±3.00
SIFTint 70.40±1.43 LP-B [5] 85.52±2.37
SIFTbdy 59.37±3.40 LCDM 86.27±2.43

TABLE 2
Mean accuracy (%) and standard deviation on Oxford

Flower database.

properties of the instances, e.g. shape and color. While
the features are not very dependent in this case, it
is impossible to obtain totally independent features.
Therefore, the proposed LCDM can further improve the
performance by modeling the dependency between the
classifiers.

4.3 Results on Digit Database
On the Flower database, LCDM gets the highest accuracy
with the best kernel SVM classifier for each feature. In
this section, we evaluate the classifier level combination
methods with different classifiers and feature level fu-
sion with different probability estimation methods on the
Digit database [26].

This database contains ten digits from 0 to 9, and 200
examples for each digit. Six types of features (76 Fouri-
er coefficients, 216 profile correlations, 64 Karhunen-
Love coefficients, 240 pixel averages in 2×3 windows,
47 Zernike moments and 6 morphological features) are
extracted in [26] and available on the website2. Some
samples of the pixel average feature are visualized in

2. http://archive.ics.uci.edu/ml/datasets/Multiple+Features

Fig. 4. Visualization of digits from 0 to 9 of the pixel
average feature [26].

Fig. 4. In this experiment, we use 20 samples of each
digit for train and retain the rest for testing. And this
experiment has been repeated ten times.

Since the covariance matrices in the Gaussian based
classifier are degenerate for most features, k nearest
neighbor (k-NN) classifiers for k = 1, 3 and SVM clas-
sifiers for C = 0.1, 100 are used to evaluate the classifier
combination methods. The results which are summa-
rized on the left hand side in Table 3 show that LCDM
gets highest recognition rates with all classifiers except 3-
NN, and the performance of LCDM is very close to that
of Sum combination in 3-NN. This ensures that LCDM
can be used with different classifiers and improve the
performance in most cases.

In the proposed LFDM for feature dependency mod-
eling, the one-dimensional probability Pr(ωl|xj

mn) needs
to be estimated. So we evaluate LFDM with different
probability estimation methods, including kernel den-
sity estimation (KDE) via diffusion [30] and kernel s-
moothing density estimation (KSD) [33]. We also choose
different kernels to estimate the probability with KSD,
but the results are the same. On the other hand, for
comparison, the classifier combination algorithms are
extended to feature level fusion and denoted as Sum-
F, IN-F, DN-F, LPBoost-F, and LP-B-F. The results are
recorded on the right hand side in Table 3. It can be seen
that the proposed LFDM outperforms the others and
models feature dependency with different probability
estimations. Another observation is that DN-F in feature
level gets an obvious improvement compared to the
other methods without explicit dependency modeling,
while it is not the case with the classifier combination
methods as shown on the left hand side in Table 3.
This implies that dependency information is useful and
important for the fusion in feature level.

4.4 Results on Human Action Databases
In this section, we give a detailed evaluation of the
proposed methods on the two standard human action
databases. It is important to point out that the main ob-
jective of this experiment is to evaluate the performance
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Classifier Level Fusion Feature Level Fusion
1-NN 3-NN SVM C=0.1 SVM C=100 KDE [30] KSD [33]

Sum [6] 93.76±0.72 94.76±0.70 94.82±0.60 96.23±0.66 Sum-F [6] 92.91±0.80 93.63±0.59
IN [11] 95.06±0.71 93.40±0.84 94.75±0.61 95.63±1.08 IN-F [11] 93.47±0.82 94.37±0.86
DN [11] 94.77±0.55 93.50±0.89 94.82±0.59 94.93±1.09 DN-F [11] 97.00±0.62 96.87±0.89
LPBoost [12] 94.88±0.64 94.18±0.71 89.71±2.31 96.41±0.41 LPBoost-F [12] 95.79±1.03 95.34±1.28
LP-B [5] 94.13±1.09 93.53±0.81 94.95±0.55 96.57±0.35 LP-B-F [5] 94.36±1.13 95.44±1.15
LCDM 95.18±0.56 94.46±0.71 95.34±0.66 96.79±0.60 LFDM 97.05±0.60 97.09±0.62

TABLE 3
Mean accuracy (%) and standard deviation on Multiple Feature Digit database.

(a)

(b)

Fig. 5. (a) Example images from videos representing all
the ten actions in Weizmann [27]. (b) Example images
from videos in KTH [28]. All six actions and four scenarios
are presented.

of the classifier level and feature level combination meth-
ods given a set of action features, but not state-of-art
human action recognition algorithms.

