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Abstract

By always mapping data from lower dimensional s-
pace into higher or even infinite dimensional space,
kernel k-means is able to organize data into groups
when data of different clusters are not linearly sep-
arable. However, kernel k-means incurs the large
scale computation due to the representation theo-
rem, i.e. keeping an extremely large kernel matrix
in memory when using popular Gaussian and spa-
tial pyramid matching kernels, which largely limits
its use for processing large scale data. Also, exist-
ing kernel clustering can be overfitted by outliers as
well. In this paper, we introduce an Euler cluster-
ing, which can not only maintain the benefit of non-
linear modeling using kernel function but also sig-
nificantly solve the large scale computational prob-
lem in kernel-based clustering. This is realized by
incorporating Euler kernel. Euler kernel is relying
on a nonlinear and robust cosine metric that is less
sensitive to outliers. More important it intrinsically
induces an empirical map which maps data onto a
complex space of the same dimension. Euler clus-
tering takes these advantages to measure the simi-
larity between data in a robust way without increas-
ing the dimensionality of data, and thus solves the
large scale problem in kernel k-means. We evalu-
ate Euler clustering and show its superiority against
related methods on five publicly available datasets.

1 Introduction

Clustering plays an important role in organizing, understand-
ing and learning data. As the information science and Internet
techniques develop, a large amount of data, especially image
data, are created every day. Consequently, it challenges ex-
isting clustering models in both the computational aspect due
to increasing size of data and the robustness aspect due to
more diversities of data. It is particularly a big obstacle for
applying kernel k-means as well as other related kernel based
clustering methods [Scholkopf er al., 1998; Ng et al., 2001;
Dhillon et al., 2004] to analyze large scale data.

Most if not all, the obstacle of using kernel-based cluster-
ing methods for large scale data is mainly caused by the use
of kernel trick. Kernel based clustering implicitly transforms

data from lower dimensional space to higher or even infinite
dimensional feature space (i.e., Reproducing Kernel Hilbert
Space (RKHS)), and then linear clustering models are applied
in that feature space. The mapping is implicitly induced and
supposed to deal with nonlinear clustering problem.

However, relying on commonly used kernel functions,
such as Gaussian kernel [Chitta et al., 20111, spatial pyra-
mid matching kernel [Lazebnik ef al., 2006] and etc., kernel
based clustering methods could not be applied to large scale
data. It is because, those frequently used kernel functions im-
plicitly but not explicitly induce a mapping by using kernel
trick[Scholkopf, 20001, and this makes the space and compu-
tational complexity of kernel based clustering increase dra-
matically due to computing and keeping the full kernel matrix
during learning. Hence, existing kernel based methods are
not appropriate for large scale clustering problems due to the
limitation of memory, e.g. it needs about 7,500GB memory
to keep the kernel matrix for the dataset with 1 million da-
ta points. Although the kernel matrix can be subdivided and
loaded in the memory block by block [Zhang and Rudnick-
y, 2002], the optimization will cost the time that is quadratic
to the size of the dataset, so that it does not work efficiently
for large scale problems. To address the high computation-
al complexity problem in the optimization, an approximate
kernel k-means approach is proposed in [Chitta et al., 2011].

In this work, we solve the large scale computation prob-
lem in kernel based clustering methods by incorporating Eu-
ler kernel [Liwicki ef al., 2012]. Particularly, we develop an
Euler clustering, which is scalable kernel k-means. The Eu-
ler kernel is relying on a nonlinear and robust cosine metric,
and more important it intrinsically induces an empirical map
which maps data to a complex space of the same dimension.
In addition, the cosine metric is a robust metric and is able to
tolerate outliers during clustering. Euler clustering takes the
advantages of Euler kernel to measure the similarity between
data in a robust way without using kernel trick and increas-
ing the dimensionality of data, and thus solves the large scale
problem in kernel k-means.

Euler clustering differs existing clustering methods in the
following aspects:

e Euler clustering gets rid of kernel trick and can direct-
ly calculate the corresponding distance between a data
point and any cluster center efficiently, and thus no need
to calculate and store the kernel matrix.



e The dimension of feature space corresponding to the
mapping induced by Euler kernel is the same as data’s
dimensionality itself. This is because although Euler k-
ernel is based on nonlinear cosine distance, it is how-
ever equivalent to deriving an explicit mapping, which
maps data onto a complex space of the same dimen-
sion. Note that, since the mapping induced by Euler
kernel has the same dimension as input data, the com-
putational complexity of Euler kernel is comparable to
k-means. Although there exists empirical kernel map-
ping methods [Scholkopf er al., 1998; Ng et al., 2001;
Dhillon et al., 2004; Chitta et al., 2011], they either lose
some discriminant information or lead to high dimen-
sionality for each data after the mapping. Hence, Euler
clustering is suitable for large scale clustering problems
without deriving any approximate models.

e Less sensitive to noise and outliers. In Euler clustering,
the distance between data points in the RKHS space is
a cosine based measure. Due to the periodicity and the
range of the cosine function, the affects of the noise fea-
tures on the distance are lessened. Hence, outliers will
pull the corresponding mean vectors used as the clus-
ter representative prototypes to themselves much more
lightly in the RKHS space.

