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Supervised Spatio-Temporal Neighborhood
Topology Learning for Action Recognition

Andy J Ma, Pong C Yuen, Senior Member, IEEE, Wilman W W Zou and Jianhuang Lai

Abstract—Supervised manifold learning has been successfully
applied to action recognition, in which class label information
could improve recognition performance. However, the learned
manifold may not be able to well preserve both the local
structure and global constraint of temporal labels in action
sequences. To overcome this problem, this paper proposes a
new supervised manifold learning algorithm namely supervised
spatio-temporal neighborhood topology learning (SSTNTL) for
action recognition. By analyzing the topological characteristics
in the context of action recognition, we propose to construct
the neighborhood topology using both supervised spatial and
temporal pose correspondence information. Employing the local-
ity preserving property in LPP, SSTNTL solves the generalized
eigenvalue problem to obtain the best projections that not only
separating data points from different classes, but also preserving
local structures and temporal pose correspondence of sequences
from the same class. Experimental results demonstrate that
SSTNTL outperforms the manifold embedding methods with
other topologies or local discriminant information. Moreover,
compared with state-of-the-art action recognition algorithms,
SSTNTL gives convincing performance for both human and
gesture action recognition.

Index Terms—Manifold learning, action recognition, super-
vised spatial, temporal pose correspondence, neighborhood topol-
ogy learning.

I. INTRODUCTION

ACTION recognition is an active research topic in com-
puter vision and pattern recognition, due to a wide range

of potential applications, such as intelligent video surveillance,
perceptual interface and content-based video retrieval. While
many algorithms and systems have been developed in the last
decade [1] [2] [3], recognizing actions in videos still remains
challenging. In action recognition, a key issue is to extract
useful action information from raw video data. So far various
approaches have been proposed to extract features from video
sequences, such as key frame extraction [4] [5] [6], space-time
interest point detection and description [7] [8] [9], key point
trajectory based approaches [10] [11] [12], etc. However, rec-
ognizing actions using key frames lacks of motion information.
And the interest point and trajectory based methods are based
on local features, but do not consider the global constraints in
space-time volumn.
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Action sequences characterized by poses deforming contin-
uously over time, can be regarded as data points on dynamic
action manifolds. In [13] [14], Locality Preserving Projection
(LPP) [15] was employed to learn and match the dynamic
shape manifolds for human action recognition. Other than
LPP, there are many manifold learning methods such as Iso-
metric feature Map (Isomap) [16], Locally Linear Embedding
(LLE) [17] and Laplacian Eigenmap (LE) [18], which aim to
discover the intrinsic geometrical structure of a data manifold.
However, these general manifold learning frameworks do not
fully consider the important structure which lies in temporal
labels.

In [19], Spatio-Temporal Isomap (ST-Isomap) is proposed
to construct the local neighbors emphasizing the similarity
between the temporal related blocks. Besides ST-Isomap, the
temporal extension to Laplacian Eigenmap (TLE) is proposed
in [20] and achieves better performance. Both ST-Isomap
and TLE are unsupervised methods. That means class label
information does not take into account. In turn, it may not
be efficiently applied to supervised dimensionality reduction
problem. Recently, supervised manifold embedding methods
have been proposed such as Locality Sensitive Discriminant
Analysis (LSDA) [21], Local Fisher Discriminant Analysis
(LFDA) [22], Marginal Fisher Analysis (MFA) [23], and Su-
pervised Locality Preserving Projection (SLPP) [24]. Although
these methods show that label information is important, they
do not take temporal cues into account.

In this context, Jia and Yeung [25] proposed a local spatio-
temporal discriminant embedding (LSTDE) method to discov-
er the local spatial and local temporal discriminant structures.
LSTDE is derived by maximizing the inter-class variance and
minimizing the intra-class variance based on the local spatio-
temporal information. However, LSTDE does not consider the
global constraints of the temporal order.

To overcome the limitations mentioned above, this paper
proposes a new method to learn the manifold structure by
using supervised spatial and temporal pose correspondence
information from the topological aspect of manifold. As we
know, topology is an important concept in the definition
of a manifold [26]. By analyzing the topological base in
existing methods for action recognition, we define a new
topology by spatial and class label information, which is
used to construct the supervised spatial (SS) neighborhood.
However, construction of SS neighbors does not take full
advantage of the temporal information. Thus, we further
analyze the global constraint of temporal labels in action
sequences, and develop the temporal pose correspondence
(TPC) neighborhood. The supervised spatial information and
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global constraint of temporal labels is fused by taking the
union of SS and TPC neighbors. At last, the optimal linear
projection functions preserving neighborhood relationship are
obtained by solving a generalized eigenvalue problem. Our
proposed method not only takes advantage of the supervised
spatial distribution, but also temporal pose correspondence
information to learn the neighborhood topology. We call it
as supervised spatio-temporal neighborhood topology learning
(SSTNTL). The contributions of this paper are four-fold.
• We develop a novel method to learn the manifold structure

from the aspect of neighborhood topology. Topology is an
important concept in manifold definition. For the same set
of data, different types of topologies can be defined, and the
manifolds therefore are different. By learning the topological
base, the topology structure of the manifold is preserved.
• By analyzing the topology for action recognition, we com-

bine the spatial distribution and label information to construct
the SS neighborhood topology. Spatial distribution of the data
provides the information about the local structure, while class
label gives the discriminant information. By combining both
information, SS neighborhood topology not only preserves
local structure of data points from the same action, but also
separates data points from different actions. In addition, we
show that temporal adjacent neighborhood is contained in SS
neighbors.
• We propose to construct the TPC neighborhood by

taking advantage of the global constraint of temporal labels.
Different sequences of the same action share similar poses
deforming similarly over time. The corresponding poses in
different sequences of the same action are thought to be in
the same neighborhood, if background and appearance changes
do not exist. Thus, we find the temporal pose correspondence
by dynamic time warping (DTW) and construct the novel
temporal neighborhood by this information. Since the temporal
pose correspondence is obtained by the global constraint of
temporal labels in action sequences of the same class, TPC
neighborhood contains information about the global similarity
between action sequences of the same class.
• We develop a new method, namely supervised spatio-

temporal neighborhood topology learning (SSTNTL) for ac-
tion recognition. Fusing SS and TPC neighborhoods, and
then employing the locality preserving property in LPP [15],
SSTNTL obtains the best projections by solving the general-
ized eigenvalue problem. Thus, SSTNTL not only learns the
supervised spatial structures but also preserves temporal pose
correspondence for action recognition.

