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Asymmetric Mutual Learning for Unsupervised
Transferable Visible-Infrared Re-Identification

Ancong Wu, Chengzhi Lin, Wei-Shi Zheng

Abstract—Visible-infrared person re-identification (Re-ID)
plays a crucial role in matching people across camera views
in the darkness and normal lighting. To reduce annotation
cost, it is advantageous to learn Re-ID model from unlabeled
visible-infrared image pairs. However, large modality gap makes
it difficult to discover the underlying cross-modality sample
relations. Compared with cross-modality sample pairs in the
target domain, it is easier to obtain more single-modality visible
image samples from other domains. In this work, we study
unsupervised transfer learning to extract modality-shared knowl-
edge from auxiliary unlabeled visible images in a source domain
and leverage this knowledge to learn cross-modality matching
in the unlabeled target domain. Our framework consists of two
stages: RGB-gray asymmetric mutual learning and unsupervised
cross-modality self-training. In the first stage, to extract visible-
infrared shared information from auxiliary unlabeled visible
images, we regard RGB images and grayscale fake infrared
images transformed from RGB images as two views to learn
view-shared information and simultaneously preserve RGB-
specific information. Based on information theoretic analysis,
we learn an RGB-gray feature extractor and further intro-
duce an auxiliary gray feature extractor to quantify RGB-gray
shared knowledge. This knowledge is then transferred to the
RGB-gray feature extractor without eliminating RGB-specific
information. We call this process Cross-Modality Asymmetric
Mutual Learning (CMAM). In the second stage, for unsupervised
cross-modality self-training in the target domain, we fuse the
complementary knowledge in two models by mutual learning
and employ bipartite cross-modality pseudo labeling to alleviate
modality gap. For a more extensive evaluation, we collected a
new public multi-modality dataset, SYSU-MM02, constructed
from untrimmed videos. Our method achieves the state-of-the-
art performance on three benchmark datasets. Project page:
https://www.isee-ai.cn/project/sysumm02.html.

Index Terms—Person re-identification, cross-modality match-
ing, unsupervised domain adaptation.

I. INTRODUCTION

In recent years, with increasing demand of intelligent anal-
ysis of video surveillance, person re-identification (Re-ID) for

This work was partially supported by the National Science Foundation for
Young Scientists of China (62106288), the Guangdong Basic and Applied
Basic Research Foundation (2023A1515012974), the Guangzhou Basic and
Applied Basic Research Scheme (2024A04J4066), the NSFC (U21A20471,
U1911401, U1811461), Guangdong NSF Project (No. 2023B1515040025,
2020B1515120085) and Fundamental Research Funds for the Central Uni-
versities, Sun Yat-sen University (23ptpy77).

Ancong Wu and Chengzhi Lin are with the school of computer sci-
ence and engineering, Sun Yat-sen University, Guangzhou 510006, China;
Guangdong Key Laboratory of Information Security Technology (Email:
wuanc@mail.sysu.edu.cn, linchzh3@mail2.sysu.edu.cn). Wei-Shi Zheng is
with the School of Computer Science and Engineering, Sun Yat-sen Univer-
sity, Guangzhou 510006, China; Key Laboratory of Machine Intelligence and
Advanced Computing, Ministry of Education; Pazhou Laboratory (Huangpu),
Guangzhou 510555, China (E-mail: wszheng@ieee.org).

Corresponding author: Wei-Shi Zheng.

?

Ambiguity

Visible 

image

Infrared 

image

Target unlabeled multi-modality dataSource unlabeled visible images

Modality-shared 

knowledge learning

Auxiliary 

pretrained

model

Visible image

Cross-modality 

matching

model

Unsupervised 

learning

Initialize

knowledge 

transfer

Stage 1: RGB-gray asymmetric 

mutual learning

Stage 2: unsupervised cross-

modality self-training

Fake IR image

Transform

Fig. 1. Unsupervised transferable visible-infrared person Re-ID framework.
We learn modality-shared prior knowledge from source auxiliary unlabeled
visible images that can be obtained more easily than visible-infrared sample
pairs, and then transfer the knowledge to improve unsupervised cross-modality
Re-ID in the target domain.

matching pedestrians across non-overlapping camera views
has attracted much attention. Based on deep learning models,
supervised Re-ID methods [1]–[4] and unsupervised Re-ID
methods [5]–[15] have achieved remarkable performance for
visible image matching. However, current Re-ID methods are
still unsatisfactory for visible-infrared cross-modality person
re-identification [16] in the scenarios of pedestrian matching
across cameras in the darkness and normal lighting, since
the modality gap between visible images and infrared images
caused by large visual differences is challenging.

Most existing visible-infrared cross-modality person re-
identification methods focus on supervised learning [17]–[26].
However, it is infeasible to annotate identities exhaustively for
each unseen scene in large surveillance systems. It is signif-
icant to study unsupervised cross-modality Re-ID [27]–[32].
To discover the underlying visible-infrared sample relations
under high visual ambiguity, modality-shared prior knowledge
for bridging modality gap is required.

In this work, in order to learn such prior knowledge
without annotating visible-infrared image pairs, we explore
unsupervised transfer learning to extract modality-shared prior
knowledge from auxiliary unlabeled visible images in a source
domain and transfer the knowledge to cross-modality matching
in the unlabeled target domain, because the underlying identity
relation between visible image pairs can be discovered more
easily than visible-infrared pairs with modality gap. To this
end, we propose an unsupervised transferable visible-infrared
person Re-ID framework as shown in Figure 1. The framework
consists of two stages: RGB-gray asymmetric mutual learning
and unsupervised cross-modality self-training.
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In the first stage, to extract modality-shared prior knowledge
from auxiliary unlabeled visible images, we transform the
visible images (RGB) to grayscale fake infrared images (gray)
by a diffusion model [33] trained on unlabeled infrared images
in the target domain. The RGB images and the transformed
grayscale images are regarded as two views. We assume
that some RGB-infrared shared information can be extracted
from the fake visible-infrared image pairs. Since the fake
infrared images cannot perfectly represent the characteristics
of real infrared images, some RGB-infrared shared knowledge
is not contained in RGB-gray shared information. Hence,
when extracting RGB-gray shared information, we expect
to preserve the RGB-specific information that also contains
RGB-infrared shared information. A tentative solution of ex-
tracting RGB-gray shared information is learning an RGB-
gray feature extractor that can classify the pseudo labels of
unlabeled samples and output view-consistent feature distribu-
tions. However, our information theoretic analysis in Section
IV demonstrates that RGB-gray shared information and RGB-
specific information cannot be simultaneously learned with a
single view-shared model. To avoid this problem, we introduce
an additional auxiliary gray feature extractor to quantify RGB-
gray shared knowledge and transfer it to the RGB-gray feature
extractor without eliminating RGB-specific knowledge. This
process of knowledge transfer between two models forms
a mutual learning framework, which is called the Cross-
Modality Asymmetric Mutual Learning (CMAM).

In the second stage, to exploit the prior knowledge learned
from visible images for unsupervised cross-modality Re-ID,
we propose cross-modality mutual self-training. Complemen-
tary knowledge of RGB-gray matching and gray-gray match-
ing in two models is fused and transferred to each other by
mutual learning, so that only the RGB-gray feature extrac-
tor is required for inference without increasing computation
costs. To alleviate modality gap for self-training, we utilize a
bipartite cross-modality pseudo labeling strategy to separately
perform intra-modality clustering and cross-modality cluster
association based on bipartite graph matching.

For evaluating unsupervised learning in real-world scenario,
we collected a new multi-modality pedestrian dataset SYSU-
MM02, of which the training set is constructed by pedestrian
detection on untrimmed videos. Such training set contains
more noises than the training sets of existing visible-infrared
pedestrian benchmark datasets, in which the samples are man-
ually selected and annotated. SYSU-MM02 contains 25,774
images captured from one visible camera and two infrared
cameras, in which 4,720 images of 118 identities are annotated
for testing. This new dataset can be publicly available after
data masking.

The contributions are summarized as follows:
1. We propose Cross-Modality Asymmetric Mutual Learning
(CMAM) to learn modality-shared prior knowledge from aux-
iliary unlabeled visible images for visible-infrared matching.
2. To exploit prior knowledge for unsupervised cross-modality
Re-ID, we propose cross-modality mutual self-training.
3. A new public visible-infrared pedestrian dataset SYSU-
MM02 is constructed from real-world untrimmed videos.