Although Euler clustering is just a special case of kernel
k-means, the contribution of this work lies in that by using
Euler kernel, Euler clustering can address the large scale and
robust clustering simultaneously in a simple but elegant and
effective way. In addition, Euler kernel is very different from
existing widely known Mercer kernels in that it is defined in
the complex domain rather than the real domain. However,
it can be used for distance based modeling and our work is
able to tell the usefulness of complex methods for clustering
analysis.

The reminder of this paper is organized as follows. Sec-
tion 2 briefly introduces the kernel k-means algorithm and
the Euler kernel. In section 3, we introduce Euler clustering
and detail the fast optimization process. The used datasets
and the experimental results are reported in section 4. Then
we conclude this paper in section 5.

2 Preliminary

In order to make our paper self-contained, we first introduce
kernel k-means and the Euler kernel which is defined in the
complex domain.

2.1 Kernel k-means

Kernel k-means first maps data points from the data space
into a RKHS space using an implicit mapping induced by k-
ernel function through kernel trick, and then clusters data to
find cluster assignments such that the similar data points are
in the same cluster and the dissimilar data points are in dif-
ferent clusters.

More specifically, let X = {xi,...,%,} be the given
dataset consisting of n data points in R%, and let ¢)(-) denote
the mapping induced by kernel function, i.e. 1(x;) is the im-
age of x; in this defined RKHS space. To group the dataset X’

into C clusters, kernel k-means is modeled to minimize the
distortion error [Bishop, 2006]
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Here m. is the representative prototype, which is given by
the mean vector of the images of the cluster G as
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where U is the cluster membership indicator matrix, U, = 1
if x; belongs to G, and U;. = 0 otherwise.

After obtaining the optimal representative prototypes m.,
the cluster labels for data points are assigned by finding the
closest cluster prototypes as follows
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where v; is the assignment for data point x;.

However, due to the implicit representation of images in
the RKHS space, the cluster prototypes cannot be represent-
ed explicitly, so that the distance between image 1¥(x;) and
the c-th cluster prototype m. must be calculated by using the
kernel trick as follows
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where K is the corresponding kernel matrix defined by (-),
and n. is the number of data points belonging to the c-th clus-
ter. Obviously, it has to store the full kernel matrix, which
may be too large to be loaded in the memory, and it has to
spend O(Cn) time in assigning label to each data point at
each iteration according to Eq. (4). Hence in total O(Cn?)
time is used to get labels assigned for data points at each iter-
ation. Therefore, kernel k-means, by using traditional kernel,
is not suitable for solving the clustering problem for large
amount of data points.

2.2 Euler Kernel

Let x; be one of data points in the given dataset X'. Denote
the image set as ® = {P(x1),...,¢(xy)}, then the kernel
matrix K is defined by ¢(-) as K = ®® [Paulsen, 2009].
That is, the (4, ¢)-entry of the kernel matrix is given as fol-
lows

d
Kig = 53 cos(om (x5(0) — xg(c))
c=1
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Different from existing Mercer kernels, K is defined in the
complex space. And, we have K = K because K,; =
qu, where - represents the complex conjugate operator.

It is found that Euler kernel actually induces a mapping
¢(x;) [Liwicki er al., 2012] that maps data point x; from



d-dimensional real space R? into d-dimensional complex
RKHS space C%, i.e. ¢ : R? — C?, as follows
1 .
x;) = —=e'"¥% = —(cos(anx;) +isin(anrx;)), (6
¢(x;) 7 ﬁ( (amx;) (amx;)), (6)
where ¢ is the imaginary unit.
Therefore, the distance function d(-, -) which calculates the
square Euclidean distance between images ¢(x;) and ¢(x,)
in the RKHS space is given by

d(d(x)), ¢(x4)) = lo(x;) — b(x))|

d
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where 6; denotes arx;. Hence, the distance function d(-, -)
is a real value, so that the distances can be used to measure
the dissimilarities between data points, although the kernel
function ¢ and the kernel matrix K are defined in the complex
space.

Since cosine function is a periodic function and its value
lies in the range [—1, 1], the distance defined as Eq. (7) is less
sensitive to noisy features than ¢s-norm (i.e. Euclidean form)
defined in the data space by limiting the affects of noisy fea-
tures on the distance in the range [—1, 1]. When the value « is
small, the distance function Eq. (7) will become lo-norm. As
the value « increases, Eq. (7) will reduce the large distances
caused by the noise features [Liwicki ef al., 2012].

