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This letter proposes a new multiple linear regression model using regu-
larized correntropy for robust pattern recognition. First, we motivate the
use of correntropy to improve the robustness of the classical mean square
error (MSE) criterion that is sensitive to outliers. Then an l1 regulariza-
tion scheme is imposed on the correntropy to learn robust and sparse
representations. Based on the half-quadratic optimization technique, we
propose a novel algorithm to solve the nonlinear optimization problem.
Second, we develop a new correntropy-based classifier based on the
learned regularization scheme for robust object recognition. Extensive
experiments over several applications confirm that the correntropy-based
l1 regularization can improve recognition accuracy and receiver operator
characteristic curves under noise corruption and occlusion.

1 Introduction

Robust data classification or representation is a fundamental task with a
long history in computer vision. Algorithmic robustness, which is derived
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from the statistical definition of a breakdown point (Meer, Stewart, & Tyler,
2000; Sanja, Skocaj, & Leonardis, 2006), is the ability of an algorithm to
tolerate a large number of outliers. Therefore, a robust method should be
effective enough to reject outliers in images and perform classification on
only uncorrupted pixels. A great deal of work has addressed subspace
learning (Leonardis & Bischof, 2000; Torre & Black, 2003) and sparse signal
representation (Mairal, Elad, & Sapiro, 2008; Wright et al., 2010) in order
to develop more robust image-based object recognition. Despite significant
improvement, performing robust classification is still challenging due to
the nature of unpredictable outliers and noise in an image, since corruption
may occupy any parts of an image and have arbitrarily large values in
magnitude (Wright, Yang, Ganesh, Sastry, & Ma, 2009).

Recently information theoretic learning (ITL) (Principe, Xu, & Fisher,
2000; Xu, 1999) has shown its superiority in robust learning and classifi-
cation. Yuan and Hu (2009), He, Hu, and Yuan (2009), Viola, Schraudolph,
and Sejnowski (1995), and He, Hu, Yuan, and Zheng (2010), use Renyi en-
tropy (Cover & Thomas, 2005) and correntropy (Santamaria, Pokharel, &
Principe, 2006) as cost functions to learn robust subspaces under supervised
and unsupervised learning. Liu, Pokharel, and Principe (2007) proved that
correntropy is a robust function (in the sense of Huber) for linear and non-
linear regression. Xu (1999), Cover and Thomas (2005), Pokharel, Liu, and
Principe (2009), and Yuan and Hu (2009) discussed the connection between
entropy and robust functions. The correntropy MACE filter is a detector for
automatic target detection and recognition (ATR) (Jeong, Liu, Han, Hasan-
belliu, & Principe, 2009) and can cope with random subspace projections
(Jeong & Principe, 2008). Principe, Xu, Zhao, and Fisher (2000), Torkkola
(2003), and Yang, Zha, Zhou, and Hu (2009) achieve feature extraction by
directly maximizing the quadratic mutual information between the class
label and the features. Grandvalet and Bengio (2006) introduced the con-
cept of entropy regularization in semisupervised learning to learn a robust
structure. Numerical results on real-world machine learning tasks have
demonstrated that the methods based on information-theoretic objectives
can make the algorithm significantly robust to noise (Yuan & Hu, 2009).

In real-world applications, the classification problem is often not de-
fined in a closed set and always has to deal with noisy and occluded data.1

Crafting an appropriate cost function will improve results in these very dif-
ficult environments (Liu et al., 2007). Correntropy is a recently developed
information-theoretic metric. Despite its advanced performance in terms of
robustness, the solution is not necessarily sparse. Sparsity has been shown
to be appropriate for alleviating the effect of outliers and noise due to

1Closed set domains assume that all classes of a domain have been known and can be
used in training. In contrast, open set domains assume that new classes may be encoun-
tered. For example, face recognition and object recognition are open set problems.
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selective processing (Wright et al., 2010). Hence, we wish to study robust
image-based object recognition by regularizing the correntropy cost func-
tion. First, to overcome the weakness of mean square error (MSE) that is
prone to the presence of outliers, a robust linear representation based on the
correntropy-induced metric (CIM) (Liu et al., 2007) is studied. Then the l1

regularization is further imposed on CIM to learn an informative and sparse
model. The half-quadratic optimization technique is used to efficiently solve
the nonlinear ITL optimization problem. Second, inspired by the nearest
feature classifiers (Li, 1998; Chien & Wu, 2002; He, Ao, Xiang, & Li, 2008)
and linear regression classification (Naseem, Togneri, & Bennamoun, 2010),
which make use of the distance from a sample to a subspace to perform
classification, we propose a regularized correntropy classifier. The proposed
method is innovative in the field of robust recognition and makes the recog-
nition of image-based objects possible under tough conditions.

Our study of regularized correntropy combines research in ITL (Principe,
2010), one-class linear classifiers (Li, 1998), and sparse signal representation
(Wright et al., 2009) into a unified framework. This is significantly differ-
ent from the related state-of-the-art sparse representation classifier (SRC)
(Wright et al., 2009, 2010), which assumes that noisy items have a sparse
representation. Our regularized correntropy method has no special assump-
tions about noise, so it can efficiently handle errors incurred by occlusion
and corruption. Extensive experiments on several machine learning tasks
demonstrate encouraging results in algorithmic robustness and efficacy as
compared to SRC.

The remainder of this letter is organized as follows. In section 2, we briefly
review previous robust methods and point out their main limitations. Then
we present an l1 regularized correntropy to learn multiple linear regression
models for robust recognition in section 3. In section 4, the proposed ap-
proaches are verified by extensive experiments on machine learning tasks
and comparisons with other state-of-the-art techniques.We summarize this
work in section 5.