The rest of this paper is organized as follows. Section II
reviews some related works on manifold learning and action
recognition. In section III, we present the proposed method
for action recognition. Experimental results and conclusion are
reported in Sections IV and V, respectively. The preliminary
version of this paper which only considers the supervised
spatial neighborhood topology learning (SNTL) has been
reported in [27].

II. RELATIVE WORKS

In this section, we first review existing manifold learning
methods for action analysis. Then, we further elaborate LPP

and SLPP, which are closely related to the proposed method.

A. Manifold Learning for Action Analysis

In the last few years, there has been increasing interest in
analyzing actions using manifold embedding methods, since
action data may lie on a low-dimensional manifold embedded
in the high-dimensional image space [13]. In [28], the gait
manifolds under different viewpoints were learned by LLE
and used for viewpoint estimation, 3D configuration recovery,
new instance synthesis, etc. In [29], manifold representations
learned by LE were used for tracking and 3D motion recon-
struction.

Along this direction, manifold learning was used for action
recognition in [13] [14] [20] [25]. In [13] [14], LPP was used
to learn the dynamic shape manifolds for action matching.
Detailed introduction of LPP was presented in Section II-B. In
order to take advantage of the temporal information, TLE was
proposed in [20] for unsupervised dimensionality reduction of
time series. TLE follows the LE framework and constructs the
neighborhood by the adjacent temporal and repetition temporal
information. As demonstrated in [20], TLE ensured the tem-
poral coherence and improved the generalization properties
of the embedded low dimensional spaces. Besides LPP and
TLE, LSTDE [25] was proposed to discover the local spatio-
temporal discriminant structures for human action recognition.
LSTDE looks for the projections by iteration from three
aspects: minimizing the Euclidean distances between close
data points of the same action class, maximizing the Euclidean
distances between close data points of different classes, and
maximizing the principal angles between video segments of
close data points from different classes. Experimental re-
sults demonstrated that LSTDE can improve the recognition
performance over some representative manifold embedding
methods [25].

B. Reviews of Locality Preserving Projection and Its Super-
vised Version

Locality preserving projection (LPP) [15] is a linear approx-
imation of the nonlinear Laplacian eigenmap (LE) [18]. Sup-
pose x1, x2, · · · , xN are N samples which lie on a manifold
in Rd. The problem of LPP is to find a transformation matrix
P which best preserves the neighborhood relationship of the
manifold containing x1, x2, · · · , xN . Suppose x1, x2, · · · , xN

are represented by z1, z2, · · · , zN in Rl (l ≪ d), where
zn = PTxn. The algorithmic procedure of LPP is summarized
as follows [15],

1. Constructing the adjacency graph: Let G be a graph
with N nodes. An edge is connected nodes i and j, if
xi ∈ N (xj) or xj ∈ N (xi), where N (xi) denotes a small
neighborhood of xi. There are two ways to define N (xi): i)
k-nearest neighbors (k-NN): N (xi) is made up of data points
among the k nearest neighbors of xi and ii) ε-neighborhood:
N (xi) = {xn|∥xn − xi∥ < ε}.

2. Choosing the weights: There are two variations to
choose weights, i.e. simple minded, wij = 1, or heat kernel,
wij = e−∥xi−xj∥2/t, t ∈ R, if and only if nodes i and j are
connected by an edge; wij = 0, otherwise.
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Fig. 1. Manifold learning based action recognition framework.

3. Eigenmap: Compute the eigenvectors and eigenvalues
for the generalized eigenvalue problem:

XLXT e = λXDXT e (1)

where X = (x1, x2, · · · , xN ), D is a diagonal matrix with
Dii =

∑
j wij and L = D −W is the Laplacian matrix.

Let column vectors e1, e2, · · · , el be the eigenvectors of (1),
ordered according to their eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λl.
Thus, the projection matrix and the embedding are given by
P = (e1, e2, · · · , el) and zn = PTxn.

On the other hand, a supervised version of LPP (SLPP) is
proposed in [24]. SLPP is based on the framework of LPP.
In SLPP, the adjacency graph is constructed by class label
information, i.e. an edge is connected nodes i and j, if xi and
xj are from the same class. Except for this, the other procedure
is the same as that in LPP.

III. SUPERVISED SPATIO-TEMPORAL NEIGHBORHOOD
TOPOLOGY LEARNING

The block diagram of the whole action recognition method
is shown in Fig. 1. After preprocessing the videos, a sequence
of images containing the regions of interest are obtained. For
non-periodic actions, the whole sequences with segmented
region of interest are denoted as action units and used for
further processing. For periodic actions, one cycle of action is
extracted by period detection method and denoted as an action
unit similar to those of non-periodic actions. Each action unit
is then represented by a set of feature vectors. Denote the
feature vectors by chronological order for action unit A as
x1, · · · , xNA , where NA is the number of segmented images in
A. After that, each feature representation xn is mapped to the
embedded manifold by the proposed spatio-temporal manifold
learning method. At last, set-based classifier is employed on
the sequence z1, · · · , zNA , and the action label is obtained.

As discussed in Section II-B, the major difference between
LPP and SLPP is the adjacency graph. In this section, we show

Fig. 2. Similar pose in two different actions.

that the adjacency graph is intimately related to the topological
base from mathematical perspective. As we know, topology is
an important concept in the definition of a manifold, so we
will first give a topological analysis in the context of action
recognition. Then, we propose to construct the neighborhood
topology by the supervised spatial as well as temporal pose
correspondence information. Finally, employing the locality
preserving property in LPP, we propose the SSTNTL for action
recognition.