Weizmann database contains 93 videos from nine per-
sons, each performing ten actions [27]. Example images
from the videos are shown in Fig. 5(a). Since the size of
the database is small, we use nine-fold cross validation
to evaluate the proposed method. In each validation,
data from eight persons are used to train classifiers and
the best combinations, as well as estimate the posterior
probability.

There are 25 subjects performing six actions under four
scenarios [28] in KTH database. Example images from
the videos are shown in Fig. 5(b). We follow the common
setting [28] to separate the video set into training (eight
persons), validation (eight persons), and testing (nine
persons) sets. Each classifier and combining classifiers
are trained using the training set, and selected by the
validation. And the posterior probability in LFDM is
estimated on the training and validation sets.

The bag-of-features approach is adopted for these
two databases to extract eight types of features for
the videos. First, space-time interest points are detected

by [34] from each video. For each interest point, eight
local descriptors, namely 1) intensity (Int), 2) intensity
difference (IntDif), 3) histograms of optical flow (HoF)
without grid, 4) histograms of gradient (HoG) without
grid, 5) HoF with 2D grid (HoF2D), 6) HoG with 2D
grid (HoG2D), 7) HoF with 3D grid (HoF3D), and 8)
HoG with 3D grid (HoG3D), are generated based on
the 9 × 9 × 5 cuboid centered by the interest point. For
the first descriptor, pixel intensities of the local cuboids
are considered as feature vectors, whose dimension is
9×9×5 = 405. For the second descriptor, pixel intensities
of the current spatial blocks in the local cuboids are
subtracted by those of the following spatial blocks over
time. So the dimension is 9 × 9 × 4 = 324. For the
third and forth features, histogram features based on
gradient and optical flow orientation are computed on
each spatial blocks in local cuboids like [2], then HoGs
and HoFs are concatenated together over time dimension
respectively in the local cuboids. 8 orientations are used
to compute the histogram, so the dimension of these
two features is 8 × 5 = 40. For the fifth and sixth
features, in the spirit to the SIFT descriptor [1], spatial
blocks in local cuboids over time are divided into 2× 2
arrays, and histograms of 8 orientations are computed
on each sub-block individually. Thus, the dimension for
them is 2 × 2 × 8 × 5 = 160. The last two features
proposed in [35] which is similar to the previous two,
divide the local cuboids into 2× 2× 2 3D arrays, so the
dimension is 2× 2× 2× 8 = 64. After different kinds of
features have been generated, we follow the general bag-
of-features representation [35] to form the feature vectors
for classifier combination and feature fusion. Training
data in Weizmann, and training and validation data in
KTH are used to construct the vocabulary. The number
of clusters for Weizmann and KTH databases is set as
100 and 600 respectively.

For the classifier combination methods, we select the
best SVM classifier from C ∈ {0.01, 0.1, 1, 10, 100, 1000}
for each feature. The best parameter in MKL is also
selected from the same set. On the other hand, for the
linear programming based methods, we choose the best
parameter ν from 0.1 to 0.9 with 0.1 incremental step.

The highest recognition accuracy of each feature is
recorded in Table 4. Similar patterns on the two databas-
es can be found in Table 4. The second feature with in-
tensity difference over time gives the highest accuracies
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PPPPPPFeature
Dataset Weizmann KTH

Int 74.44 77.31
IntDif 82.22 78.70
HoF 73.33 75.46
HoG 66.67 53.24

HoF2D 67.78 68.96
HoG2D 61.11 58.33
HoF3D 75.56 75.00
HoG3D 64.44 65.74

TABLE 4
Recognition accuracy (%) of each feature on Weizmann

and KTH database.

Weizmann KTH
KDE [30] KSD [33] KDE [30] KSD [33]

Sum-F [6] 57.78 48.89 78.70 50.00
IN-F [11] 68.89 67.78 69.91 77.31
DN-F [11] 77.78 76.67 – –
LPBoost-F [12] 67.78 68.89 75.93 75.00
LP-B-F [5] 70.00 65.56 76.56 75.46
LFDM 86.67 86.67 87.96 88.43

TABLE 5
Recognition accuracies (%) of feature level fusion

methods with different density estimation techniques on
Weizmann and KTH database.

on both databases. And the HoF based features are better
than the HoG based ones. This means temporal informa-
tion is very important for action recognition. After the
best classifiers are obtained, we evaluate the score combi-
nation methods based on them. The highest recognition
accuracies are presented on top row in Table 6. Similar to
the results on the Flower database, all the combination
methods outperform the best single feature. On the other
hand, LCDM gives the best performances together with
IN on Weizmann and LP-B on KTH databases.