II. RELATED WORK

A. Visible-Infrared Person Re-Identification

Single-modality person re-identification methods for visi-
ble images have achieved remarkable performance in both
supervised learning setting [1]–[4] and unsupervised learning
setting [5]–[12], [14], [15]. However, visible-infrared person
re-identification methods are still far from satisfaction.
Supervised Methods. The visible-infrared cross-modality per-
son re-identification problem is first identified by Wu et al.
[16]. Recently, supervised visible-infrared Re-ID has attracted
increasing research interest. We categorize the methods into
three groups: feature space alignment [17]–[26], local feature
learning [34]–[38] and image style transformation [39]–[47].

Many approaches focus on learning consistent feature distri-
butions for two modalities. Most methods focus on designing
alignment loss functions [18], [21], [23]–[26]. Wu et al. [23]
propose cross-modality similarity preservation for learning
consistent cross-modality and same-modality ranking lists. Dai
et al. [25] and Hao et al. [21] align cross-modality features
by adversarial learning loss. Liu et al. [18] propose memory-
augmented unidirectional metrics. Wu et al. [20] proposes
a joint modality and pattern alignment network. Feng et al.
[17] proposes a shaped-erased feature learning method to
enrich modality-shared features. Chai et al. [48] learn two-
stream transformers with distance distribution alignment for
modality-specific class embeddings. CM-NAS [22] searches
model architectures to find the optimal separation scheme
of each BN layer for suppressing modality gap. The above
feature alignment methods require cross-modality labeled data
for alleviating modality gap, while our method can exploit
auxiliary unlabeled RGB images to assist alleviating modality
gap by asymmetric mutual learning.

Local feature learning methods mainly exploit attention
module [37] or salience map [38] to enhance fine-grained fea-
ture representation. Zhang et al. [36] preserve spatial structures
and attend to the differences of cross-modality image pairs.
Chen et al. [35] propose structure-aware positional transformer
network to utilize structural and positional information. The
Semantic Alignment and Affinity Inference framework (SAAI)
[34] aligns latent semantic part features with learnable proto-
types and fuses local features and global features.

Image style transformation methods alleviate modality gap
by transforming image styles to generate auxiliary training
data. Wang et al. [47] perform cross-modality image gener-
ation by generative adversarial network. Li et al. [46] and
Wei et al. [45] learn generator to convert images to a third
modality. Huang et al. [42] design a modality-adaptive mixup
scheme. To generate infrared-like grayscale images, Liu et
al. [44] use linear combination of R, G, B channels and
Ye et al. propose channel augmented joint learning (CAJL)
[39], [43] that divides R, G, B channel for data augmenta-
tion. PartMix [40] method synthesizes augmented samples by
mixing the part descriptors across the modalities. Zhong et
al. [41] propose grayscale enhancement colorization network
to colorize infrared images for bridging modality gap. The
above image style transformation methods that transfer the
style of visible images or infrared images in the target domain
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to augment training data. Although we also apply image style
transformation for generating fake infrared images, our method
can additionally exploit auxiliary unlabeled RGB images in
a source domain for learning visible-infrared shared prior
knowledge by asymmetric mutual learning.

Besides alleviating modality gap, some works take other
factors of Re-ID into account. Yang et al. [49] focus on noisy
label problem for visible-infrared Re-ID. Zhang et al. explore
cross-modality Re-ID under low lighting [50]. For video-
based visible-infrared Re-ID, Lin et al. [51] learn modality-
invariant and motion-invariant features from videos and collect
a new video multi-modality pedestrian dataset. Li et al. [52]
leverage anaglyph data as intermediary for mitigating modality
discrepancy and introduce a bidirectional spatial–temporal
aggregation module to extract motion features from visible
and infrared videos. Our method also generates fake infrared
images as intermediary but does not rely on visible-infrared
pairs of the same identity as the method of Li et al. [52].
Wang et al. [53] introduce near infrared and thermal infrared
images to assist traditional Re-ID task on visible images
by cross-modality interaction for multi-modality fusion. Our
method explores modality interaction for alleviating modality
gap in a different way derived from information theoretic
analysis. We propose asymmetric mutual learning on the
generated fake visible-infrared pairs for extracting modality-
shared knowledge from auxiliary unlabeled visible images.

The above methods are supervised methods, while unsuper-
vised cross-modality Re-ID remains a challenging problem.

Unsupervised Methods. Unsupervised visible-infrared Re-ID
is still under-explored. Liang et al. [27] propose homogeneous-
to-heterogeneous learning to perform pseudo labeling based
on model pretrained on visible images. Wang et al. [28]
propose an optimal-transport strategy to assign pseudo labels
from visible to infrared modality. Yang et al. [29] propose an
Augmented Dual-Contrastive Aggregation (ADCA) learning
framework to learn intra-modality representation and associate
cross-modality samples. Wu et al. [30] propose Progressive
Graph Matching (PGM) to mine cross-modality correspon-
dences under cluster imbalance scenarios. Yang et al. [31]
propose a hierarchical framework to learn grand unified repre-
sentation (GUR) for unlabeled samples by a bottom-up domain
learning strategy. Pang et al. [32] propose cross-modality hi-
erarchical clustering and refinement (CHCR), which separates
clustering process into intra-modality stage and inter-modality
stage and then refines pseudo labels by the consistency of
clustering results of three channels in RGB images.

By contrast, our method focuses on learning modality-
shared prior knowledge from auxiliary unlabeled visible im-
ages in a source domain to alleviate modality gap for cross-
modality unsupervised domain adaptation, which complements
existing unsupervised Re-ID techniques that focus on devel-
oping pseudo labeling strategies in the target domain.

B. Single-Modality Unsupervised Person Re-Identification

For extending Re-ID systems to new scenes without addi-
tional identity annotation, unsupervised learning for Re-ID has

undergone fast development in recent years and achieves com-
parable performance as supervised Re-ID on visible images.
Recent deep unsupervised Re-ID methods can be categorized
into two types: pseudo labeling and style transfer.

The pseudo labeling methods obtain pseudo labels by clus-
tering and progressively refine the noisy pseudo labels, such
as soft multi-label learning [7], patch-based feature learning
[8], asymmetric metric learning [9], camera-aware proxy [10],
mutual mean-teaching [11], group-aware label transfer [12],
inter-instance contrastive encoding [13], part-based pseudo
label refinement [14], discrepant multi-instance proxies [54]
and camera-driven representation learning [15].

The style transfer methods generally transfer camera-
specific image styles by generative adversarial networks
(GANs), such as HHL [6], CR-GAN [55] and JVTC [56]. The
generated fake training data is used to alleviate the impact of
cross-camera scene variations.

These unsupervised learning methods are developed for
single-modality data and cannot alleviate modality gap for
unsupervised visible-infrared Re-ID as our method.

C. Mutual Learning

Knowledge distillation [57] is a technique for transferring
knowledge from a teacher model to a student model. By
extending knowledge distillation from one-way transfer to
two-way transfer, Zhang et al. [58] explore collaboratively
learning multiple deep models that teach each other, which
is called deep mutual learning (DML).

Deep mutual learning has also been applied for person re-
identification. For unsupervised Re-ID, Ge et al. [11] propose
mutual mean-teaching that use predictions of one model to
guide the other model. For supervised visible-infrared person
re-identification, Zhang et al. [59] propose a dual mutual
learning method that transfers knowledge between a modality-
shared branch and two modality-specific branches (RGB-
specific branch and infrared-specific branch) to align features
of different modalities.

For unsupervised transferable visible-infrared Re-ID, our
asymmetric mutual learning method learns both RGB-gray
shared information and RGB-specific information from auxil-
iary unlabeled visible images and the transformed grayscale
fake infrared images to provide RGB-infrared shared prior
knowledge for discovering visible-infrared sample relation. In
contrast, the above mutual learning methods [11], [58], [59]
are not suitable for our auxiliary generated RGB-gray image
pairs, because they are limited to extracting only RGB-gray
shared information with RGB-specific information eliminated,
which also contains RGB-infrared shared information.