2 Related Work

Many machine learning techniques have been developed for robust auto-
matic target detection and recognition (ATR) (Kumar, 1992). Here, we briefly
review some principal work from two aspects: fixed-size and variable-
length representations (Bengio, 2009).

2.1 Fixed-Size Representations. The earliest multivariate technique for
multiclass pattern recognition is the synthetic discriminant function (SDF)
proposed by Hester and Casasent (1980). The basic model builds a large
linear network (or a template matcher) by using all the training images
and can be computed analytically and effectively using frequency domain
techniques (Jeong et al., 2009). This class of SDF models has been used for
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both representation and recognition in, for example, ATR and face recogni-
tion (Kumar, Savvides, & Xie, 2006). One shortcoming of the conventional
SDF is related to the noiseless model. Kumar (1986) then proposed the min-
imum variance SDF (MVSDF) filter by considering additive input noise,
and Mahalanobis, Kumar, and Casasent (1987) developed the minimum
average correlation energy (MACE) filter. The MACE minimizes the aver-
age correlation energy of the output over training samples to produce a
sharp correlation peak. To further improve the generalization properties
of MACE, Refregier and Figue (1991) proposed the optimal trade-off fil-
ters (OTSDFs) to combine the properties of various SDFs. However, both
MVSDF and OTSDF are impractical since the additive noise properties can-
not always be known in advance (Jeong et al., 2009). Hence, based on the
correntropy cost function, Jeong et al. (2009) proposed a robust nonlinear
extension to the MACE filter for ATR.

Another robust fixed-size representation is robust subspace learning
(Torre & Black, 2003), which has been widely used for shape represen-
tation and tracking, for example, in computer vision applications. Different
approaches have been explored in the literature to make the learning more
robust. To alleviate the problem of occlusion, Pentland, Moghaddam, and
Straner (1994) proposed modular eigenspaces. Modular linear regression-
based classification (LRC) approaches (Naseem et al., 2010) have extended
the concept of the modular representation for robust face recognition. Ohba
and Ikeuchi (1997) presented the eigenwindow method to recognize par-
tially occluded objects. These methods based on the eigenwindow par-
tially alleviate the problems of occlusion but cannot solve them entirely
(Leonardis & Bischof, 2000). Black and Jepson (1998) used a conventional
robust M-estimator for computing the coefficients of subspace by substitut-
ing the MSE with a robust one. Leonardis and Bischof (2000) proposed a
subsampling and hypothesize-and-test approach to reject outliers and learn
the coefficients of subspace. Torre and Black (2003), Ding, Zhou, He, and
Zha (2006), Kwak (2008), and He et al. (2010) developed robust principal
component analysis methods to learn robust components and coefficients.
These methods mainly focus on learning robust representation rather than
performing classification, and therefore they are often noted as reconstruc-
tive methods.

In robust discriminative models, MCD-estimators (Hawkins & McLach-
lan, 1997; Hubert & Driessen, 2003), S-estimators (He & Fung, 2000; Croux
& Dehon, 2001), M-estimators (Mangasarian & Musicant, 2000), and
information-theoretic estimators (Yuan & Hu, 2009; He et al., 2009) are used
to replace the classical location of MSE or scatter matrix estimators. A main
limitation of these methods is that they detect the whole example as an
outlier and discard it from the learning process. Sanja et al. (2006) combined
the discrimination power of discriminative methods and the reconstruction
property of reconstructive methods into a framework. However, the
reconstructive part in Sanja et al. (2006) depends on the heuristic coefficient
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estimation procedure of Leonardis and Bischof (2000), which needs to
generate a set of hypotheses and make use of the hypothesize-and-test to
get an acceptable result.

Although previous methods improve the robustness, robust classifica-
tion is still a challenge due to the nature of unpredictable outliers and
occlusions (Wright et al., 2009). Moreover, the fixed-size representations
compute a fixed-length representation for a test sample, so they may be less
flexible in the design as compared with the variable-length representations
(Bengio, 2009).

2.2 Variable-Length Representations. Let y ∈ R
d×1 be a new test sam-

ple and Xc
.= [xc

1, xc
2, . . . , xc

nc
] ∈ R

d×nc be a matrix whose columns are nc

training samples belonging to the cth class from k distinct classes. Let xc
i j

and yj be the j th entry of xc
i and y, respectively. Given a sufficiently expres-

sive training set Xc , a test image y of class c can be approximated as a linear
combination of the training set: y ≈ Xcβ

c for the coefficient vector βc ∈ R
nc .

By concatenating the training samples of all k classes, we get a new matrix
X for the entire training set as

X .= [X1, X2, . . . , Xk] = [x1
1 , x1

2 , . . . , xk
nk

] ∈ R
d×n, (2.1)

where n = ∑k
c=1 nc . Alternatively, a test sample y can also be expressed as

a linear combination of all training set,

y ≈ Xβ, (2.2)

where coefficient vector β ∈ R
n. Equation 2.2 is also the SDF formulation of

Hester and Casasent (1980).
The sparse representation classifier (SRC) (Wright et al., 2009, 2010) seeks

the sparsest solution to equation 2.2,

min ‖β‖0 s.t. y = Xβ, (2.3)

where the l0-norm ‖.‖0 counts the number of nonzero entries in a vector.
Originally inspired by theoretical results (Candes & Tao, 2005; Donoho,
2006b) that the solution of the l0 minimization problem is equal to the
solution of the l1 minimization problem if the solution is sparse enough,
SRC seeks an approximate solution of β by solving the following convex
relaxation,

min ‖β‖1 s.t. y = Xβ, (2.4)

where ‖β‖1 = ∑n
i= |βi |. Here, we denote the algorithm to solve equation 2.4

by SRC0.
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Classically, the Lasso solution (Tibshirani, 1996) can be defined as an
unconstrained minimizer of equation 2.4,

min ‖y − Xβ‖2 + λ‖β‖1, (2.5)

where λ can be viewed as an inverse of the Lagrange multiplier in equation
2.4. To deal with occlusions and corruptions, Wright et al. (2009) further
modified the linear model in equation 2.2 as

y = Xβ + e, (2.6)

where e ∈ R
d is a vector of errors. Assuming that a fraction of e is nonzero

(i.e., the noisy vector e has a sparse representation), SRC seeks the sparsest
solution to the robust system of equation 2.6:

min ‖β‖1 + ‖e‖1 s.t. y = Xβ + e. (2.7)