A. Topological Analysis for Action Recognition

In action recognition, actions are regarded as data points
on a manifold. Supposes there are c classes of actions and
data points from all the actions lie on a smooth and compact
manifold. Different actions may be close to each other on
the manifold, because different actions share similar poses.
This is illustrated in Fig. 2, which shows two actions, namely
”run” and ”walk”. We can see that poses (frames) indicated
with red rectangle in ”run” and ”walk” actions are similar. As
such, certain data points from these two actions will be close
together. This means sequences representing these two actions
may be close with each other. In this case, the two actions in
Fig. 2 can be represented by data points (diamond and circle
represent different actions) as shown in Fig. 3(a). Denote the
two actions as Ai and Aj . And let A = Ai ∪Aj . Usually, the
topology defined on A is induced by the Euclidean topology.
Denote this topology as τe. Since topology is too abstract to
understand, we investigate the topological base [30] instead. In
mathematics, if τ = B, where B represents a family of sets
generated by the family of sets B, i.e. B = {U ⊂ X|∀x ∈
U,∃B ∈ B, s.t.x ∈ B ⊂ U}, B is called the topological
base of the topological space (A, τ). With this representation,
τe can be written as

τe = Be, Be = {A ∩B(xn, ε)|xn ∈ A, ε > 0} (2)

where B(xn, ε) is a ball centered at xn and with radius ε.
The topology in LPP is constructed with fixed ε in τe, which

can be written as

τLPP = BLPP, BLPP = {A ∩B(xn, εLPP)|xn ∈ A} (3)

where εLPP is the parameter for the ε-neighborhood. For
suitable parameter εLPP, the topological base in LPP can be
represented by ovals in Fig. 3(b). Based on the topological
base, the adjacency graph in LPP is constructed by putting a
link between any two points in the same oval, which is also
shown in Fig. 3(b). From Fig. 3(b), we can see that close
points from two different actions are connected together, so
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Fig. 3. (a) Visualization of two close actions. Visualization of the topological
base and adjacency graphs in (b) LPP, (c) SLPP and (d) the proposed
supervised spatial method.

projections learned by LPP will map these points into low-
dimensional space as close as possible. However, this is not
what we want for classification.

Topologies defined on A can have many possible variations.
Besides the Euclidean topology, in SLPP, the topology is given
by

τSLPP = BSLPP, BSLPP = {Ai, Aj} (4)

The topological base and adjacency graph in SLPP are shown
as ovals and edges in Fig. 3(c). Since SLPP only consider the
class information, every two points from the same class are
connected by an edge on the graph in Fig. 3(c). Therefore, the
topology in SLPP hardly contains any local information of the
data.

B. Supervised Spatial Neighborhood Topology Construction

According to the analysis in the above section, we can see
that the topological base plays an important role in both LPP
and SLPP. With spatial distribution and class label information
of the data, the topological bases BLPP in LPP and BSLPP
SLPP can be constructed. However, BLPP cannot separate data
points from the same class, and BSLPP hardly contains any
local information. In order to ensure that the topological base
not only preserves local structure, but also be discriminative,
we take the intersection of BLPP and BSLPP and define the
supervised spatial topological base as

BSS = {BLPP ∩BSLPP|BLPP ∈ BLPP, BSLPP ∈ BSLPP} (5)

Since BLPP = A ∩ B(xn, εLPP) and BSLPP = Ai or Aj , BSS
in (6) can be rewritten and the novel topology can be defined
as

τSS = BSS,

BSS = {Ak ∩B(xn, εSS)|xn ∈ Ak, k = i or j}
(6)

The topological base BSS with (6) and adjacency graph
constructed by BSS are shown in Fig. 3(d). In this new
topology and adjacency graph, A can be separated as two
connected components, Ai and Aj . In addition, close points
from the same action are connected by an edge on the graph.
Therefore, the proposed supervised spatial topology τSS not
only preserves local structure of data points from the same
class but also separates data points from different classes.

Besides spatial and label information, the supervised spatial
topology τSS contains temporal adjacent information as well.
As shown in Fig. 4, action sequences are characterized by
poses deforming continuously over time. In mathematics, the

... ... 

Fig. 4. Visualization of the temporal continuity in an action sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1. Constructing 

Input: Training samples , , ;

Corresponding labels , , ;

Percentage parameter ;

Output: Supervised spatial neighborhood ;

for = 1, ,

Compute number of samples for class , ;

Calculate -NN parameter =

endfor;

for = 1, ,

Select the nearest samples respect to 

from class as ( );
endfor;

return ( ), , ( ).
 

Fig. 5. Algorithm 1. Construction of the Supervised Spatial neighborhood.

temporal continuity means that for suitable εSS, there exists a
positive integer δ, s.t. ∥xn+t − xn∥ ≤ εSS, when |t| ≤ δ. By
the definition of the supervised spatial topological base, it has

xn+t ∈ BSS ∈ BSS, when |t| ≤ δ (7)

This equation means that the temporal adjacent neighbors as
indicated by red ovals in Fig. 4 are contained in the supervised
spatial neighbors. Moreover, the construction of BSS avoids
the non-trivial problem of selection of the adjacent parameter,
which is another advantage of the proposed method.

In practice, it is difficult to choose an optimal εSS when
using ε neighborhood to construct the adjacency graph. There-
fore, we construct the graph using k-NN. However, the number
of data points from different classes may not be the same,
so we choose a percentage parameter aSS instead of k to
construct the neighborhood of each data point. The algorithmic
procedure to construct the supervised spatial neighborhood
NSS(xn) for each xn is stated in Fig. 5.

C. Temporal Pose Correspondence Neighborhood Topology
Construction

Although the supervised spatial neighborhood NSS contains
temporal adjacent neighbors as mentioned in the above section,
the construction of NSS still does not take full advantage of the
temporal information. If we consider different sequences of the
same action ”bend” as shown in Fig. 6, it can be observed that
different sequences share the similar poses deforming similarly
over time. However, if the neighborhood is constructed only
by spatial information, the corresponding poses in different
sequences of the same actions may not be close to each other,
due to the background and appearance changes. Thus, the
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Fig. 6. Topological visualization of the TPC neighborhood.

temporal pose correspondence (TPC) between sequences of
the same action may not be discovered by the supervised
spatial neighbors. In this context, we propose to construct the
neighborhood by the temporal pose correspondence directly.