III. PROBLEM FORMULATION

To learn modality-shared prior knowledge for visible-
infrared matching, we utilize an auxiliary unlabeled visible im-
age dataset DRGBA = {IRGBA

i }NRGBA
i=1 that captures pedes-

trians by multiple cameras in a source domain, where NRGBA

is the number of samples. In comparison to discovering the
underlying relations of visible-infrared image pairs, it is easier
to discover the underlying relations of single-modality visible
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image pairs by current advanced unsupervised single-modality
re-identification methods, such as PPLR [14]. For each image
IRGBA
i , a pseudo identity label ŷRGBA

i can be obtained based
on the ImageNet pretrained ResNet-50 model [60]. For an
unseen scene as target domain, we acquire unlabeled visible
image set DRGB = {IRGB

j }NRGB
j=1 and unlabeled infrared

image set DIR = {IIRk }NIR

k=1 . We assume that DRGB and DIR

are captured in a local area in short term, so that most identities
are captured in both visible cameras and infrared cameras.

Based on the training data, we develop a two-stage training
framework. In the first stage, on the auxiliary unlabeled visible
image dataset DRGBA, we train an auxiliary pretrained model
Mpre to learn modality-shared prior knowledge. In the second
stage, based on the auxiliary pretrained model, we leverage
the prior knowledge for unsupervised domain adaptation on
unlabeled visible image sets DRGB and DIR.

IV. RGB-GRAY ASYMMETRIC MUTUAL LEARNING

To learn modality-shared prior knowledge for visible-
infrared matching on unlabeled visible images in the first
stage, we propose Cross-Modality Asymmetric Mutual Learn-
ing (CMAM), of which the overview is shown in Figure 2.

A. Grayscale Fake Infrared Image Transformation

To extract modality-shared knowledge on the auxiliary
unlabeled visible images IRGBA

i , we learn to transform them
to fake infrared images given the unlabeled infrared images
IIRk in the target domain. To model the data distribution of
infrared images, we take advantage of the strong distribution
modeling ability of diffusion models [33] for generating fake
infrared images from RGB images. To preserve the modality-
invariant shape and texture information in RGB images for
transformation, we exploit the edge map ERGBA

i extracted
from IRGBA

i by Sobel operator [61] as condition for the
diffusion-based generator. We adopt a convolutional network
Ccon following T2I-adapter [62] to encode the edge map
ERGBA

i into condition map for the generator. After training
conditional diffusion model GIR on unlabeled infrared images
IIRk and the corresponding Sobel edge maps EIR

i in the target
domain, the auxiliary visible image IRGBA

i is transformed to
grayscale fake infrared image IgrayAi by

IgrayAi = GIR(N, Ccon(E
RGBA
i )), (1)

where N ∼ N (0, σ2I) is Gaussian noise of the same size
as visible image IRGBA

i , σ is the standard deviation of the
Gaussian distribution.

We expect to extract modality-shared knowledge by ex-
ploring the relation between the fake visible-infrared pairs in
the source domain, in order to facilitate discovering visible-
infrared sample relations in the target domain.

B. RGB-Gray Shared Feature Extraction

For simplicity, we use V1, V2 and V3 to represent RGB
images (view 1), grayscale fake infrared images1 (view 2) and
infrared (IR) images (view 3), respectively.

1In the following sections, “grayscale fake infrared image” is also called
“grayscale image” for simplicity.

RGB-Gray Feature Extractor. To learn discriminative fea-
tures for RGB images and grayscale images, we introduce
an RGB-gray feature extractor Mjoint that takes both RGB
images IRGBA

i and the corresponding grayscale fake infrared
images IgrayAi as input. We assign the same pseudo la-
bel ŷRGBA

i for visible image IRGBA
i and its corresponding

transformed grayscale image IgrayAi , by applying advanced
unsupervised Re-ID method PPLR [14] on visible images.

We apply identification losses LID−jA1 and LID−jA2 for
RGB image feature f jA1

i = Mjoint(I
RGBA
i ) and grayscale

image feature f jA2
i = Mjoint(I

grayA
i ), respectively. With

specific classifiers Cj1 and Cj2, the classification probabilities
are pjA1

i = Cj1(f
jA1
i ) and pjA2

i = Cj2(f
jA2
i ) for RGB

image feature and grayscale image feature, respectively. The
identification loss LPID−jA1 for RGB images is

LPID−jA1 = Lce−jA1 + Ltri−jA1, (2)

where Lce−jA1 is cross-entropy loss [63] on pjA1
i and

Ltri−jA1 is soft-margin triplet loss [64] on f jA1
i . The identi-

fication loss LPID−jA2 for grayscale images is similar.

Intra-View Feature Relation Preservation. We assume that
the fake visible-infrared pairs (IRGBA

i , IgrayAi ) contain some
modality-shared information that can facilitate visible-infrared
matching. To learn view-shared features for RGB images
and grayscale images, we expect that the intra-view feature
relations are consistent, that is, RGB-RGB feature relations
and gray-gray feature relations are consistent. To achieve this,
we preserve intra-view feature relations in both class level and
instance level.

In class level, we preserve the classification probabilities
that represent relations between a sample and all classes. The
probability preservation loss LPP is

LPP =

NRGBA∑
i=1

DSKL(p
jA1
i ,pjA2

i ), (3)

where pjA1
i and pjA2

i are classification probability vec-
tors of RGB images and grayscale images, respectively;
DSKL(p, q) = DKL(p∥q)+DKL(q∥p) denotes the symmetric
Kullback-Leibler (KL) divergence.

In instance level, we preserve the pairwise similarities
between samples, since Re-ID is a similarity-based retrieval
task. The similarity preservation loss LSP is

LSP =
∥∥F⊤

jA1FjA1 − F⊤
jA2FjA2

∥∥2
F
, (4)

where FjA1 = [f jA1
1 , f jA1

2 , ..., f jA1
NRGBA

] and FjA2 =

[f jA2
1 , f jA2

2 , ..., f jA2
NRGBA

] (FjA1,FjA2 ∈ Rd×NRGBA , d is the
dimensionality of feature vector). The features are normalized
by ℓ2-norm.

Information Theoretic Analysis. The losses LPP in Eq.
(3) and LSP in Eq. (4) minimize the difference of feature
distributions of two views. We analyze the effect of the losses
from the perspective of mutual information.

For data of two views v1,v2 ∼ p(V1, V2), we assume that
the corresponding representations f1 ∼ pθ1(f1|V1) and f2 ∼
pθ2(f2|V2) are in the same domain. Without loss of generality,
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Fig. 2. Overview of Cross-Modality Asymmetric Mutual Learning (CMAM). In the first stage, CMAM learns modality-shared prior knowledge on auxiliary
unlabeled visible images and the transformed grayscale fake infrared images in the source domain. The framework consists of a RGB-gray feature extractor
Mjoint and a gray feature extractor Mgray . We expect that, RGB image feature f jA1

i contains view-shared information as well as RGB-specific information
and grayscale image features f jA2

i , fgA2
i contains view-shared information. Both the view-shared information and RGB-specific information extracted from

the fake visible-infrared pairs are required to facilitate learning modality-shared information of real unlabeled visible-infrared pairs in the target domain.

the feature extractor parameters of two views are denoted by
θ1 and θ2, respectively.

The mutual information between features f1 and data V1 of
view 1 can be expressed by chain rule as

Iθ1(V1;f1) = Iθ1(V1;f1|V2) + Iθ1(V1;V2;f1), (5)

where the first term is view-specific information and the
second term is view-shared information.

The upper bound of conditional mutual information
Iθ1(V1;f1|V2) can be expressed as:

Iθ1(V1;f1|V2) = Ev1,v2Ef1∼pθ1 (f1|V1)log
pθ1(f1|V1)

pθ1(f1|V2)

= Ev1,v2Ef1∼pθ1 (f1|V1)log
pθ1(f1|V1)

pθ2(f2|V2)

pθ2(f2|V2)

pθ1(f1|V2)

= DKL(pθ1(f1|V1)||pθ2(f2|V2))−DKL(pθ1(f1|V2)||pθ2(f2|V2))

≤ DKL(pθ1(f1|V1)||pθ2(f2|V2)).
(6)

The detailed derivation is in the supplementary material.
Hence, minimizing the KL divergence between feature

distributions of two views by updating θ1 eliminates the view-
specific mutual information Iθ1(V1;f1|V2) in feature f1.

Analogously, the upper bound of Iθ2(V2;f2|V1) is

Iθ2(V2;f2|V1) ≤ DKL(pθ2(f2|V2)∥pθ1(f1|V1)). (7)

When Iθ1(V1;f1|V2) and Iθ2(V2;f2|V1) are decreased to
0, we have Iθ1(V1;f1) = Iθ1(V1;V2;f1) and Iθ2(V2;f2) =
Iθ2(V1;V2;f2) according to Eq. (5), which means that the
representations f1 and f2 are view-shared features.