We denote the algorithm to solve equation 2.7 by SRC1.
Although SRC1 can achieve impressive results against traditional meth-

ods in terms of recognition rate and receiver operator characteristic (ROC)
curves, the sparse assumption of a noisy vector e can bring unsatisfactory
results under severe occlusion and noise corruption. In addition, the com-
putational cost of SRC1 is quite high. It will take nearly 100 seconds for
SRC1 to process a test image stacked in a 700-D vector.

3 Regularized Correntropy Costs

In order to address the weakness in MSE-based linear model, this section
develops a correntropy-based linear model for outlier detection. In order
to learn a robust and sparse model, the l1 regularization strategy is further
adopted, and the optimization method is presented.

3.1 Correntropy. Recently the concept of correntropy (Liu et al., 2007)
was proposed within ITL. It is defined as a generalized similarity measure
between two arbitrary random variables A and B (Liu et al., 2007),

Vσ (A, B) = E[kσ (A, B)], (3.1)

where kσ (.) is the kernel function that satisfies Mercer’s theory (Vapnik,
1995) and E[.] denotes the mathematical expectation. It takes advantage
of the kernel technique that nonlinearly maps the input space to a higher-
dimensional space. It has a clear theoretical foundation and is symmetric,
positive, and bounded.
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In practice, the joint probability density function is often unknown, and
only a finite number of data {(ai , bi )}d

i=1 are available, which lead to the
following sample estimator of correntropy:

V̂d,σ (A, B) = 1
d

d∑
i=1

kσ (ai , bi ). (3.2)

When kσ is the gaussian kernel function kσ (ai , bi )
�= g(ai − bi ) =

exp(− (ai −bi )2

2σ 2 ), we can rewrite equation 3.2 as

V̂d,σ (A, B) = 1
d

d∑
i=1

g(ai − bi ). (3.3)

The maximum of correntropy of error in equation 3.2 is called the max-
imum correntropy criterion (MCC) (Liu et al., 2007). Given two vectors
A = (a1, . . . , ad ) and B = (b1, . . . , bd ), the sample estimator of correntropy
defines a metric in the sample space and is named as the correntropy-
induced metric (CIM) (Liu et al., 2007).

Compared with the global measure mean square error (MSE), MCC is
local along the bisector of the joint space and lies on the first quadrant of
a sphere, which means that the value of correntropy is mainly decided
by the kernel function along the line A = B (Liu et al., 2007). Correntropy
has a close relationship with redescending m-estimators (Huber, 1981).
Liu et al. (2007) first imposed it and proved that correntropy is a robust
function (in the sense of Huber) for linear and nonlinear regression. One
of its main merits is that the kernel size controls all the properties of
correntropy (Liu et al., 2007). It establishes a close relationship between the
m-estimation and methods of ITL and provides a practical way to choose
an appropriate kernel size (Liu et al., 2007).

3.2 Correntropy-Based Linear Model. In machine learning, the solu-
tion of the linear model in equation 2.2 is typically computed by the follow-
ing least squares problem:

min
β

‖y − Xβ‖2 =
d∑

j=1

(
yj −

n∑
i=1

xi jβi

)2

. (3.4)

This solution is based on MSE measurement that has been recognized to
be sensitive to outliers (Martinez, 2002; Sanja et al., 2006). Here outliers are
corrupted image pixels that are significantly different from uncorrupted
image pixels. Outliers would seriously reduce the reliability of most ma-
chine learning models. They are significant challenges mainly due to the
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unpredictable nature of the error—the error may be arbitrarily large in mag-
nitude and therefore cannot be ignored or treated with methods developed
for small noise (Wright et al., 2009).

To tackle this issue, we introduce the correntropy in robust object recog-
nition. By replacing MSE with CIM, we obtain the following correntropy-
based model:

max
β

d∑
j=1

g

(
yj −

n∑
i=1

xi jβi

)
(3.5)

Different from methods based on MSE that all entries of the representation
will contribute equally to the value of the measurement, methods based on
CIM treat individual entries of the representation differently and give more
emphasis on the entry that is close to the entry yj of test sample y. This
means that if entry yj is occluded or corrupted, the entry corresponding
to outliers will provide small contributions to the objective in equation
3.5. As a result, the noise can be handled uniformly within the framework
of correntropy. Although the models trained by correntropy are robust to
outliers, they are not necessarily sparse.

3.3 l1-Regularized Maximum Correntropy. Recent advances in sparse
signal representation and compressive sensing (Candes & Tao, 2005;
Donoho, 2006a; Wright et al., 2009) have shown that the sparse code com-
puted by l1 regularization could be informative as well as discriminative.
We further impose the l1 regularization on equation 3.5 in order to learn
a robust and discriminative linear model, which merges sparse signal rep-
resentation and information-theoretic learning. Then we get the following
l1-regularized maximum correntropy problem:

Jl1 = max
β

d∑
j=1

g

(
yj −

n∑
i=1

xi jβi

)
− λ‖β‖1. (3.6)

Since the objective of l1-regularized maximum correntropy in equation
3.6 is also nonlinear, it is difficult to directly optimize the correntropy cost.
Fortunately, we recognize that the half-quadratic technique (Yuan & Hu,
2009), the EM method (Yang et al., 2009), and the conjugate gradient algo-
rithm (Grandvalet & Bengio, 2006) can be used to solve this ITL optimization
problem. In this study, we follow the approach of Yuan and Hu (2009) and
use the half-quadratic technique to solve the regularized entropy maximiza-
tion problem. According to the property of the convex conjugated function
(Boyd & Vandenberghe, 2004), we have
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Proposition 1. There exists a convex conjugated function ϕ of g(x) =
exp(−x2/2σ 2)2 such that

g(x) = max
p′

(
p′ ‖x‖2

σ 2
− ϕ(p′)

)
, (3.7)

and for a fixed x, the maximum is reached at p′ = −g(x) (Yuan & Hu, 2009).