Denote two action units of the same class as Ai1 =
{xi1

1 , · · · , xi1
Ni1

} and Ai2 = {xi2
1 , · · · , xi2

Ni2
}. Suppose each

feature vector for the motion region xik
n in the action sequence

Aik is corresponding to an underlying action pose uik
n for

k = 1 or 2. In this context, the pose relationship which
may vary in speed can be found out by employing Dynamic
Time Warping (DTW) [31] on the underlying pose sequences
ui1
1 , · · · , ui1

Ni1
and ui2

1 , · · · , ui2
Ni2

. Denote the warping function
as

F = [(fi1(1), fi2(1)), · · · , (fi1(T ), fi2(T ))] (8)

where 1 ≤ fik(t) ≤ Nik , fik(t − 1) ≤ fik(t) for k = 1
or 2, and T is integer, s.t. T ≥ max{Ni1 , Ni2}. DTW finds
the optimal warping function F ∗ by solving the following
optimization problem

min
F

T∑
t=1

ω(t)∥ui1
fi1 (t)

− ui2
fi2 (t)

∥ (9)

The distance between corresponding poses ui1
f∗
i1

(t) and ui2
f∗
i2

(t)

must be small, though the distance between original fea-
ture vectors xi1

f∗
i1

(t) and xi2
f∗
i2

(t) may be large due to back-
ground and appearance changes. However, underlying poses
uik
1 , · · · , uik

Nik
for k = 1 or 2 are unknown, so the pose rela-

tionship cannot be obtained by directly solving optimization
problem (9).

Alternatively, we model the relationship between feature
vector xik

n and underlying pose uik
n as follows. Suppose there is

a projection for each sequence, which maps the feature vector
subtracted by the background vector to the underlying pose,
i.e.

uik
n = Qik(x

ik
n − bik) (10)

In equation (10), vector bik and projection matrix Qik model
the background and appearance changes in each action unit,
respectively. Substituting uik

n with (10) into (9), the optimiza-

tion function becomes
T∑

t=1

ω(t)∥Qi1(x
i1
fi1 (t)

− bi1)−Qi2(x
i2
fi2 (t)

− bi2)∥ (11)

Since vector bik and matrix Qik for k = 1 or 2 are unknown
variables in optimization function (11), we minimize the upper
bound given by (12) instead.

∥Qi1∥
T∑

t=1

ω(t)∥xi1
fi1 (t)

− xi2
fi2 (t)

∥

+ ∥Qi1 −Qi2∥
T∑

t=1

ω(t)∥xi2
fi2 (t)

∥

+ ∥Qi2bi2 −Qi1bi1∥
T∑

t=1

ω(t)

(12)

Since
∑T

t=1 ω(t) is a constant respect to t and feature vec-
tors xi2

1 , · · · , xi2
Ni2

are normalized, minimizing objective func-
tion (12) is equivalent to solving the following optimization
problem

min
F

T∑
t=1

ω(t)∥xi1
fi1 (t)

− xi2
fi2 (t)

∥ (13)

This means that DTW performing on feature sequences
xi1
1 , · · · , xi1

Ni1
and xi2

1 , · · · , xi2
Ni2

is equivalent to finding the
minimum upper bound of the optimal pose matching (9).

The optimal warping function F ∗ obtained by solving (13)
with DTW gives the correspondence between similar poses in
different sequences of the same action. However, the difference
between the corresponding frames may be very large due
to the background and appearance changes. Consequently, if
corresponding frames of the same pose in different sequences
are in the same neighborhood, the manifold structure may
be destroyed. Thus, neighboring corresponding frames are
selected as the base of the temporal pose correspondence
neighborhood topology, i.e.

τTPC = BTPC,

BTPC = {C(xn) ∩B(xn, εTPC)|xn ∈ X}
(14)

where X is the universal set and C(xn) denotes the set
containing poses in different sequences corresponding to xn.
The topological base constructed by the temporal pose corre-
spondence is indicated by the red ovals in Fig. 6.

Similarly, the temporal pose correspondence neighborhood
is constructed by k-NN. And a percentage parameter aTPC is
used instead of k. Denote Mi is the number of sequences for
action i. The algorithmic procedure to construct the temporal
pose correspondence neighborhood NTPC(xn) for each xn is
stated in Fig. 7.

D. Supervised Spatial and Temporal Pose Correspondence
Neighborhood Topology Learning

As mentioned in Sections III-B and III-C, the topological
base BSS contains supervised spatial information, while BTPC
consists of temporal pose correspondence. In order to ensure
that the topological base embodies both information, we take
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Algorithm 2. Constructing 

Input: Training sequences , , ;

Corresponding labels , , ;

Percentage parameter ;

Output:
Temporal pose correspondence neighborhood 

;

for = 1, ,

Find action sequences with label ;

for = 1, ,

                for = + 1, ,

                Obtain warping function , by

                      solving (9) or (10);

                endfor;

endfor;

endfor;

for = 1, ,

Construct corresponding set to , ( ) by ;

Count the number of elements in ( ), # ( ) ;

Set = # ( ) ;

Select the nearest samples in ( ) as ( );
endfor;

return ( ), , ( ).
 

Fig. 7. Algorithm 2. Construction of the TPC neighborhood.

the union of BSS and BTPC, and the fused topology namely,
supervised spatio-temporal neighborhood topology is defined
as

τST = BST,

BST = {BST|BST ∈ BSS or BST ∈ BTPC}
(15)

Based on (15), the fused neighborhood of each xn is given by

NST(xn) = NSS(xn) ∪NTPC(xn) (16)

Suppose manifold MST is defined with the neighborhood
topology τST. In [18], it is shown that the optimal mapping f
preserving locality on manifold MST is given by solving the
following optimization problem

arg min
f, s.t. ∥f∥L2(MST)=1

∫
MST

∥∇f∥2 (17)

In order to avoid the out-of-sample problem, the mapping
f is restricted to be linear. In [15], it is shown that the
optimal linear projections preserving locality can be obtained
by solving the following optimization problem,

arg min
e, s.t. eTXDXT e=1

eTXLXT e (18)

where L and D are the Laplacian and diagonal matrices as
defined in Section II-B.

Since the Laplacian L and diagonal matrix D are sparse and
with special structure, XLXT and XDXT can be computed

Algorithm 3. SSTNTL

Input: Training sequences , , ;

Corresponding labels , , ;

Parameters , , ;

Output: Projection matrix = ( , , );

Construct by Algorithm 1;

Construct by Algorithm 2;

Construct by (12);

Set matrices = 0 and = 0;

for = 1, ,

Compute = + and = + ;

endfor;

Solve the eigenvalue problem = ;

Sort the eigenvectors , , by eigenvalues ;

return = ( , , ).
 