For our RGB-gray feature extractor Mjoint, the feature
extractor parameters for two views θ1 and θ2 are shared, which
is denoted by θj . According to Eq. (6) and Eq. (7), we have

Iθj (V1;f1|V2) ≤ DKL(pθj (f1|V1)∥pθj (f2|V2)),

Iθj (V2;f2|V1) ≤ DKL(pθj (f2|V2)∥pθj (f1|V1)).
(8)

We use the probability preservation loss LPP in
Eq. (3) to approximate DKL(pθj (f1|V1)∥pθj (f2|V2)) +

DKL(pθj (f2|V2)∥pθj (f1|V1)) as the approach of Tian et al.
[65]. The similarity preservation loss LSP in Eq. (4) can also
minimize the difference of feature distributions in instance
level as LPP in class level. Thus, LPP and LSP simulta-
neously decrease Iθj (V1;f1|V2) and Iθj (V2;f2|V1) to extract
RGB-gray view-shared features.

C. Asymmetric Mutual Learning

The RGB-gray view-shared features extracted by RGB-gray
feature extractor Mjoint in the source domain contain some
RGB-infrared shared information in the target domain. The
RGB-infrared shared information I(V1;V3) is represented by

I(V1;V3) = I(V1;V3;V2) + I(V1;V3|V2). (9)

The RGB-gray view-shared features extracted from I(V1;V2)
are expected to contain some information of I(V1;V3;V2) in
the first term. However, since the conditional diffusion model
GIR cannot perfectly transform the visible images to infrared
images, the generated fake infrared images (V2) contain noises
as compared with real infrared images (V3). Moreover, there
exists data distribution gap between fake visible-infrared pairs
in the source domain and real visible-infrared pairs in the
target domain. Thus, the second term I(V1;V3|V2) is not 0
and it is also a useful part of RGB-infrared shared information
that is not contained in the RGB-gray view-shared features.

To make the extracted features contain information of
I(V1;V3|V2), RGB-specific information I(V1|V2) in the source
domain should also be preserved for further extraction of
RGB-infrared shared information in the target domain. How-
ever, minimizing Iθj (V1;f1|V2) hinders learning RGB-specific
features. When updating θj that is shared for two views,
it is difficult to minimize Iθj (V2;f2|V1) without decreasing
Iθj (V1;f1|V2).
Uni-Directional Intra-View Feature Relation Preservation.
In order to simultaneously learn RGB-gray shared features
and RGB-specfic features, we introduce an auxiliary gray
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feature extractor Mgray parameterized by θg to overcome
the limitation of using shared parameter θj for two views.
The gray feature extractor Mgray takes only grayscale images
IgrayAi as input to extract feature fgA2

i . With classifier Cg , the
classification probability vector is pgA2

i = Cg(f
gA2
i ). Features

fgA2
i are learned by applying identification loss LPID−gA2,

which is similar to LPID−jA1 in Eq. (2). By substituting
θ1 = θj and θ2 = θg in Eq. (6) and Eq. (7), we have

Iθj (V1;f1|V2) ≤ DKL(pθj (f1|V1)∥pθg (f2|V2)),

Iθg (V2;f2|V1) ≤ DKL(pθg (f2|V2)∥pθj (f1|V1)).
(10)

Our objective is that, parameter update of θg minimizes
Iθg (V2;f2|V1) for learning RGB-gray shared information in
f2; meanwhile, parameter update of θj does not decrease
Iθj (V1;f1|V2) for learning RGB-specific information in f1.

To achieve this objective, we formulate a uni-directional
probability preservation loss Lj→g

PP as

Lj→g
PP =

NRGBA∑
i=1

DSKL(p
gA2
i , stopgrad(pjA1

i )), (11)

where pjA1
i is the classification probability vector of RGB

image output by Cj1 and pgA2
i is the classification probability

vector of grayscale image output by Cg; DSKL denotes
symmetric KL divergence as that in Eq. (3); stopgrad(·)
denotes stop gradient for back propagation in optimization,
which enables uni-directional knowledge transfer.

Similarly, the uni-directional similarity preservation loss
Lj→g
SP is formulated as

Lj→g
SP =

∥∥F⊤
gA2FgA2 − stopgrad(F⊤

jA1FjA1)
∥∥2
F
, (12)

where FgA2 = [fgA2
1 , fgA2

2 , ..., fgA2
NRGBA

] and FjA1 =

[f jA1
1 , f jA1

2 , ..., f jA1
NRGBA

] are feature matrices.
Since the gradient with respect to θj is stopped for pjA1

i and
f jA1
i , minimizing Lj→g

PP and Lj→g
SP only updates θg to decrease

Iθg (V2;f2|V1), which is the useless gray-specific information
of V2 that should be eliminated. Thus, the gray feature
extractor Mgray quantifies the RGB-gray shared knowledge.
Selective Intra-View Feature Relation Preservation. By
using the losses Lj→g

PP and Lj→g
SP , the gray feature extractor

Mgray extracts view-shared information in features fgA2
i ,

which quantify the RGB-gray shared knowledge. To learn
view-shared information for grayscale image features f jA2

i

extracted by RGB-gray feature extractor Mjoint, the gray
feature extractor Mgray is regarded as teacher model to
transfer knowledge to the RGB-gray feature extractor Mjoint

by knowledge distillation.
To achieve this, we formulate a selective probability preser-

vation loss Lsel
PP as

Lsel
PP = Lj→g

PP + Lg→j
PP

=

NRGBA∑
i=1

DSKL(p
gA2
i , stopgrad(pjA1

i ))

+DSKL(p
jA2
i , stopgrad(pgA2

i )),

(13)

where the second term Lg→j
PP is logit-based knowledge distilla-

tion loss from Mgray to Mjoint for grayscale image features.

Similarly, selective similarity preservation loss Lj→g
SP is

Lsel
SP = Lj→g

SP + Lg→j
SP

=
∥∥∥F⊤

gA2FgA2 − stopgrad(F⊤
jA1FjA1)

∥∥∥2

F

+
∥∥∥F⊤

jA2FjA2 − stopgrad(F⊤
gA2FgA2)

∥∥∥2

F
,

(14)

where the second term Lg→j
SP is similarity-based knowledge

distillation loss from Mgray to Mjoint for grayscale image
features.

The grayscale image features fgA2
i extracted by Mgray

can be regarded as intermediate features containing RGB-
gray shared knowledge selected from RGB image features
f jA1
i , and the intra-view feature relations for f jA1

i and f jA2
i

are preserved indirectly without eliminating the useful RGB-
specific knowledge in f jA1

i . Thus, we call Lsel
PP and Lsel

SP the
selective intra-view feature relation preservation.

Compared with intra-view feature relation preservation us-
ing LPP , LSP in Eq. (3) and Eq. (4) that guide the model to
learn only view-shared information, Lsel

PP and Lsel
SP guide the

models to extract view-shared information in features f jA2
i ,

fgA2
i and extract RGB-specific information as well as view-

shared information in features f jA1
i .

Cross-Modality Asymmetric Mutual Learning (CMAM).
In the RGB-gray asymmetric mutual learning stage, the iden-
tification loss and the selective intra-view feature relation
preservation losses are jointly optimized on the source domain
to learn the auxiliary pretrained model by

LCMAM
pre = λPPLsel

PP + λSPLsel
SP + LPID−pre, (15)

where LPID−pre = LPID−jA1 + LPID−jA2 + LPID−gA2 is
the identification loss; λPP and λSP are trade-off parameters.

Since knowledge transfer between two models are different
for two modalities, we call this framework Cross-Modality
Asymmetric Mutual Learning (CMAM).

V. UNSUPERVISED CROSS-MODALITY SELF-TRAINING

After training on auxiliary unlabeled visible images
by Cross-Modality Asymmetric Mutual Learning (CMAM),
RGB-gray view-shared features and RGB-specific features are
learned by the auxiliary pretrained model. To exploit such
prior knowledge for unsupervised visible-infrared Re-ID in the
target domain, we propose cross-modality mutual self-training
as shown in Figure 3.

Given RGB image IRGB
j (view 1) and infrared image IIRk

(view 3) in the target domain, the RGB-gray feature extractor
Mjoint takes visible image IRGB

j and infrared image IIRk
as input and outputs features f j1j ∈ Rd, f j3k ∈ Rd and
classification probability vectors pj1

j , pj3
k . The gray feature

extractor Mgray takes the transformed grayscale image Igrayj

and infrared image IIRk as input and outputs features fg2j ∈ Rd,
fg3k ∈ Rd and classification probability vectors pg2

j , pg3
k .