Substituting equation 3.7 into equation 3.6, we have the augmented ob-
jective function in an enlarged parameter space,

Ĵ l1 = max
β,p

d∑
j=1

(
p j

(
yj −

n∑
i=1

xi jβi

)2

− ϕ(p j )

)
− λ‖β‖1, (3.8)

where p = [p1, . . . , pd ]T stores the auxiliary variables introduced in the
half-quadratic optimization. According to proposition 1, for a fixed β, the
following equation holds:

max
β

Jl1 (β) = max
β,p

Ĵ l1 (β, p). (3.9)

Then we can conclude that maximizing Jl1 is identical to maximizing the
augmented Ĵ l1 . Obviously a local maximizer (β, p) can be calculated in an
alternate way,

pt+1
j = −g

(
yj −

n∑
i=1

xi jβ
t
i

)
, (3.10)

β t+1 = arg min
β

(y − Xβ)T P(y − Xβ) + λ‖β‖1, (3.11)

where t means the tth iteration and P is a diagonal matrix whose diagonal
element Pj j = −pt+1

j . It is clear that the optimization in equation 3.11 is a
robust formulation of the Lasso in equation 2.5. The auxiliary variables −p
are weights. The optimal problem in equation 3.11 can also be restated as
the following l1-regularized quadratic problem:

min
β

1
2
βT X̂

T
X̂β − (X̂

T
ŷ)Tβ + λ

2
‖β‖1, (3.12)

where X̂ = √
P X and ŷ = √

P y.

2Strictly speaking, ϕ is the conjugate function of the exponential function exp(−x).
Here we apply the variable substitution method (substitute x with x2/σ 2), which is
commonly used in HQ.
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Let θ be a d-dimensional vector whose element θi ∈ {−1, 0, 1} denotes
sign(βi ) and F and G be two subsets of {1, . . . , n} such that F ∪ G =
{1, . . . , n} and F ∩ G = φ. And let F and G be the working set and inactive
set in the active set algorithm, respectively. Then we obtain the following
partitions of X̂, β, and θ :

X̂ = [X̂F , X̂G] , β = [βF , βG] , θ = [θF , θG], (3.13)

where X̂F ∈ R
d×|F |, X̂G ∈ R

d×|G|, βF ∈ R
|F |×1, βG ∈ R

|G|×1, θF ∈ R
|F |×1, θG ∈

R
|G|×1, and |F |, |G| are the number of F and G, respectively. According to

the feature-sign search algorithm (Lee, Battle, Raina, & Ng, 2006), when θ

has been estimated, we can iteratively solve the l1-regularized problem of
equation 3.12 by the following quadratic program (QP):

min
1
2
βT

F X̂F
T

X̂F βF − (X̂F
T

ŷ)TβF + λ

2
θT

F βF . (3.14)

Instead of finding the optimal solution of equation 3.12, we can find
only a local solution to increase the objective. The l1-regularized maximum
correntropy algorithm is shown in algorithm 1. It maintains the working
set F of potentially nonzero coefficients in β, their corresponding signs,
and the inactive set G of all other zero coefficients. In the feature-sign
step, it systematically searches for the optimal working set and coefficient
signs to reduce the objective in equation 3.11. It gives a current guess for
the active set and the signs and computes the analytical solution β̂F to
the resulting unconstrained QP, and then it updates the solution by an
efficient discrete line search between the current solution βF and β̂F . In
the half-quadratic step, it alternatively maximizes the correntropy objective
according to current β. Proposition 2 shows that each alternative maximum
step increases the correntropy and that the overall algorithm converges to
the optimal solution:

Proposition 2. The sequence { Ĵ l1 (β t, pt), t = 1, 2, . . .} generated by algorithm
1 converges.

Proof. According to lemmas 3.1 and 3.2 of Lee et al. (2006), we learn the
objective is increased at each feature sign step. Combining with proposition
1, we have

Ĵ l1 (β t, pt) ≤ Ĵ l1 (β t, pt+1) ≤ Ĵ l1 (β t+1, pt+1).

Therefore, the cost function increases at each alternate maximization step.
The sequence { Ĵ l1 (β t, pt), t = 1, 2, . . .} is nondecreasing. We can easily ver-
ify that Jl1 (β) is bounded (Liu et al., 2007), and by equation 3.9, we get that
Ĵ l1 (β t, pt) is also bounded. Consequently we can conclude that algorithm 1
will converge.
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The computation cost of algorithm 1 mainly involves three steps: cal-
culation of a working set, feature-sign, and half-quadratic. Let I1 and CF

denote the number of iterations of algorithm 1 and the maximum number
of the nonzero entries of β, respectively. Since algorithm 1 finds a sparse
solution, CF � n. The cost of calculating matrix X̂, ŷ, and gradient in up-
dating a working set is o(d × n + d). The calculation of the square matrix
X̂T

F X̂F and its inverse are d × C2
F and C3

F , respectively. Hence, the cost of
the feature-sign step is o(d × C2

F + C3
F ). The cost of the half-quadratic step

is o(d × n). As a result, the computation cost of algorithm 1 is o(I1 × (d ×
n + d × C2

F + C3
F )). Since CF � n, we also have C2

F � n. When n trends to
be large, the computation cost of algorithm 1 trends to be o(I1 × d × n).