Fig. 8. Algorithm 3. The algorithmic procedure of SSTNTL.

by the following equations

XLXT =
(
X1 · · ·Xc

)L1 0 0

0
. . . 0

0 0 Lc


XT

1
...

XT
c


=

c∑
i=1

XiLiX
T
i

(19)

XDXT =
(
X1 · · ·Xc

)D1 0 0

0
. . . 0

0 0 Dc


XT

1
...

XT
c


=

c∑
i=1

XiDiX
T
i

(20)

At last, the algorithmic procedure of the proposed SSTNTL
method is presented in Fig. 8.

IV. EXPERIMENTS

In this section, we evaluate the proposed SSTNTL on five
publicly available action databases: Weizmann [32], KTH [33],
UCF sports [34], Hollywood [8] human action databases and
Cambridge-Gesture database [35]. In the following sections,
we first give a brief introduction to the experimental settings
and classifier in Section IV-A. Then, the results on these
five databases are reported in Section IV-B to Section IV-F,
respectively. At last, we compare SSTNTL with and without
TPC neighbors in Section IV-G.

A. Settings and Classifier

For the video databases used in our experiments, we process
the videos as described in Fig. 1. Details about the prepro-
cessing process and image features are discussed separately
for each database in the following sections. After obtaining
the image features, Principal Component Analysis (PCA) [36]
is used for dimensionality reduction to avoid the singular
matrix problem and improve the computational efficiency. The



7

 

Fig. 9. Example segmented images from videos in Weizmann database

dimension of PCA is determined by keeping around 90%
energy.

As shown in Fig. 8, parameters aSS, aTPC, l need to
be determined in SSTNTL. Since it is difficult and time-
consuming to search the best combination of the three pa-
rameters simultaneously, we determine the parameters in a
two-stage scheme. First, setting l = 60, aSS and aTPC are
selected from {0.02, 0.04, · · · , 0.2} and {0.1, 0.2, · · · , 0.9}
respectively. Second, the best dimension l is selected from
two to the determined PCA dimension with step size two for
fixed aSS and aTPC. On the other hand, the parameter selection
procedure in other methods is similar to that in SSTNTL.
The neighborhood parameter in LPP and LSDA is selected
from the same set as aSS in SSTNTL. Since LSTDE is time-
consuming with large neighborhood, the neighborhood param-
eter in LSTDE is selected from {0.01, 0.02, 0.03} instead.
In order to avoid the extra parameter selection by the heat
kernel weighting, the weight matrix is calculated by the simple
minded method as mentioned in Section II-B.

After feature extraction, we use a nearest neighbor frame-
work in the classification stage. Let Aq be a query action
sequence. The class label of Aq is given by

yq = yargmin
m

d(PTZq,PTZm) (21)

where d measures the distance between embedded feature
sequences Zq = {zq1 , · · · , z

q
Nq

} and Zm = {zm1 , · · · , zmNm
}.

Since median Hausdorff distance gives more robust results
as mentioned in [13], we define d as equation (22) in our
experiments.

d(Zq, Zm) =median
j

min
i
∥zqi − zmj ∥

+ median
i

min
j

∥zqi − zmj ∥
(22)

B. Results on Weizmann Human Action Database

Weizmann database [32] contains 93 videos from nine
persons, each performing ten actions, i.e. ”bend”, ”jumping
jack”, ”jump in place on two legs”, ”jump forward on two
legs”, ”galloping sideways”, ”skip”, ”run”, ”walk”, ”wave one
hand”, and ”wave two hands”. We follow the procedures
in [37] [38] to extract region of interest and detect periodic
motion cycles by the information saliency curve [39]. Several
action units can be detected for one video clip, while one cycle
per video is used in our experiments (refer to [37] [38] for
details). Fig. 9 shows some example segmented images from
the videos representing the ten actions in Weizmann database.
The extracted images are normalized into 100×100 pixels
and represented by feature vectors with dimension 10000.

Fig. 10. Recognition accuracy (%) of SSTNTL with different values of aSS

and aTPC, and fixed l = 60 on Weizmann database

Fig. 11. Recognition accuracy with the best neighborhood parameter and
different embedded dimensions on Weizmann database

Nine-fold cross validation protocol is employ to evaluate the
proposed method. The average recognition rate is recorded.

The recognition accuracies of SSTNTL with different values
of aSS and aTPC, and fixed l = 60 on this database are
shown in Fig. 10. The darker element of the matrix in
Fig. 10 represents higher recognition rate. The columns are the
recognition rates with changing aSS and specific aTPC, while
rows are recognition rates with changing aTPC and specific
aSS. From Fig. 10, we can see that the highest accuracy of
100% is achieved in this database, when aSS = 0.06 and
aTPC = 0.9. From the last row in Fig. 10, we observe that the
recognition rates do not change when aSS = 0.2 for different
aTPC. This may be due to the reason that the supervised
spatial neighborhood NSS already contains the temporal pose
correspondence neighborhood NTPC, when aSS = 0.2.

Fig. 11 shows the recognition accuracies of different meth-
ods with different dimension. From Fig. 11, we can see that
the recognition rate of SSTNTL is higher than those of all
the other methods in every dimensions. On the other hand,
when the dimension is less than 20, SSTNTL, LPP and SLPP
outperform LSDA and LSTDE a lot. This result suggests
that the neighborhood topology learning methods with clear
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Database Weizmann KTH KTH UCF HOHA
(Feature) (Gray) (Gray) (Gist) (Gist) (Gist)
SSTNTL 100.0 79.6 94.4 91.3 44.5
LPP [15] 92.2 72.2 89.4 88.6 29.2

SLPP [24] 84.4 70.8 88.4 86.6 27.0
LSDA [21] 93.3 75.0 83.3 84.6 29.4

LSTDE [25] 93.3 75.9 80.6 82.6 26.5

TABLE I
RECOGNITION ACCURACIES (%) OF MANIFOLD EMBEDDING METHODS ON

DIFFERENT DATABASES

Method Accuracy
SSTNTL 100.0
LTP [42] 100.0
BEL [6] 100.0

Sparse Representation [41] 98.9
Effective Codebook [40] 95.4

BoW [7] 90.0
3D Gradients [9] 84.3

TABLE II
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART

ACTION RECOGNITION SYSTEMS ON WEIZMANN DATABASE

manifold interpretation are much better than those without
clear one, when the dimension is small.