A. Bipartite Cross-Modality Pseudo Labeling

To improve the discrimination ability of features, self-
training by classifying pseudo labels is a favorable training
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Fig. 3. Overview of unsupervised cross-modality mutual self-training. In the second stage, cross-modality mutual self-training is performed on multi-modality
data in the target domain. To leverage the prior knowledge in auxiliary pretrained models, bi-directional knowledge transfer between RGB-gray feature extractor
Mjoint and gray feature extractor Mgray fuses the knowledge of RGB-gray matching and gray-gray matching. The double arrows indicates bi-directional
knowledge transfer. Bipartite cross-modality pseudo labeling associates intra-modality clusters of two modalities by bipartite graph matching to alleviate the
impact of modality gap. In testing, only Mjoint is required for feature extraction.

strategy in advanced unsupervised Re-ID methods [13], [14].
When determining the pseudo labels ŷRGB

j and ŷIR
k for IRGB

j

and IIRk , we use the features fRGB
j = [f j1j ; fg2j ] ∈ R2d and

f IRk = [f j3k ; fg3k ] ∈ R2d concatenated by features of two
models, since the knowledge of RGB-gray matching and gray-
gray matching learned in two models complement each other.
The process of pseudo labeling is shown in Figure 3 (b).

When associating similar samples in the same pseudo
class, modality gap incurs ambiguity for intra-modality sim-
ilarity and cross-modality similarity. To alleviate the im-
pact of modality gap, we separate intra-modality sample
association and cross-modality sample association in two
steps. First, we perform intra-modality clustering for features
{fRGB

j }NRGB
j=1 and {f IRk }NIR

k=1 , of which the cluster centers

are {cRGB
m }N

clu
RGB

m=1 and {cIRn }N
clu
IR

n=1 , respectively. Second, we
cast cross-modality sample association as a maximal matching
problem in a bipartite graph. To construct a bipartite graph
G = (ARGB , AIR, E), we regard the cluster centers cRGB

m ,
cIRn as two disjoint vertex sets ARGB , AIR and the similarities
between all cross-modality cluster center pairs (cRGB

m , cIRn ) as
edges E. The set of edges Esel selected for achieving maximal
matching is solved by

Esel = BGM(ARGB , AIR, E), (16)

where the bipartite graph matching operation BGM is imple-
mented by Hungarian algorithm [66].

Samples in the same intra-modality cluster and the matched
cross-modality cluster pairs are assigned the same pseudo la-
bel. During training, the pseudo labels are updated after every
200 iterations. As assumed in Section III, there are potential
cross-modality positive pairs for most identities. Although
there are noises in the clusters, when discriminating the pseudo
classes, the effect of pulling potential cross-modality positive
samples closer in the feature space is dominant.

B. Knowledge Fusion by Mutual Learning

With pseudo labels {ŷRGB
j }NRGB

j=1 , {ŷIR
k }NIR

k=1 , the objective
of self-training is identifying the pseudo classes by a identi-
fication loss LPID. The classifiers C ′

j and C ′
g for RGB-gray

feature extractor Mjoint and gray feature extractor Mgray are
constructed by proxies of pseudo classes stored in a memory
bank [12]. Each proxy is cluster centers computed by moving
average of features.

The identification loss LPID is formulated as

LPID = LPID−j1 + LPID−j3 + LPID−g2 + LPID−g3, (17)

where each term is computed as in Eq. (2) for (f j1j ,pj1
j ),

(f j3k ,pj3
k ), (fg2j ,pg2

j ), (fg3k ,pg3
k ), respectively.

To fuse the complementary knowledge of RGB-gray match-
ing and gray-gray matching in two models, we exploit mutual
learning to learn consistent classification probabilities and
sample similarities for two models.

In class level, a bi-directional probability preservation loss
LBPP is formulated as

LBPP =

NRGB∑
j=1

dSKL(p
j1
j ,pg2

j ) +

NIR∑
k=1

dSKL(p
j3
k ,pg3

k ). (18)

In instance level, a bi-directional similarity preservation loss
LBSP is formulated as

LBSP =
∥∥∥F⊤

j1Fj1 − F⊤
g2Fg2

∥∥∥2

F
+

∥∥∥F⊤
j3Fj3 − F⊤

g3Fg3

∥∥∥2

F
, (19)

where Fj1, Fj3 Fg2, Fg3 are feature matrices constructed by
f j1j , f j3k , fg2j , fg3k , respectively.

Finally, we integrate mutual learning and bipartite cross-
modality pseudo labeling by cross-modality mutual self-
training in Figure 3 (a). The loss function is

Luda = λBPPLBPP + λBSPLBSP + LPID, (20)

where λBPP and λBSP are trade-off parameters.
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TABLE I
COMPARISON BETWEEN IMAGE-BASED VISIBLE-INFRARED RE-ID

DATASETS AND SYSU-MM02. “NIR”/“TIR” DENOTES NEAR
INFRARED/THERMAL INFRARED.

Name #ID #Sample
#Camera Untrimmed

RGB NIR TIR training set
SYSU-MM01 [23] 491 44,745 4 2 0 no

RegDB [67] 412 8,240 1 0 1 no
RGBNT201 [68] 201 14,361 4 4 4 no

LLCM [50] 1,064 46,767 9 9 0 no
SYSU-MM02 118 (test) 25,774 1 2 0 yes

C. Inference

After knowledge fusion by mutual learning, both models
learn the fused knowledge. Only Mjoint is required for in-
ference and the computation cost is not increased. Retrieval
results are determined by cosine similarity as shown in Figure
3 (c).

VI. A VISIBLE-INFRARED RE-ID DATASET
CONSTRUCTED FROM UNTRIMMED VIDEOS

For unsupervised visible-infrared person re-identification,
although existing multi-modality datasets SYSU-MM01 [23],
RegDB [67], RGBNT201 [68], HITSZ-VCM [51] and LLCM
[50] can be applied for evaluation by removing the iden-
tity annotations in the training set, the images are selected
manually during annotation. Such simulated training data on
benchmark datasets collected for supervised learning is differ-
ent from training data acquired in real-world scenarios, where
only untrimmed videos are available. Potential cross-camera
positive pairs may not exist for some unlabeled samples.
Hence, we collect a new visible-infrared pedestrian dataset
SYSU-MM02, of which the training set is constructed from
untrimmed videos. The dataset will be publicly available after
masking the faces.

Comparisons between different image-based visible-infrared
person re-identification datasets are shown in Table I. Al-
though the size of SYSU-MM02 is medium among existing
public datasets, its distinctive characteristic is the untrimmed
training set that complements existing datasets to facilitate
research on real-world unsupervised cross-modality Re-ID.

A. Dataset Description

The dataset was captured by two near infrared cameras and
one visible camera located in a neighborhood of a campus, as
shown in Figure 4.

Our dataset SYSU-MM02 consists of 9,800 visible images
and 15,974 near infrared images, which are captured from
one visible camera (camera 1) and two near infrared cameras
(camera 2 and camera 3). Visible camera resolution is 1920×
1080 and infrared camera resolution is 704 × 576. Camera 1
is located at the gate of a building with lighting. Camera 2
and 3 are located at dark outdoor passages. There are lighting
variations between visible images of camera 1 and contrast
variations between infrared images of camera 2 and 3.

We capture videos by three cameras at night in three
different days. The duration of each video is about 30 minutes
in average. The time of videos is synchronized among three

Camera 1
(visible)

Camera 3
(infrared)

Camera 2
(infrared)

Potential path
20m

Camera locations Untrimmed 
training videos Testing images

Fig. 4. Examples of our visible-infrared pedestrian dataset SYSU-MM02.
Images are captured from one visible camera (camera 1) and two near infrared
cameras (camera 2 and 3). Training images are automatically detected from
untrimmed videos. The shown testing images are of the same identity. The
dotted arrows indicate that there are multiple potential paths for pedestrians.

cameras. A majority of pedestrians come from a building and
pass camera 1, 2 and 3 in order. There are multiple potential
paths indicated by the dotted arrows, so that some pedestrians
captured by camera 1 may not pass camera 2 and 3. In such a
real-world situation, training data becomes more noisy than the
unlabeled training data simulated on existing labeled datasets.