3.4 Robust Sparse Representation-Based Classification. A major issue
in pattern classification is the use of the distance metric. The frequently used
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metrics include Euclidean distance, Mahalanobis distance, cosine distance,
and Hamming distance. These distances are defined between two samples
in a feature subspace. In many applications, multiple samples are available
for a class. Nearest feature classifiers (NFC) (Li & Lu, 1999; Chien & Wu,
2002) and linear representation (LR) (Li, 1998; Naseem et al., 2010) utilize
these information (or linear representation) of multiple samples to improve
classification performance.

Inspired by NFC and LR, we first compute the β of l1 regularized cor-
rentropy to obtain a sparse linear representation. Note that our criterion
in equation 3.6 aims to learn a linear representation of sample y using ex-
isting training samples. Ideally, training samples from the same class of
y should give the best linear representation (Li, 1998; Wright et al., 2009).
For each class c, let δc : R

n → R
nc be a function that selects the coefficients

belonging to the cth class. For β ∈ R
n, δc(β) ∈ R

nc is a vector whose entries
are the entries in β corresponding to class c. Utilizing only the coefficients
associated with the cth class, one can compute a linear representation of
the given sample y as ŷc = Xcδc(β) (Wright et al., 2009). Then y is classified
by assigning it to the class that minimizes the correntropy-induced metric
between y and ŷc :

min
c

C I Mc(y, yc) =
(

1 −
d∑

j=1

g(yj − ŷc j )

) 1
2

. (3.15)

Equation 3.15 actually defines a robust metric between the input sample
y and a linear subspace of training samples. Algorithm 2 summarizes the
complete classification procedure.

4 Experiments

In this section, the proposed methods are systematically compared with
support vector machine (SVM), minimum average correlation energy
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(MACE) filter (Kumar et al., 2006), linear regression classification (LRC)
(Naseem et al., 2010), reconstructive and discriminative subspace method
(LDAonK) (Sanja et al., 2006), and sparse representation-based classification
(SRC) (Wright et al., 2009). Recognition rate, ROC curve, and computational
costs of compared methods are reported. All methods are implemented in
Matlab on an AMD Quad-Core 1.80 GHz Windows XP machines with 2 GB
memory.

4.1 Experimental Setting and Databases

4.1.1 Databases. Four image databases were selected to evaluate different
methods. All the images were converted to grayscale. All facial images
were aligned by fixing the locations of two eyes. The four databases are the
following:

� COIL database (Nene, Nayar, & Murase, 1996): Columbia Object Image
Library (COIL-100) is a database of 7200 color images of 100 objects (72
images per object). The objects were placed on a motorized turntable
against a black background. The turntable was rotated through 360
degrees to vary object pose with respect to a fixed color camera. Im-
ages of the objects were taken at pose intervals of 5 degrees. This
corresponds to 72 poses per object. All images are resized to 32 × 32.
Some of them are shown in the first row of Figure 1a.

� MNIST database (LeCun, Bottou, Bengio, & Haffner, 1998). The MNIST
database of handwritten digits has a training set A of 60,000 examples
and a testing set B of 10,000 examples. The digits were centered in
a fixed size (28×28) and normalized. Here, we randomly took 100
images for each digit in the testing set A as our training set and test
all methods on the whole testing set B.

� AR database (Martinez & Benavente, 1998). The AR database consists
of over 4000 facial images of 126 subjects (70 men and 56 women).
For each subject, 26 facial images were taken in two separate sessions.
These images include more facial variations, including various facial
expressions, illumination change, and occlusion modes (sunglass and
scarf). In the experiment, we selected a subset of the data set consisting
of 65 male subjects and 54 female subjects. The images were cropped
to size 112 × 92 pixels. Figure 1b shows 8 cropped images used in the
experiments.

� Extended Yale B database (Georghiades, Belhumeur, & Kriegman, 2001;
Lee, Ho, & Kriegman, 2005). The Extended Yale B database consists of
2414 frontal-face images of 38 subjects (Georghiades et al., 2001) under
various lighting conditions. The cropped 192 × 168 face images were
captured under various laboratory-controlled lighting conditions (Lee
et al., 2005). Figure 1c shows illustrative faces of the first subject in
Yale B database. For each subject, half of the images were randomly
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Figure 1: Illustrative images used in the experiments.

selected for training (about 32 images per subject), and the other half
were used for testing. Randomly choosing the testing set ensures that
our experimental results will not depend on the selection of testing
data.

4.1.2 Algorithm Setting. The details for the comparisons are as follows:

� SRC: We implemented its two models, which differ in robustness and
computation strategy. For the first SRC algorithm (SRC1) the imple-
mentation minimizes the l1-norm in equation 4.1 by a primal-dual
algorithm for linear programming based on Boyd and Vandenberghe
(2004) and Candes and Romberg (2005):3

min ‖β‖1 + ‖e‖1 s.t. ‖y − Xβ + e‖2 ≤ ε, (4.1)

3Matlab source code: http://www.acm.caltech.edu/l1magic/.
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where ε is a given nonnegative error tolerance. For the second SRC
algorithm (SRC2), the implementation minimizes the l1-norm in equa-
tion 4.2 via an active set algorithm based on Lee et al. (2006):4

min ‖y − Xβ + e‖2 + λ(‖β‖1 + ‖e‖1) (4.2)

where λ is a given sparsity penalty, which can be viewed as an inverse
of the Lagrange multiplier associated with the constraint in equation
4.1. The models in equation 4.1 and 4.2 are different when there are
noise. The ε can be interpreted as a pixel noise level, whereas λ cannot
(Wright et al., 2009).