We compare SSTNTL with other manifold embedding
methods on this database in the second column of Table I.
SSTNTL achieves the best recognition accuracy of 100%, and
outperform other embedding methods by 6.7%. On the other
hand, we compare SSTNTL with state-of-the-art algorithms1

in Table II. Our method outperforms space-time interest point
based methods [7] [9] [40] as well as sparse representation
approach [41]. Since Weizmann database is relatively simple,
boosted exemplar learning (BEL) [6], local trinary patterns
(LTP) [42] and the proposed method give the perfect perfor-
mance. While BEL classifies actions based on exemplars and
LTP extends the local binary patterns, these two methods do
not consider the global constraint of temporal labels. Thus, our
method outperforms them on the more challenging databases
as shown in Table III, Table IV and Table VII.

C. Results on KTH Human Action Database

There are 25 subjects performing six actions under four
scenarios in KTH database [33]. The six actions include ”box-
ing”, ”hand clapping”, ”hand waving”, ”jogging”, ”running”
and ”walking”. The four different scenarios are outdoors (S1),
outdoors with scale variations (S2), outdoors with different
clothes (S3) and indoors (S4). Regions of interest and motion
cycles are extracted similar to the procedures in Weizmann
database (refer to [37] [38] for details). Fig. 12 shows some
example segmented images from the videos representing the
six actions in KTH database. The extracted images are nor-
malized into 100×100 pixels and represented by two kinds
of image features. The first one converts gray-scale images
into vectors with dimension 10000, while the second one
computes the gist feature [43] on each extracted image. For the
gist feature, the parameters about number of orientation per

1Please be noticed that the results of state-of-the-art methods are extracted
from their papers and under the same setting.

 

Fig. 12. Example segmented images from videos in KTH database

Method (train/test setting: split) Accuracy
SSTNTL 94.4

Product Manifold [46] 96.0
Neighbor Hierarchy [45] 94.5

Dense Trajectory [12] 94.2
BoD+MKGPC [47] 94.1

Effective Codebook [40] 92.6
Harris 3D + HoF [48] 92.1
Random Forest [49] 91.8

HoG + HoF [8] 91.8
3D Gradients [9] 91.4

LTP [42] 90.1

TABLE III
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART

ACTION RECOGNITION SYSTEMS ON KTH DATABASE WITH SPLIT SETTING

scale and number of blocks are selected from {4,8}. Three
training/testing protocols (refer to [44] for details about the
relationship between the performance and evaluation protocol)
are used for evaluation and reported as follows.

Following the split setting in [33], the KTH database is
divided into training (eight persons), validation (eight persons)
and testing (nine persons) sets. Eight-fold cross-validation is
performed on the training and validation sets to find optimal
parameters and model. We first compare SSTNTL with other
manifold embedding methods using gray-scale and gist fea-
tures in the third and fourth columns of Table I, respectively.
From Table I, we can see that SSTNTL outperforms other
methods in both features, while the performances with gist are
better than those with gray-scale feature. Then, We compare
our method with state-of-the-art algorithms under the split
setting in Table III. From Table III, we can see that our method
outperforms most of the existing methods and is comparable
with the hierarchical approach [45]. While Product Manifold
(PM) [46] achieves the highest accuracy, the result is obtained
by performing PM on action sequences with manually spatio-
temporal alignment.

For the second protocol, we evaluate our method under
leave-one-person-out (LOO) setting using all the four scenar-
ios. The results are reported in Table IV. As show in IV, our
method achieves the second highest accuracy of 96.3%. PM is
better than our method by 0.7%. However, the result with PM
is obtained by performing spatio-temporal alignment manually.
While our method detects the regions of interest automatically,
the result is also comparable.

At last, we compare SSTNTL with existing methods under
each scenario with leave-one-person-out setting. The results
are shown in Table V. SSTNTL outperforms others under s-
cenarios of outdoor, outdoor with clothes variation and indoor.
Especially, our method achieves 100% accuracy for the indoor
scenario. This convinces that our method is very effective
under controlled setting. On the other hand, Tracklet [11] and
AFMKL [50] are better than our method under scenario two
of outdoor with scale variation. The reason can be explained
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Method (train/test setting: LOO) Accuracy
SSTNTL 96.3

Product Manifold [46] 97.0
MoSIFT [44] 96.3
TCCA [35] 95.3

BEL [6] 95.3
Tracklet [11] 94.5

BoW [7] 83.3

TABLE IV
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART

ACTION RECOGNITION SYSTEMS ON KTH DATABASE WITH LOO SETTING

Method S1 S2 S3 S4 Mean
SSTNTL 98.0 88.7 96.0 100.0 95.7

Tracklet [11] 98.0 92.7 92.0 96.7 94.8
AFMKL [50] 96.7 91.3 93.3 96.7 94.5
HSTM [51] 95.6 87.4 90.7 94.7 92.1

TABLE V
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART

ACTION RECOGNITION SYSTEMS ON KTH DATABASE UNDER EACH
SCENARIO

as follows. The features used in SSTNTL are obtained by
motion detection. Since motion detection under scenario two
with scale variations is more challenged than that under the
other three scenarios, the detected moving regions in scenario
two must be less robust. Thus, local feature based methods,
Tracklet and AFMKL, without motion detection outperform
our method under scenario two.

D. Results on UCF Sports Database

UCF sports database [34] contains ten types of sports action-
s, including diving (Div), golf swinging (Gol), kicking (Kic),
lifting (Lif), horseriding (Rid), running (Run), skateboarding
(Ska), swinging at the bench (SwB), swinging at the high bar
(SwH), and walking (Wal). There are totally 150 real videos
in this database and each action class has different number
of training samples. The bounding boxes provided in this
database are used to segment the region of interest for the
videos. Fig. 13 shows the images representing different actions
after segmentation with the bounding boxes. Since results on
KTH database show that gist descriptor provides better result
than that of the image intensity, we extract the gist feature for
each segmented image from the video clips in this database.
Following the protocol in [34], the leave-one-sample-out cross
validation setting is employed for evaluation.