B. Data Processing

We use untrimmed videos in one day as training data and
videos in the other two days for testing data annotation.
Training Set. The training set contains 7,440 visible images
and 13,614 near infrared images. The pedestrian images are
detected in one frame per second from untrimmed training
videos by an off-the-shelf object detector YOLOX-x [69]
trained on COCO [70]. Only images with areas over 1200
pixels and confidence score over 0.6 are selected.
Testing Set. The images in the testing set are detected and
then annotated by human operators. The testing set contains
2,360 visible images and 2,360 near infrared images of 118
identities. For each identity in each camera, 10 images are
annotated.

C. Evaluation Protocol

In training, the unlabeled images in the training set are used
for unsupervised learning. In testing, we have two matching
modes “visible to infrared” and “infrared to visible”. The
“visible to infrared” mode uses all visible images in camera 1
as query images and uses all near infrared images in camera 2
and camera 3 as gallery images; the “infrared to visible” mode
exchanges the query images and gallery images as compared
with the “visible to infrared” mode. Evaluation metrics are
rank-k accuracy and mean average precision (mAP).

VII. EXPERIMENTS

For unsupervised visible-infrared cross-modality Re-ID, we
conducted extensive comparative evaluations of our method
against the state-of-the-art unsupervised cross-modality Re-
ID and unsupervised domain adaptation (UDA) methods on
benchmark datasets SYSU-MM01 [23] and RegDB [67] as
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well as our newly collected SYSU-MM02. Furthermore, abla-
tion study and hyper-parameter analysis were conducted. Our
two-stage full model is denoted by CMAM-UDA.

A. Experiment Settings

The training process consists of RGB-gray asymmetric
mutual learning stage and unsupervised cross-modality self-
training stage. In the RGB-gray asymmetric mutual learning
stage, we used all samples of Market-1501 [71] without label
as the auxiliary training set of the source domain. In the
unsupervised cross-modality self-training stage, we used the
training set of the multi-modality benchmark datasets without
label as the target domain. The testing sets and evaluation
protocols were kept the same with the original datasets.

The datasets for evaluation are introduced as follows:
SYSU-MM01. This dataset contains 30,071 visible images
captured by 4 visible cameras and 15,792 near infrared images
captured by 2 infrared cameras. There are totally 491 identi-
ties, in which 395 identities are for training and 96 identities
are for testing. There are two matching modes “all-search”
and “indoor-search” for matching between all cameras and
matching between indoor cameras, respectively.
RegDB. This dataset contains 8,240 images of 412 identities
captured by a visible camera and a thermal camera. For each
identity, there are 10 visible images and 10 thermal images.
We followed the evaluation protocol of Ye et al. [26]. The 412
identities are split half and half for training and testing. There
are two matching modes “VIS to TIR” and “TIR to VIS”,
where “TIR” denotes thermal infrared images.
SYSU-MM02. To our best knowledge, our SYSU-MM02 is
the first visible-infrared pedestrian dataset that automatically
detects unlabeled training data from untrimmed videos, which
is more realistic for evaluating unsupervised learning. As
described in Section VI, two matching modes are denoted by
“VIS to NIR” and “NIR to VIS”. For example, “VIS to NIR”
denotes using visible (VIS) images as query and near infrared
(NIR) images as gallery.

B. Implementation Details

1) Conditional Diffusion Model: We applied the model
architecture and training strategy of EDM [33]. The attention
resolutions were set 32, 16, 8. Residual blocks per resolution
was set 1. The T2I-adapter network [62] for edge map was
adopted for adding condition to the diffusion model. The
training infrared images in the target domain were resized to
192 × 64. The training stage consisted of 50,000 iterations.
The batch size was set 32 and the learning rate was set 0.0001
for all iterations. For image generation, the RGB image was
converted to edge map as condition of the diffusion model.
Then, the Heun solver [72] of 20 sampling steps was used for
generating fake infrared images.

2) Backbone Model: We applied ResNet-50 [60] as back-
bone for RGB-gray feature extractor Mjoint and gray feature
extractor Mgray. The input image was resized to 384×128. In
the last pooling layer, the original global average pooling was
replaced by generalized mean pooling [73] and its output was

used as feature. We used circle head [63] as classifier, of which
the relaxation factor was set 0.35 and the scale factor was set
64. We applied label smoothing for classification probabilities
and set smoothing parameter as 0.1.

3) Identification Loss: The identification loss LPID−jA1 in
Eq. (2) is formulated as

LPID−jA1 = −
NRGBA∑

i=1

NPID
RGBA∑
id=1

ŷjA1
i,id log(pjA1

i,id ) +∑
(a,p,n)∈Itri

smargin(dist(f jA1
a , f jA1

p ), dist(f jA1
a , f jA1

n )),

(21)

where the first term is cross entropy loss Lce−jA1 and the
second term is triplet loss Ltri−jA1. In the cross entropy
loss, ŷRGBA

i,id is the id-th element of the pseudo one-hot
label ŷRGBA

i ∈ RNPID
RGBA and pjA1

i,id is the id-th element
of the classification probability vector pjA1

i . In the triplet
loss, dist(·, ·) denotes Euclidean distance; smargin(a, b) =
log(1 + exp(a− b)) is the soft margin loss [64] for softening
the margin between positive pairs and negative pairs; Itri
is the index set of triplets; (a, p, n) denotes the indices of
anchor sample, positive sample and negative sample, which
are selected by hard sample mining [64] to form a batch
in training. The other identification losses are formulated
similarly.

4) Training Strategy: In the first stage, the models were
initialized by ImageNet [74] pretraining, which was also
applied by the compared methods in our experiments. In the
second stage, the models were initialized by the first stage.
Following FastReID [75], we applied random flip and random
erasing for data augmentation. The probability was set 0.5 for
both random flip and random erasing. For random erasing,
the minimum proportion, maximum proportion and minimum
aspect ratio were set 0.02, 0.4, 0.3, respectively. Color jitter
was also applied by setting the brightness range as [0.8, 1.2]
and the contrast range as [0.85, 1.15].

In the loss LCMAM
pre in Eq. (15) for RGB-gray asymmetric

mutual learning stage, λPP was set 0.1 and λSP was set 0.5.
In the loss Luda in Eq. (20) for unsupervised cross-modality
self-training, λBPP was set 0.01 and λBSP was set 0.05. In
cross-modality pseudo labeling, k-means clustering [76] was
applied. The number of cluster k was 400 for each modality.

For optimization, we adopted the ADAM optimizer [77].
The batch sizes used for RGB-gray asymmetric mutual learn-
ing stage and the unsupervised cross-modality self-training
stage were 64 and 128, respectively. The optimization process
of RGB-gray asymmetric mutual learning stage consisted of
30,000 iterations. The first 15,000 iterations was the first phase
and the second 15,000 iterations was the second phase. The
selective probability preservation loss Lsel

PP was not applied
in the first phase. In the first 2,000 iterations of each phase,
warmup strategy [78] was applied to increase the learning rate
from 3.5× 10−6 to 3.5× 10−4. In the last 6,000 iterations of
each phase, Cosine annealing [79] was used for decreasing
the learning rate. The optimization process of the unsuper-
vised cross-modality self-training stage consisted of 12,000
iterations. The momentum for updating feature memory of
classifiers was set 0.2. In the first 2,000 iterations, learning rate
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TABLE II
COMPARISONS WITH THE STATE-OF-THE-ART UNSUPERVISED LEARNING METHODS. ROW 1 IS HAND-CRAFTED FEATURE; ROWS 2-3 CONTAIN

SINGLE-MODALITY RE-ID METHODS; ROWS 4-5 CONTAIN MUTUAL LEARNING METHODS; ROWS 6-11 CONTAIN UNSUPERVISED CROSS-MODALITY RE-ID
METHODS. “R-K” DENOTES THE RANK-K ACCURACY (%) AND MAP DENOTES THE MEAN AVERAGE PRECISION (%). THE BEST RESULTS ARE IN BOLD.