� RSRC: We followed the approach of Torre and Black (2003) and
Liu et al. (2007) and empirically set σ in algorithm 1 to 0.0005.

� WLRC: Since the model in equation 3.5 can be viewed as a weighted
LRC from the viewpoint of iteratively reweighted least square (IRLS),
we note the model in equation 3.5 as weighted LRC (WLRC). The
classification method used in WLRC is the same as that used in LRC.

� LDAonK: The parameters of LDAonK follow the suggestion in
Leonardis and Bischof (2000) and Sanja et al. (2006).

� SVM: The multiclass SVM was implemented by SVM Toolbox.5 For
each training set, the kernel parameter was selected by fivefold cross-
validation on each dimension.6

� MACE: The peak sharpness in MACE was measured by the peak-to-
side-lobe ratio (PSR).

In order to estimate the parameter ε of SRC1 and λ of SRC2 and RSRC
automatically, fivefold cross-validation on each dimension of data for each
training set was used, where the candidate value set for both ε and λ is {1,
0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.005, 0.001, 0.0005, 0.0001}. Note that
due to the large computational cost of SRC1 and SRC2, exhaustive search
of the parameter value is not possible. For the same reason, we can report
the experimental results of SRCs and SVM only in the lower-dimensional
feature space. More experimental results on parameter selection in the reg-
ularized correntropy method are shown in section 4.6.

4.2 Recognition under Sunglasses Occlusion. The occluded images
came from a subset of the AR Face Database. For training, we used 952
images (about 8 per subject) of unoccluded frontal views with varying facial
expression. Figure 1b shows an example of eight selected images of the first

4Matlab source code: http://redwood.berkeley.edu/bruno/sparsenet/.
5Matlab source code: http://asi.insa-rouen.fr/enseignants/∼arakotom/toolbox/

index.html
6Although SVM can achieve very high accuracy on a training set—for example, it

achieves 100% recognition rate on the AR training set—its recognition rate is quite low
on the testing set due to occlusions and corruptions.
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Figure 2: Recognition rates and verification rates for various feature spaces and
classifiers under occlusion of sunglasses.

subject. For testing, we used images of the subjects wearing sunglasses,
which occlude roughly 20% of facial images.

To quantitatively evaluate different methods, we compute the recogni-
tion rates respective to the feature (downsampled image) space dimen-
sions 161, 644, and 2576, respectively.7 Those numbers correspond to
downsampling ratios of 1/8, 1/4, and 1/2, respectively. Figure 2a shows
the recognition performance for the various features, in conjunction with
eight classifiers: RSRC, WLRC, SRC1, SRC2, LRC, LDAonK, SVM, and
MACE. Since the computational cost of SRC1 and SVM is very high in
high-dimensional space, we report the experimental results only in lower-
dimensional space.

On the training set, SVM and MACE achieve a 100% and 96.43% recogni-
tion rate, respectively, on dimension 644. However, when there is occlusion,
it is unlikely that the test image will be very close to any single image or lin-
ear subspace in the training set, and thus LRC, SVM, and MACE perform

7In face recognition (Wright et al., 2009; Naseem et al., 2010), the experimental results
show that using simply downsampled images can also achieve superior results compared
to the benchmark techniques (Naseem et al., 2010).
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Table 1: Recognition Rates (%) of Different Methods.

Database SVM MACE LRC LDAonK SRC2 WLRC RSRC

MNIST 91.38 41.50 90.80 - 90.60 82.03 88.20
COIL 37.82 20.58 22.45 35.60 61.05 87.01 78.62

Note: The numbers in bold are the highest recognition rates for each configuration.

poorly. Due to the robustness of correntropy, two correntropy methods
achieve the best results. Correntropy-based methods can accurately model
noise and then use uncorrupted pixels to achieve the highest recognition
rates.

The ROC curve is also illustrated in Figure 2. This curve is an important
tool to evaluate different algorithms. It can be represented equivalently by
plotting the fraction of the false acceptance rate (FAR) versus. the verifica-
tion rate (VR) and is often used to measure the accuracy of outlier rejection.
A good algorithm should achieve high verification rates even at very low
false acceptance rates. One often concerns verification rates when false ac-
ceptance rates are 0.001 and 0.01 (Yi, Liu, Chu, Lei, & Li, 2007).

Figures 2c and 2d show the verification rates when FAR = 0.001 and
FAR = 0.01, respectively.8 The verification rates of LDAonK, LRC, SVM, and
MACE are quite low. Although the recognition rates of WLRC are higher
than those of SRC1, verification rates of WLRC are lower than those of SRC1
when FAR = 0.001. It seems that sparse representation-based methods can
achieve higher ROC curves. RSRC achieves the highest verification rates,
performing significantly better than the two SRC methods.

4.3 Recognition under Contiguous Occlusion. In this section we simu-
late various types of contiguous occlusions by replacing a randomly selected
local region in each testing image with an unrelated image (Wright et al.,
2009) and a white square (Sanja et al., 2006).

In the first experiment, we evaluate different methods on the MNIST
data set without occlusions. Table 1 shows the recognition rates of different
methods. In terms of recognition performance, all compared methods can
be ordered as MACE, WLRC, RSRC, SRC2, LRC, and SVM, where MACE
performs the worst and SVM performs the best. Since there are no occlu-
sions, SVM and LRC can better use the linear structure of training samples
(Li, 1998; Li & Lu, 1999; He et al., 2008; Chien & Wu, 2002) so that they
outperform other methods. These experimental results are also coincidence
with those reported in (Wright et al., 2009; Naseem et al., 2010). The two
correntropy-based methods do not perform better than other methods, and

8Since the SVM Toolbox outputs only the label information instead of continuous
scores, we cannot show the ROC curves of multiclass SVM.
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Figure 3: Recognition rates under different levels of contiguous occlusions.

it may be because the value of kennel size is still not optimally tuned for all
experiments. For large kernel sizes, correntropy defaults to MSE (Liu et al.,
2007).