Similar to the experiments in Section 4.3, we use
different density estimation techniques to evaluate the
feature level fusion methods. The recognition accuracies
on the two databases are shown in Table 5. Since the
combination method developed under the dependent
normal assumption [11] requires to solve a constraint
quadratic problem numerically which has high dimen-
sionality problem, and the feature dimension is high on
KTH database, the result with DN-F is not available
on this database. From Table 5, we can see that LFD-
M outperforms the other fusion methods much more,
compared to the results on the Digit database. This con-
vinces that LFDM works well even when the estimated
probabilities deviate from the true ones.

The highest accuracies of all the fusion methods men-
tioned above as well as MKL3 are summarized in Table 6.
From Table 6, we can see that the proposed LFDM
obtains the highest accuracy of 86.67% and 88.43% on
Weizmann and KTH databases respectively. These re-

3. The results with SILP MKL [16] and simple MKL [17] are the same.

XXXXXXXXMethod
Dataset Weizmann KTH

Sum [6] 84.44 84.72
IN [11] 85.56 84.26
DN [11] 84.44 83.80
LPBoost [12] 83.33 83.33
LP-B [5] 84.44 85.19
LCDM 85.56 85.19
MKL [16] [17] 81.11 82.41
Sum-F [6] 57.78 78.70
IN-F [11] 68.89 77.31
DN-F [11] 77.78 –
LPBoost-F [12] 68.89 75.93
LP-B-F [5] 70.00 76.56
LFDM 86.67 88.43

TABLE 6
Recognition accuracy (%) of the best performance on

Weizmann and KTH database.

sults convince that LFDM can model the dependency in
feature level very well. Since feature level contains more
information about the label than that in classifier level, if
dependency of features can be well modeled, the fusion
process performed in feature level outperforms that in
classifier level. On the other hand, comparing DN-F and
LFDM on Weizmann database and digit database in the
previous section, the performance of LFDM is much
better than that of DN-F on the action database, while
their performances are very close on the digit database.
This validates that LFDM works well under different
distributions.

We also perform additional experiments for verifica-
tion on Weizmann and KTH databases with best two
classifier level methods and feature level fusion methods,
respectively. The ROC curves are recorded and plotted
in Fig. 6(a) and Fig. 6(b). Same conclusion is drawn that
the proposed LFDM gives the largest areas under the
ROC curves on these two databases. On the other hand,
although the accuracies of LCDM and IN on Weizmann,
as well as LCDM and LP-B on KTH are the same, LCDM
outperforms the two methods in ROC measurement.

In the last experiment, we evaluate the sensitivity
of parameter ν in linear programming based methods.
Fig. 6(c) and Fig. 6(d) show the recognition accuracy
of these methods with different values of ν. It can be
observed that the feature level fusion methods are less
sensitive to parameter changed on these two databases.
The reason is as follows. Parameter ν is related to the
tradeoff between misclassification error and the margin
maximization [12]. Since the feasible solution set in fea-
ture level is much larger than that in classifier level, the
misclassification error is more likely to be zero in feature
level, and the tradeoff between misclassification error
and the margin maximization becomes less important.
On the other hand, the proposed LFDM is insensitive to
parameter and obtains much better results, compared to
the other feature level fusion methods. This is another
advantage of the proposed model.
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(a) (b)

(c) (d)

Fig. 6. (a) and (b) are the ROC curves of the best two classifier level methods and feature level fusion methods on
Weizmann and KTH database respectively. (c) and (d) are the recognition accuracy of the linear programming based
methods in classifier level and feature level with different ν on Weizmann and KTH database respectively.

4.5 Analysis of Dependency and Learning Results

In this section, we would like to analyze the dependen-
cies between classifiers or features and their relationship
with the learning results for the real databases. From the
theories of probability and statistics, some methods such
as mutual information [14], product-moment correlation
coefficient [36] and distance correlation [37], have been
proposed to measure the dependency between two ran-
dom variables. Nevertheless, computation of the mutual
information suffers from the non-trivial problem of joint
density estimation while the correlation coefficient only
measures the linear dependencies. Analogous to corre-
lation coefficient, distance correlation [37] quantifies de-
pendency by measuring the difference between the joint
characteristic function and the product of the marginal
characteristic functions. Since distance correlation can be
easily computed without the non-trivial estimation of the
joint distribution of features and is able to measure both
linear and non-linear dependencies [37], we employ it to
measure the dependencies between classifiers or features
for the four real databases in this experiment. (Definition
of the distance correlation R(Z1,Z2) between any tow
random vectors Z1 and Z2 is given in Appendix C in
the supplemental material.)