Method

SYSU-MM01 RegDB SYSU-MM02
all-search indoor-search VIS to TIR TIR to VIS VIS to NIR NIR to VIS

R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP
HOG [80] 3.7 19.8 5.0 3.3 24.7 9.1 52.9 71.1 31.0 57.5 80.4 33.9 5.7 25.1 2.4 4.0 20.6 2.9
GLT [12] 15.7 48.6 15.4 18.0 56.0 26.0 12.8 37.6 13.4 12.9 40.0 12.7 10.5 43.0 9.2 7.8 37.8 10.0
ICE [13] 23.3 60.5 21.9 26.6 69.3 35.0 11.6 40.3 14.3 14.5 43.8 15.3 21.5 56.2 15.9 17.8 57.1 17.9

MMT [11] 17.0 55.1 17.5 22.5 68.9 32.2 31.4 69.3 26.5 33.8 71.4 27.8 10.8 39.2 8.2 9.0 33.3 8.3
DML [58] 51.2 84.7 50.0 61.1 90.6 67.0 80.8 97.3 62.4 82.5 97.8 64.3 44.2 82.7 33.4 45.0 85.3 33.8
H2H [27] 30.2 65.9 29.4 - - - 23.8 45.3 18.9 14.1 31.9 12.3 - - - - - -

OTLA [28] 29.9 - 27.1 29.8 - 38.8 32.9 - 29.7 32.1 - 28.6 - - - - - -
ADCA [29] 45.5 85.3 42.7 50.6 89.7 59.1 67.2 82.0 64.1 68.5 83.2 63.8 - - - - - -
CHCR [32] 47.7 87.3 45.3 50.1 90.8 42.2 68.2 81.5 63.8 69.1 83.7 64.0 - - - - - -
PGM [30] 57.3 92.5 51.8 56.2 90.2 62.7 69.5 - 65.5 69.9 - 65.2 - - - - - -
GUR* [31] 61.0 - 57.0 64.2 - 69.5 73.9 - 70.2 75.0 - 69.9 42.2 81.7 32.5 44.0 84.4 32.9

CMAM-UDA 62.0 93.4 58.2 67.6 95.9 72.7 89.1 98.2 74.0 89.0 98.6 74.0 51.4 90.3 41.0 56.1 89.4 40.3

was increased from 10−6 to 10−4 by warmup strategy [78].
Cosine annealing [79] was used in the last 10,000 iterations.

C. Compared Methods

Unsupervised Cross-Modality Re-ID. We compared with the
state-of-the-art unsupervised visible-infrared Re-ID methods
H2H [27], OTLA [28], ADCA [29], CHCR [32], PGM [30]
and GUR [31]. The full model of GUR [31] utilize camera
labels for intra-camera pseudo label learning and requires
multiple cameras for each modality. Since infrared images on
RegDB [67] and visible images on SYSU-MM02 are captured
from only one camera and the other compared methods did
not use camera label, we compared with the version of GUR
without using camera label, which is denoted by GUR*.
Unsupervised Single-Modality Re-ID. We compared with
some advanced unsupervised Re-ID methods MMT [11], GLT
[12] and ICE [13]. MMT [11] requires two models for mutual
teaching in training, which is technically related to our method.
Mutual Learning. Deep mutual learning (DML) [58] is a
related work that takes the same images as input for two
models and minimizes the difference of two predictions. MMT
[11] also applied mutual learning to refine pseudo labels.
Hand-Crafted Feature. As some hand-crafted features can
describe body shape without training, we compared with a
representative descriptor HOG [80].
Implementation of the Compared Methods. For MMT [11],
GLT [12] and ICE [13], we used the their released codes
and adapted them for cross-modality Re-ID by converting the
input visible images to grayscale images following channel
exchanged augmentation [43]. For implementation of DML
[58], we used the same backbone and unsupervised domain
adaptation strategy in our method. For H2H [27], OTLA [28],
ADCA [29], CHCR [32] and PGM [30], the results in their
papers were used. For the best compared method GUR [31],
we used the reported results for SYSU-MM01 [23], RegDB
[67] and implemented GUR on SYSU-MM02.

D. Model Comparison and Analysis
Experiment results in Table II show that our method

achieves the best performance and significantly outperforms

the compared methods on SYSU-MM02 and RegDB.
These compared methods cannot learn visible-infrared

shared prior knowledge from auxiliary unlabeled visible im-
ages as our method. Such prior knowledge facilitates cross-
modality matching in the target domain.

E. Further Evaluations

1) Ablation Study: We carried out ablation study on SYSU-
MM01 [23] for each component in the RGB-gray asymmetric
mutual learning stage and the unsupervised cross-modality
self-training stage, which are denoted by “RGB-gray mutual
learning” and “cross-modality UDA”, respectively. The nota-
tions of components and results are shown in Table III.

Comparison with Single-Model UDA. Rows 1-2 in Table
III are results of using single model for unsupervised domain
adaptation (UDA) by using identification loss LPID in Eq.
(17). “Mjoint” and “Mgray” denote RGB-gray feature ex-
tractor and gray feature extractor trained separately by the
identification loss LPID−pre in Eq. (15).

Compared with “Mjoint” and “Mgray”, our full model
“CMAM-UDA” shows improvement of over 10% rank-1 ac-
curacy, which indicates the effectiveness of mutual learning.

Effect of Lsel
SP and Lsel

PP in RGB-gray Mutual Learning.
In the RGB-gray asymmetric mutual learning stage, the loss
function LCMAM

pre in Eq. (15) consists of the selective sim-
ilarity preservation loss Lsel

SP in Eq. (14) and the selective
probability preservation loss Lsel

PP in Eq. (13). As shown
by the comparison between “PRE1” and “CMAM-UDA”,
Lsel
SP and Lsel

PP significantly improve the performance, which
indicates the effectiveness of asymmetric mutual learning. By
comparing “PRE1”, “PRE2” and “CMAM-UDA”, we observe
that Lsel

PP and Lsel
SP complement each other.

Effect of LBSP and LBPP in UDA. In cross-modality unsu-
pervised domain adaptation stage, the bi-directional similarity
preservation loss LBSP in Eq. (19) and the bi-directional
probability preservation loss LBPP in Eq. (18) are minimized
for fusing the complementary knowledge of two models. Com-
parisons of “UDA1”, “UDA2” and “CMAM-UDA” verifies the
effectiveness of LBSP and LBPP for knowledge fusion.
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TABLE III
ABLATION STUDY OF OUR FRAMEWORK CMAM-UDA ON SYSU-MM01. “Mjoint” DENOTES RGB-GRAY FEATURE EXTRACTOR. “Mgray” DENOTES

GRAY FEATURE EXTRACTOR. “BGM” DENOTES BIPARTITE GRAPH MATCHING FOR CROSS-MODALITY BIPARTITE PSEUDO LABELING.

Model
RGB-Gray Mutual Learning Cross-Modality UDA all-search indoor-search

Mjoint Mgray Lsel
SP Lsel

PP Mjoint Mgray LBSP LBPP BGM R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP
Mjoint ✓ ✓ ✓ 47.5 85.3 92.9 47.3 56.5 93.0 96.7 64.0
Mgray ✓ ✓ ✓ 51.5 89.3 95.7 49.2 59.3 91.5 96.9 65.0
PRE1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.5 91.6 97.0 54.7 64.1 94.7 98.3 69.9
PRE2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 59.3 93.1 97.7 56.3 65.5 95.0 98.1 70.8
UDA1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 52.9 88.9 95.6 51.8 59.7 92.1 96.9 66.6
UDA2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60.3 92.9 97.5 57.0 67.3 95.5 98.2 71.7
UDA3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 42.7 81.4 89.1 42.8 51.4 87.9 93.1 59.0

CMAM-UDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 62.0 93.4 97.8 58.2 67.6 95.9 98.4 72.7

TABLE IV
PERFORMANCES (%) OF VARIANTS OF MUTUAL LEARNING FOR

RGB-GRAY ASYMMETRIC MUTUAL LEARNING ON SYSU-MM01.
“Mjoint” AND “Mgray” DENOTE SINGLE-MODEL TRAINING.

“RGB-RGB”, “GRAY-GRAY” AND “RGB-GRAY” DENOTE SYMMETRIC
MUTUAL LEARNING BY BI-DIRECTIONAL KNOWLEDGE TRANSFER

BETWEEN TWO TYPES OF IMAGES.