In the second experiment, a subset of COIL database was used to evaluate
different methods. In the testing set, each image was occluded with a white
square (Sanja et al., 2006). Recognition rates in Table 1 are used to illustrate
the discriminative ability. Both WLRC and RSRC significantly outperform
other methods due to the accurate detection of the occluded region. WLRC
seems to detect the occluded region more accurately than RSRC, so that
WLRC achieves the highest recognition rate.

In the third experiment, we quantitatively evaluate different methods on
the Extended Yale B Face Database (Wright et al., 2009). For each subject,
half of the images were randomly selected for training (about 32 images per
subject) and the other half for testing. Figure 1d shows two occluded images
under 20% and 40% occlusions. The training set and testing set contain 1205
and 1209 images, respectively. We compute the recognition rates with the
feature (downsampled image) space dimensions 56, 120, 504, and 2016.
Those numbers correspond to downsampling ratios of 1/24, 1/16, 1/8, and
1/4, respectively.

Figure 3 shows the recognition rates under different levels of contigu-
ous occlusions. When occlusion is 20%, both WLRC and RSRC achieve the
highest recognition rates. When occlusion is 40%, the sparse representation-
based methods can perform better than the three nonsparse representation
methods. Still, RSRC obtains the best results. Since the pixel values of un-
related monkey images are close to those of facial images, LDAonK fails to
detect the occluded region so that it performs worse than other methods.

4.4 Recognition under Random Pixel Corruption. In some practical
scenarios, the test image y may be partially corrupted. We evaluate the
robustness on the Extended Yale B Face Database. For each subject, half of
the images are randomly selected for training (about 32 images per subject)
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Figure 4: Recognition rates and verification rates for various feature spaces and
classifiers under varying level of random corruption.

and the other half for testing. The training set and testing set contain 1205
and 1209 images, respectively. All the images are resized to 24 × 21, which
is stacked in a 504-D vector. Each image in the testing set is corrupted by
replacing a percentage of randomly chosen pixels with i.i.d. samples from
a uniform distribution (uniform over [0, 255]). The corrupted pixels are
randomly chosen for each test image, and the locations are unknown to the
computer. We vary the percentage of corrupted pixels from 10% to 80%.
Figure 1d shows three examples to those corruptions. To the human eye,
beyond 50% corruption, the corrupted images are barely recognizable as
face images.

Figure 4a shows the recognition accuracy of different methods, as a func-
tion of the level of corruption. 9 We see that three sparse representation-
based methods perform better than other methods. In particular, the RSRC
achieves the highest recognition rates when corruption is larger than 50%.
Figures 4b and 4c further show the verification rates under various corrup-
tions when FAR = 0.001 and FAR = 0.01. Although LRC can obtain 90%
recognition rate when the corruption is smaller than 30%, its verification
rates are extremely low (smaller than 30%). RSRC, SRC1, and SRC2 can sig-
nificantly improve the ROC curves due to the sparse representation. When

9Since the recognition rates of SVM and MACE are significantly lower than the other
methods in this experiment, we do not report their results here
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Figure 5: Computation time for various feature spaces and classifiers.

the corruption is larger than 50%, the verification rates of RSRC become
higher than those of the other methods. Thus, RSRC could be an effective
method to deal with severe corruption for robust recognition.

4.5 Comparison of the Computational Complexity. Computational
complexity of an algorithm is often a major concern in computer vision.
Figure 5 shows the overall computation time of using various features on
the AR database, with the same experimental setting in section 4.2. The com-
putation costs of two SRC methods become extremely high as the dimension
is increased. When the feature dimension is 644-D, SRC1, SRC2, RSRC, and
WLRC take 56, 6.9, 5.2, and 0.13 seconds per test image, respectively. (In
Wright et al., 2009, SRC1 requires about 75 seconds per test image on a
PowerMac G5.) The computational advantage of WLRC is clearly seen over
these three sparse methods. When dimension is high, the computational
costs of two SRC methods are much larger than RSRC, because RSRC esti-
mates only n variables for sparse representation and d auxiliary variables
can be optimized by HQ, whereas the SRC models have to estimate all
d + n variables. Hence, WLRC and RSRC are more suitable for robust and
real-time pattern recognition tasks.

4.6 Parameter Selection. In real-world scenarios, corruptions are often
unknown beforehand. Hence, a cross-validated parameter on an uncor-
rupted training set may be unsuitable for corrupted testing data. For this
reason, we follow the suggestion in Liu et al. (2007) to investigate parameter
selection for our method. The experimental setting is the same as that in
section 4.4. All experiments are averaged over 20 random corruptions. In
each random corruption, corrupted pixels are randomly chosen for each
test image in the testing set.
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Table 2: Average Recognition Rates (%) ± Standard Deviation under Different
Values of λ in RSRC.

λ 0.0005 0.001 0.005 0.01 0.05

10% corruption 96.48 ± 0.4 96.76 ± 0.3 95.28 ± 0.4 92.94 ± 0.5 83.28 ± 0.9
80% corruption 8.45 ± 1.1 10.76 ± 0.7 30.64 ± 0.6 35.04 ± 0.8 6.56 ± 1.2

Note: The numbers in bold are the highest recognition rates for each configuration.

Table 3: Average Recognition Rates (%) ± Standard Deviation for Different
Kernel Sizes in RSRC.

θ 0.00010 0.00025 0.00050 0.00075 0.001 Silverman

10% 90.50 ± 0.9 93.89 ± 0.6 93.89 ± 0.8 94.80 ± 0.4 94.63 ± 0.6 91.26 ± 0.7
80% 15.63 ± 1.8 45.08 ± 1.4 28.37 ± 1.6 15.47 ± 1.3 11.66 ± 1.9 22.52 ± 1.7

Note: The numbers in bold are the highest recognition rates for each configuration.