The last but one column in Table I shows the recognition
rates of different manifold embedding methods. The same
conclusion can be drawn that SSTNTL outperforms other
manifold embedding methods on this database. In Table R2,
we further compare the proposed method with state-of-the-
art action recognition systems. From Table VI, we can see
that SSTNTL gives the highest accuracy 91.3% together
with Augmented Features (context and appearance distribution
features) multiple kernel learning (AFMKL) method [50].
And our method outperforms dense trajectory [12], space-
time interest point (STIP) based methods [45] [48], sparse
representation [41], and local trinary patterns (LTP) [42]. This
is because the scene representations are discriminative for

 

Fig. 13. Example segmented images from videos in UCF sport database

Method Accuracy
SSTNTL 91.3

AFMKL [50] 91.3
Dense Trajectory [12] 88.2

Neighbor Hierarchy [45] 87.3
Dense HoF [48] 85.6

Sparse Representation [41] 83.8
LTP [42] 79.2

TABLE VI
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART

ACTION RECOGNITION SYSTEMS ON UCF DATABASE

some sport actions. And our method not only captures the
temporal variation, but also makes use of the discriminative
representations of image frames. Fig. 14 shows the confusion
matrices of SSTNTL and AFMKL, which both achieves the
best recognition accuracy. From Fig. 14(a), we can see that
our method achieves 100% accuracy for six in ten actions,
including diving, lifting, riding horse, skateboarding, swinging
at the bench and at the high bar. Comparing the confusion
matrices in Fig. 14(a) and Fig. 14(b), the performance of our
method is better than or equal to that of AFMKL in classifying
seven actions.

E. Results on HOHA Database

Hollywood Human Action (HOHA) database [8] consists of
eight types of actions, including Answer Phone (AnP), Get out
of Car (GoC), Hand Shake (HS), Hug Person (HP), Kiss (Ki),
Sit Down (SiD), Sit Up (SiU), and Stand Up (StU). Following
the evaluation protocol in [8], 219 and 211 videos with ”clean”
annotations are used for training and testing, respectively. We
manually segment regions of interest as shown in Fig. [8].
Gist features are computed for each segmented image from
the video clips in this database as in KTH. Five-fold cross-
validation is performed on the training data to select the best
parameters for each action.

The average (Avg) values of the per-class precisions by
manifold embedding methods on HOHA database are recorded
in the last column of Table I. From Table I, we can see
that the average precision of SSTNTL is 15% higher than
those of other manifold embedding methods on this database.
This convinces the effectiveness of SSTNTL in the more
challenging database, comparing to other embedding methods.

In Table VII, we compare the proposed method with state-
of-the-art action recognition systems in per-class precisions
and their average. From Table VII, we can see that the average
precision of SSTNTL is higher than those of the baseline
method [8] by combining Histogram of Oriented Gradients
(HoG) and Optical Flow (HoF), as well as recently proposed
descriptors [9] [42] [11]. And our method best classifies
actions including Get out of Car, Hand Shake and Sit Up. The
performance of our method is comparable with, but lower than
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(a) SSTNTL (b) AFMKL [50]

Fig. 14. Confusion matrices on UCF sport database

 

Fig. 15. Example bounding boxes and images from videos in HOHA database

Method AnP GoC HS HP Ki SiD SiU StU Avg
SSTNTL 40.0 62.5 44.4 38.1 44.2 30.2 44.4 52.4 44.5

BoD + MKGPC [47] 43.4 46.8 44.1 46.9 57.3 46.2 38.4 57.1 47.5
HoG + HoF [8] 32.1 41.5 32.3 40.6 53.3 38.6 18.2 50.5 38.4

LTP [42] 35.1 32.0 33.8 28.3 57.6 36.2 13.1 58.3 36.8
Tracklet [11] 33.0 27.0 20.1 34.5 53.7 27.4 19.0 60.0 34.3

3D Gradients [9] 18.6 22.6 11.8 19.8 47.0 32.5 7.0 38.0 24.7

TABLE VII
RECOGNITION ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART ACTION RECOGNITION SYSTEMS ON HOLLYWOOD DATABASE.

the multiple kernel Gaussian process classifier (MKGPC) [47].
This is attributed to the combination of bag-of-detector (BoD)
scene descriptors, HoG, HoF and 3D Gradients for MKGPC,
while our method is only based on one kind of feature.

F. Results on Hand Gesture Action Database

Cambridge-Gesture database [35] consists of 900 im-
age sequences of nine hand gesture classes under five
kinds of illuminations. The nine hand gesture actions in-
clude Flat-Leftward (FL), Flat-Rightward (FR), Flat-Contract
(FC), Spread-Leftward (SL), Spread-Rightward (SR), Spread-
Contract (SC), V-Shape-Leftward (VL), V-Shape-Rightward
(VR), and V-Shape-Contract (VC). Each class and illumination
set contains 20 sequences. Example images from this database
are shown in Fig. IV-F. Gist feature vectors are extracted for
each image as in KTH. Following the experimental protocol
in [35] [46], 20 sequences per class with plain illumination

Fig. 16. Example images from sequences in Cambridge-Gesture database

is randomly partitioned into 10 sequences for training and the
other 10 sequences for validation, while testing is performed
in the data sets with the other four illuminations.

Recognition accuracies for different illumination sets on this
database are presented in Table VIII. Compared with the man-
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Fig. 17. 2D visualization of different methods with the training and testing data on Cambridge-Gesture database (better viewed in color printing)

Method Set 1 Set 2 Set 3 Set 4 Mean
SSTNTL 89 89 85 91 89
LPP [15] 85 84 75 89 83

SLPP [24] 66 65 53 68 63
LSDA [21] 66 67 58 68 65

LSTDE [25] 68 66 69 80 71
TCCA [35] 81 81 78 86 82

PM [46] 89 86 89 87 88

TABLE VIII
RECOGNITION ACCURACY (%) OF DIFFERENT METHODS ON

CAMBRIDGE-GESTURE DATABASE.