Model
all-search indoor-search

R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP
Mjoint 47.5 85.3 92.9 47.3 56.5 93.0 96.7 64.0
Mgray 51.5 89.3 95.7 49.2 59.3 91.5 96.9 65.0

RGB-RGB 51.2 84.7 92.5 50.0 61.1 90.6 95.7 67.0
GRAY-GRAY 52.9 89.0 95.7 50.3 57.3 90.8 96.4 63.8
RGB-GRAY 59.1 92.3 97.4 56.1 65.5 94.4 98.4 70.2

CMAM-UDA 62.0 93.4 97.8 58.2 67.6 95.9 98.4 72.7

Effect of Bipartite Graph Matching (BGM) for Pseudo
Labeling. In cross-modality bipartite pseudo labeling, bipartite
graph matching (BGM) in Eq. (16) is for separating intra-
modality and cross-modality sample association to alleviate
modality gap. We compared with pseudo labeling by k-means
clustering [76] regardless of modality of the samples. The
cluster number k = 400 is the same as that in our method.
We denote this method by “UDA3” in Table III. Compared
with “UDA3”, applying BGM in our full model “CMAM-
UDA” can bring significant improvement of over 10% mAP,
which shows that modality gap can be alleviated better with
this pseudo labeling strategy.

2) Variants of Mutual Learning: To justify the effectiveness
of the RGB-gray asymmetric mutual learning, we compared
with some variants of mutual learning on SYSU-MM01 [23].
The results are reported in Table IV. Rows 1-2 in Table IV are
results of using single model for training. Rows 3-5 are results
of variants of mutual learning, in which “X1-X2” denotes
symmetric mutual learning using bi-directional knowledge
transfer with two types of inputs X1 and X2. “RGB” denotes
visible images and “GRAY” denotes the transformed grayscale
images as illustrated in Section IV-A.

Asymmetric Mutual Learning v.s. Symmetric Mutual
Learning. To show the effectiveness of asymmetric mutual
learning in our CMAM, we compared with “RGB-GRAY”
symmetric mutual learning, which replaced selective feature
relation preservation losses Lsel

SP , Lsel
PP by bi-directional fea-

ture relation preservation losses LBSP , LBPP when train-
ing on the auxiliary unlabeled visible images. Our method
outperformed the “RGB-GRAY” symmetric mutual learning,
because CMAM can learn RGB-infrared modality-shared prior
knowledge better by extracting both RGB-gray view-shared
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Fig. 5. Performances of using different cluster number k.

features and RGB-specific features, while “RGB-GRAY” mu-
tual learning only extracts RGB-gray view-shared features and
eliminates the useful RGB-specific features.

Mutual Learning Using the Same Inputs. “RGB-RGB” and
“GRAY-GRAY” used the same input for symmetric mutual
learning following deep mutual learning (DML) [58]. our
method CMAM-UDA and “RGB-GRAY” mutual learning
and can benefit from complementary knowledge learned from
different input images and thus achieves better performance.

3) Impact of Cluster Number: For unsupervised domain
adaptation, pseudo labeling is an important factor. The cluster
number k is a significant hyperparameter for k-means [76]
used in our method. The default value of cluster number is k =
400. We varied k from 200 to 1000 and evaluated our method
on SYSU-MM01, RegDB and SYSU-MM02. The mAP of
visible to infrared matching is shown in Figure 5. Generally,
our method achieves better performances on all datasets when
k = 400. When k ∈ [200, 1000], our method is comparable
to the state-of-the-art methods on SYSU-MM01 and SYSU-
MM02, and performance variation is lower than 10 % mAP.

4) Impact of Fake Infrared Image Quality: As our method
learns modality-shared prior knowledge from generated fake
infrared images, image quality is an important factor. We
simulated images from low quality to high quality by setting
sampling step of diffusion model from 5 to 25. The default
value is 20. The performances are reported in Table V.
Examples of generated images are shown in Figure 6.

Our method can tolerate image quality variation to some
extent. Using sampling step 25 is comparable to using default
sampling step 20. When image quality is slightly degraded by
using sampling step 15, the performance is also comparable
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Fig. 6. Fake infrared images generated using different sampling steps.

TABLE V
PERFORMANCES (%) OF USING DIFFERENT SAMPLING STEPS FOR FAKE

INFRARED IMAGE TRANSFORMATION ON SYSU-MM01.

Sampling steps 5 10 15 20 (default) 25
R-1 57.10 58.80 60.99 62.00 61.92

mAP 54.24 55.58 57.47 58.20 58.05

to that of using default sampling step 20. When the image
quality is further degraded by using sampling steps 10 and 5,
the performances become lower, but they are still better than
the baseline method of RGB-RGB mutual learning by DML
[58] (Rank-1=51.2%, mAP=50.0%) in Table II, which show
the effectiveness of the generated images.

5) Increasing Labeled Data for Training: We varied the
proportion of labeled identities from 0 to 50% on a target
dataset SYSU-MM01 [23] to evaluate our method. Based on
the models learned on unlabeled data by our method CMAM-
UDA, we further finetuned our models by using labeled
samples instead of pseudo labeled samples in unsupervised
cross-modality self-training. We compared our asymmetric
mutual learning method CMAM-UDA with a baseline deep
mutual learning method (DML) [58] using the same finetun-
ing strategy. Moreover, we compared with the state-of-the-
art supervised cross-modality Re-ID method CAJ+ [39] for
training model on limited labeled identities. The comparative
evaluation results are presented in Table VI.

Our method can be further improved by using more labeled
identities. Compared with DML [58], the performance gain
of our method is remarkable for different proportions. Our
method significantly outperforms the supervised method CAJ+
[39] when the labeled ID proportion is from 10% to 40%.
The modality-shared prior knowledge learned by our method
is effective when labeled data is limited.

6) Running Time Analysis: We evaluated the running time
of each stage in our proposed framework using 1 Nvidia
RTX 3090 GPU (24 GB) on a server with Intel(R) Xeon(R)
Gold 6226R CPU and 256GB RAM. The source dataset was
Market-1501 [71] and the target dataset was SYSU-MM01
[23]. The running time information is reported in Table VII.

The most time-consuming stage is transforming images in
auxiliary dataset to fake infrared images by conditional diffu-
sion model. Note that, only one GPU was used. To accelerate
image transformation, we can use more GPUs to increase
training batch size and generate images in parallel. Although
our CMAM method and unsupervised cross-modality self-
training use two ResNet-50 [60] models, only one model
is used for inference. The inference speed 1.6ms/image can
guarantee real-time performance in large-scale applications.

VIII. CONCLUSION

In this work, we study unsupervised transferable visible-
infrared cross-modality person re-identification. To overcome

TABLE VI
PERFORMANCES (%) OF USING DIFFERENT PROPORTION OF LABELED

IDENTITIES ON SYSU-MM01.

Labeled ID proportion 0 10% 20% 30% 40% 50%
CMAM-UDA R-1 62.0 62.2 63.9 66.2 67.2 67.5
(ours, semi) mAP 58.2 58.4 59.7 61.8 63.3 63.6
DML [58] R-1 51.2 53.0 55.8 57.8 59.4 59.8

(semi) mAP 50.0 51.4 54.0 56.0 57.3 57.8
CAJ+ [39] R-1 - 13.2 23.0 37.8 60.0 64.7

(supervised) mAP - 16.0 24.9 35.1 55.0 61.4

TABLE VII
RUNNING TIME ANALYSIS ON 1 NVIDIA RTX 3090. “ITER” DENOTES

ITERATION. “IMG” DENOTES IMAGE.

Stage
Image transformation CMAM Self-training Re-ID
Training Inference Training Training K-means Inference

Speed 1.16s/iter 0.47s/img 0.60s/iter 0.50s/iter 144s/time 1.6ms/img
Quantity 50k iters 67k imgs 30k iters 12k iters 46 times 10k imgs

Time 16.17h 8.63h 5.03h 1.65h 1.84h 17s

the modality gap for discovering unlabeled sample relations,
we exploit auxiliary unlabeled visible images in a source
domain to learn modality-shared prior knowledge and transfer
it for unsupervised cross-modality self-training in the target
domain. To achieve this, we propose Cross-Modality Asym-
metric Mutual Learning (CMAM) for learning both RGB-gray
view-shared information and RGB-specific information from
pseudo labeled auxiliary visible images and the transformed
fake infrared grayscale images in the source domain, which
is developed based on our information theoretic analysis. The
learned prior knowledge is further exploited for cross-modality
self training in the target domain by bi-directional mutual
learning for fusing complementary knowledge of RGB-gray
matching and gray-gray matching. For evaluating unsupervised
cross-modality Re-ID in a realistic scenario, we collected
a new visible-infrared pedestrian dataset SYSU-MM02 from
untrimmed videos. Our method achieved the state-of-the-art
results in unsupervised setting on three benchmark datasets.
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