4.6.1 Regularization Parameter. The regularization parameter λ in equa-
tion 3.6 is an important parameter to control the sparseness of the represen-
tation. To our best knowledge, it is still hard to find a method in the literature
to determine an approximate value of λ for arbitrary corruptions. Alterna-
tively, this section studies how λ affects recognition rates with respect to
different levels of corruption.

Table 2 tabulates recognition rates of RSRC when different values of λ are
set. Since the value of λ is related to sparse representation, its selection will
affect the recognition performance of RSRC. When corruption is 10% and
λ equals 0.001, RSRC achieves the highest recognition rate: 96.76%. When
corruption is 80% and λ equals 0.01, RSRC achieves the highest recognition
rate: 35.04%. These results further demonstrate that the robust sparse code
induced by l1 regularization is a powerful tool for robust recognition. It
is interesting to observe that a small value of λ may be more suitable for
small corruption and a large value of λ may make RSRC control the large
corruption better.

4.6.2 Kernel Size σ . The kernel size σ is an important parameter that
controls all robust properties of correntropy (Liu et al., 2007). An appropriate
value of kernel size can effectively eliminate the effect of outliers and noise.
Its selection is still an open issue in ITL (Liu, Pokharel, & Principe, 2006; Liu
et al., 2007) and kernel density estimation. Considering the robust parameter
estimation, we further investigate Silvermans’ rule (Silverman, 1986) as
suggested in correntropy (Liu et al., 2007).

The simulations in Table 3 were run to show how kernel size affects the
performance of regularized correntropy methods under various corrup-
tions. The experimental setting is the same as that in section 4.4. On 10%



A Regularized Correntropy Framework for Robust Pattern Recognition 2095

corruption, the larger the θ is, the higher the recognition rate the algorithm
will obtain. On 80% corruption, RSRC achieves the highest recognition rate,
45.08%, when θ = 0.00025. The robust parameter estimation method (Sil-
verman’s rule) could not improve the recognition rates of RSRC, especially
when the corruption is large.

When the percentage of corruption or occlusion is smaller than 50%, θ

can be set to a larger value to give most of the uncorrupted pixels larger
weight; when the corruption or occlusion is larger than 50%, θ can be set
to a smaller value to dampen outliers significantly. If the error incurred
by noise is unknown, we can simply choose a conservative way to set
θ to a median value (e.g., 0.0005). Experimental results validate that this
conservative choice can make regularized correntropy methods outperform
other methods in most scenarios.

4.7 Discussion. From these experimental results, we have these obser-
vations:

� Correntropy-based methods versus other robust algorithms:
Correntropy-based methods obtain encouraging performance im-
provements as compared to other robust algorithms. The RSRC al-
ways outperforms other robust methods under occlusion and noisy
corruption. Correntropy-based methods can detect outliers more ac-
curately so that they can utilize the uncorrupted subset of image
pixels to perform classification. Experimental results further validate
that correntropy is a powerful tool for handling nongaussian noise
and large outliers.

� Nonsparse method (WLRC) versus sparse method (RSRC) based on
MCC: Experimental results show that the nonsparse method WLRC
can obtain better or similar classification results as compared to
the sparse method RSRC. However, the recognition performance of
WLRC drops significantly when noise increases (see Figures 3 and 4).
The sparse methods (including SRC1, SRC2, and RSRC) seem to tackle
large noise better. WLRC is advantageous due to its efficient compu-
tation. Hence, we recommend using WLRC for real-time recognition
tasks under moderate occlusions and corruptions.

� ROC curves: Compared with LRC and LDAonK, WLRC can improve
ROC curves. But WLRC’s improvement is limited compared to the
three sparse methods. The scores (residuals) with respect to the coef-
ficients computed by the l1 norm are still sparse, which seems to favor
higher ROC curves.

� Nonlinear template matcher: Recent experimental results show that
a nonlinear template matcher can further improve classification ac-
curacy in both the real domain (Jia & Martinez, 2008, 2009) and
the frequency domain (Jeong & Principe, 2008; Jeong et al., 2009).
Taking advantage of the linear structure of the reproducing kernel



2096 R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong

Hilbert space, the correntropy MACE (CMACE) (Jeong et al., 2009)
can potentially improve MACE performance while preserving the
shift-invariant property (Jeong et al., 2009). Algorithm 2 also devel-
ops a correntropy-based nonlinear classifier for classification.

� Parameter selection: Experimental results show that correntropy is an
efficient tool to control large corruption (70%), while the kernel size
controls its robustness. If the parameters are well tuned as in Table 3,
recognition rate of RSRC can reach 45.08% at 80% corruption. Tradi-
tional parameter selection methods for Huber M-estimators, such as
Silverman’s rule (Silverman, 1986; Liu et al., 2007), are often based on
a median so that they can efficiently deal only with small corruptions
(smaller than 50%). How to automatically determine an appropriate
kernel parameter of correntropy is still an open problem for large
corruptions and occlusions.

5 Conclusion

We have presented a novel regularized correntropy framework for robust
pattern recognition. The l1 regularization scheme is imposed on correntropy.
The half-quadratic optimization technique is used to solve the nonlinear
correntropy optimization problem. Finally, a novel correntropy-based clas-
sification method is developed to favor efficient detection of outliers and
robust recognition. Unlike the state-of-the-art SRC, which assumes that the
noisy item has a sparse representation, our method is based on correntropy,
which is much more insensitive to outliers. The experimental results vali-
date that the l1 regularization can further improve recognition accuracy and
receiver operator characteristic curves under corruption and occlusion.
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