Since distance correlation R(Z1,Z2) is only for two

random vectors, we extend it to the case with multiple
random vectors by averaging the correlations between
any two different pairs of vectors. The measures of
dependencies in classifier level and feature level are
given by the following equations respectively.

Dc =
2

M(M − 1)

L∑
l=1

M∑
m1=1

M∑
m2=m1+1

R(slm1
, slm2

) (30)

Df =
2

M(M − 1)

L∑
l=1

M∑
m1=1

M∑
m2=m1+1

R(x⃗l
m1

, x⃗l
m2

) (31)

where random variables slm and x⃗l
m represent the clas-

sifier score and feature vector for class l and feature m.
Table 7 shows the dependency scores computed by (30)
and (31) for the four real databases. For the Flower
database, since distance matrices (instead of original
features) are provided on their web site, we do not
calculate the distance correlation in feature level. On the
other hand, the dependency score in Digit database is
the average of results from the four different classifiers
recorded in Table 8.

Comparing the classifier dependencies (Dc) in Table 7,
we can see that score in the Flower database has the
smallest dependency. This is in line with the recognition
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Flower Digit Weizmann KTH
Dc 0.2253 0.4485 0.4740 0.4926
Df – 0.5360 0.9373 0.9108

TABLE 7
Dependency indicators in classifier level and feature level

for real databases.

1-NN 3-NN SVM C=0.1 SVM C=100
Dc 0.2253 0.4485 0.4740 0.4926

TABLE 8
Dependency indicators with different classifiers in Digit

database.

performance in Section 4.2 that the independent method-
s, Sum and IN give convincing results in this database.
However, the dependency score 0.2253 indicates a cer-
tain degree of dependency. Thus, LCDM gives the best
recognition performance by learning the dependency
automatically in this database.

Moreover, it can be seen from Table 7 that both
Weizmann and KTH action databases have large feature
dependency scores (Df ). This is reasonable as the action
features are extracted from the same set of interest
points with different descriptors. On the other hand,
large dependency scores in action databases indicate that
rich dependency information is available for dependency
modeling. Therefore, LFDM significantly outperforms
other feature level fusion methods in the action databas-
es.

Finally, we compare the dependencies in classifier
level and feature level. From Table 7 and Table 8, we
can see that features in Weizmann and KTH action
databases have a higher degree of dependency than
that in Digit database, while it is not the case with
the dependencies in classifier level. Moreover, Table R2
shows that dependencies with different classifiers differ
from each other, although the same set of features is
used in the Digit database. These observations show
that classifier statistics cannot truly reflect the dependen-
cy characteristics in feature level. In other words, the
dependency information is distorted in classifier level.
Therefore, LFDM which models dependency in feature
level, outperforms LCDM, a classifier level dependency
modeling method.

5 CONCLUSION & FUTURE WORKS

In this paper, we have designed and proposed a new
framework for dependency modeling between features
by linear combination for the tasks of recognition. Two
methods, namely Linear Classifier Dependency Model-
ing (LCDM) and Linear Feature Dependency Modeling
(LFDM) are developed based on the proposed frame-
work. LCDM and LFDM are learned by solving the
linear programming problems, which maximize the mar-

gins between the genuine and imposter posterior proba-
bilities. LCDM and LFDM are designed for classifier and
feature combination without any assumption on the data
distribution. Experimental results demonstrate that IN
and DN [11] give the lowest error rates when the distri-
butions are independent normal and dependent normal,
respectively. However, normal assumption may not be
valid in many practical applications, so the proposed L-
CDM and LFDM outperform existing classifier-level and
feature-level fusion methods under non-normal distribu-
tions and on four real databases, respectively. Consider-
ing the classifier combination methods, the simple Sum
rule is preferable, since it gets acceptable performance
but take no additional time for training. In addition,
analysis on dependencies between classifiers or/and
features shows that statistics of classifier scores cannot
truly reflect the dependency characteristics in feature
level. Consequently, LFDM, which models dependency
in feature explicitly, outperforms all existing classifier-
level and feature-level fusion methods on the action
databases. This indicates that feature-level fusion should
be performed.

Although LFDM gives the best performances in our
experiments, LFDM takes longer time for training com-
pared to the classifier level combination methods as well
as the fast multiple kernel learning methods. Thus, We
will further study the efficient algorithm for LFDM and
investigate the fusion process in feature level in future.
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