Method Similarity 1 Similarity 2 Accuracy (dim=2)
SSTNTL 0.941 0.698 22.2%
LPP [15] 0.904 0.682 21.1%

SLPP [24] 0.578 0.485 18.3%
LSDA [21] 0.530 0.462 16.7%

LSTDE [25] 0.499 0.462 13.9%

TABLE IX
TWO SIMILARITY MEASURES OF THE 2D EMBEDDINGS FOR TRAINING
AND TESTING DATA AND RECOGNITION ACCURACY WITH EMBEDDED

DIMENSION TWO ON CAMBRIDGE-GESTURE DATABASE

ifold embedding methods, SSTNTL outperforms the others
under the four different illumination sets. This convinces that
SSTNTL is better than the topology learning methods with
other topologies, as well as the local discriminative algorithms
even with temporal information.

In order to further compare the generalization ability of the
manifold embedding methods, the 2D visualizations of the
training and testing data with illumination set three are shown
in Fig. 17. For each method, the 2D embedding of the training
data is presented in the upper row, while the one of the testing
data is in the lower row. From Fig. 17(c), we can see that the
2D embedding of the testing data deviates to a different degree
from that of the training by different method.

It is not easy to compare the difference between the 2D
embeddings using visualization. As mentioned in [52], the
median Hausdorff distance defined by (22) can be used to
quantify the similarity between the 2D embeddings. Denote the
training and testing embeddings as Z train = {Z train

1 , · · · , Z train
c }

and Z test = {Z test
1 , · · · , Z test

c }, where Z train
i and Z test

i are
the embeddings for each class. With these notations, we
first measure the shape similarity between the training and

Fig. 18. Recognition accuracy with the best neighborhood parameter and
different embedded dimensions on Cambridge-Gesture database.

testing data as two data sets. And the first similarity index
is given by 1/d(Z train, Z test), where d is a distance function
defined by (22). With label information, we further calcu-
late the average difference between the training and testing
data of each class. And the second index is defined by
c/

∑c
i=1 d(Z

train
i , Z test

i ). The similarity quantification scores
for these two indexes are shown in the second and third
columns in Table IX. The similarity measures in Table IX
are consistent with each other to different methods. However,
different from the results in Table VIII, SLPP outperforms
LSDA and LSTDE in terms of the two similarity measures. In
this case, we further show the recognition rate with embedded
dimension two and different dimension in the last column of
Table IX and Fig. 18, respectively. From Table IX, we can see
that when the embedded dimension is two, the recognition
rates of the neighborhood topology learning methods are
higher than that of LSDA and LSTDE, so the similarity results
in Table IX are reasonable. On the other hand, Fig. 18 indicates
that SSTNTL, LPP and SLPP outperform LSDA and LSTDE,
when the dimension is less than 50, which is similar to the
results in Weizmann database. And these results show that the
generalization ability of the topology based methods is better
than that of the local discriminability based methods, when
the reduced dimension is low. And SSTNTL gives the best
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(a) SSTNTL (b) LPP [15]

(c) TCCA [35] (d) PM [46]

Fig. 19. Confusion matrix on Hand Gesture confusion matrices

performance in this experiment.
We also compare the proposed method with state-of-the-art

gesture action recognition algorithms. The Tensor Canonical
Correlation Analysis (TCCA) [35] and Product Manifold (P-
M) [46] are used for comparison with the manifold embedding
methods. From Table VIII, we can see that both PM and
SSTNLT get the highest accuracy 89% for illumination set
one. The product manifold method outperforms the others for
set three, while SSTNTL gives the best performance for sets
two and four. Compared with mean recognition rates, SSTNTL
achieves the highest mean accuracy of 89% in this database.

At last, the confusion matrices of the best four algorithms
are shown in Fig. 19. Compared the diagonal elements in
the confusion matrices, SSTNTL outperforms LPP on eight
actions, TCCA and product manifold method on five actions,
respectively. This means SSTNTL outperforms the others on
more than half of the gesture actions in this database. Overall
speaking, SSTNTL is also performing well for hand gesture
action recognition.

G. Comparing SSTNTL with and without TPC Neighbors

In the last experiment, we compare SSTNTL with and with-
out temporal pose correspondence (TPC) neighbors construct-
ed by DTW method. From Table X, we can see that SSTNTL
with TPC neighbors outperforms that without TPC neighbors

Method Weizmann KTH UCF HOHA Gesture
With TPC 100.0 94.4 91.3 44.5 89

Without TPC 95.6 90.3 89.3 32.3 80

TABLE X
RECOGNITION ACCURACIES (%) OF SSTNTL WITH AND WITHOUT TPC

NEIGHBORHOOD ON DIFFERENT DATABASES

on different databases. This convince that the neighborhood
constructed by DTW help to improve the performance.

In order to further show that DTW can find the correspond-
ing poses, we compare the supervised spatial neighborhood
and TPC neighborhood on KTH database. Fig. IV-G shows
the TPC neighbors which cannot be detected by the supervised
spatial information. From Fig. IV-G, we can see that most of
the TPC neighbors detected by DTW are similar poses to the
referred images on the left hand side. This gives the reason
why SSTNTL with TPC neighbors is better.

V. CONCLUSION

In this paper, we have proposed a novel manifold learn-
ing method, namely supervised spatio-temporal neighborhood
topology learning (SSTNTL) for action classification. Starting
from analyzing the topological characteristics in the context
of action recognition, we proposed to construct the neighbor-
hood topology from two aspects. First, the spatial distribution
containing local structures, as well as the label information
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Fig. 20. Example TPC neighbors do not belong to the SS neighborhood

separating data points from different class are used to construct
the supervised spatial topology. Second, the temporal pose
correspondence neighborhood is constructed by discovering
the global constraints of temporal labels in action sequences of
the same class. These two neighborhood topologies are fused
by taking the union of them. Based on the fused topology,
SSTNTL employs the locality preserving property in LPP,
and solves the generalized eigenvalue problem to obtain the
best projections that not only separating data points from
different classes, but also preserving local structures and global
constraints of temporal labels.

The proposed algorithm is evaluated on five publicly avail-
able action video databases. Experimental results show that
SSTNTL outperforms the neighborhood topology learning
methods with other topologies, as well as the local discrimi-
nant algorithms even with temporal information. On the other
hand, by analyzing the 2D visualizations of the training and
testing data, we show that the generalization ability of the
topology learning methods is better than that of the local
discriminability based methods, when the reduced dimension
is low. And SSTNTL shows the best generalization ability.
In addition, compared with state-of-the-art action recognition
algorithms, SSTNTL gives convincing performance for both
human and gesture action recognition.
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