By Eq. (6), Euler kernel can induce an explicit map from
input data space to RKHS space without increasing the data
dimension. Although Euler kernel function and the corre-
sponding kernel matrix are defined in the complex domain,
the distance between data points is ultimately formulated in
the real domain, so that it can be used as the dissimilarity
measure between data points.

3 Euler Clustering

In this section, we will propose a novel kernel based k-means
approach, called Euler clustering. We will employ the Euler
kernel function to define the RKHS space and organize the
data into C' clusters based on a k-means style algorithm in this
defined RKHS space. Although it is a kernel based k-means
approach, it is almost as fast as k-means algorithm and less
sensitive to noise and outliers.

Since, Euler kernel can induce an explicit mapping ¢(-)
from data space to feature space, the images in the RKHS s-
pace can be explicitly represented through Eq. (6) in the com-
plex space. Hence, the cluster representative prototype m,
can be explicitly computed in the complex space by the fol-
lowing lemma.

Lemma 1. Denote the size of the cluster G. by n., then the
optimal m. can be represented explicitly as

1 .
m. = ﬁ(a + Zb), (8)

where a and b are given by a = n% ijegc cos(anx;) and

b= n% ijegc sin(amx;).

The lemma is straightforward. Note that by conducting k-
means algorithm in the RKHS space, the optimal m,, is given
as the mean vector of the cluster G.., i.e.

mo= 3 o). ©)

Due to the explicit formulation of the mapping in Eq. (6) for
Euler kernel function, we have

Z cos(amx;) + i Z sin(arx;)
x;€G, x;€G.
(10)
This suggests that different from existing kernel k-means
using Gaussian, spatial pyramid matching kernels and etc.,
the cluster centers m, can be represented explicitly in Euler
clustering. Based on this fact, we can derive the below crite-
rion of Euler clustering.

Theorem 1. Euler clustering is to minimize the distortion
error

C n
=Y Ud(¢(x;), m,), (11
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where m. is given by Eq. (10), and the squared Euclidean
distance d(x;, m.) (defined in Eq. (7)) from the data point
X to the cluster prototype m, is given by

d
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Proof. Denote amx; by 0; and represent m,. explicitly as E-
q. (10). The squared Euclidean distance d(x;, m.) can be
expanded as follows

cos(d;) —a  sin(f;) —b
d(xj,m;) = [— i— I
V2 V2
” cos(b;) — aH2 n Hsin(Oj) -b 2
V2 V2
d
= 3 + |lm.||* — cos(8;)"a — sin(;)"b.
So that the distance from x; to m,, in the RKHS space can be
calculated more efficiently. O

Euler clustering is in line with k-means. Euler clustering
performs the following steps iteratively for optimizing the cri-
terion: 1) updating the optimal cluster prototypes m. explic-
itly using Eq. (10) by fixing the cluster labels of data points,
and 2) grouping data points into closest clusters according to
Eq. (12) by fixing m,. Algorithm 1 details the procedure. Eu-
ler clustering will monotonically decrease the objective func-
tion after updating the cluster representative prototypes and
re-assigning labels for data points. Like k-means, it can be
concluded that the objective function of Euler clustering is
bounded as well. Therefore, the Euler clustering algorithm
will converge to a local minimum in a finite number of itera-
tions.

‘What more important is that the computational complexity
of Euler clustering is comparable to k-means, although it is



Algorithm 1 Euler Clustering

1: Inmput: Dataset X = {x,..., Xy}, the number of clus-
ters C, the value «, and the maximum number of itera-
tions t,,q2-

2: QOutput: The cluster sets G.,c=1,...,C.

3: Initialization:

Initialize the cluster labels of data points.
Transform the data points from data space onto feature
space using Eq. (6).

4: repeat

5 t=t+1;

6:  Fix the cluster labels of the data points, and update the

cluster representative prototypes m. using Eq. (10).
7:  Fix the cluster representative prototypes m., and up-
date the cluster labels of the data points using Eq. (12).
8: until convergence || t > tpqz-

a nonlinear clustering method. More specifically, Euler clus-
tering only takes O(nd) and O(ndC') to update the cluster
representative prototypes and the cluster labels of data points
in each iteration. the Euler clustering algorithm converges in
O(TndC), where T is the number of iterations. Hence, Euler
clustering can code with the nonlinear clustering and perform
as light as a linear method. The following theorem summa-
rize the computational analysis of Euler Clustering.

Theorem 2. The proposed Euler clustering algorithm can
converge to a local optimum in O(TndC), where T is the
number of iterations.

4 Experiments

In this section, we evaluate the proposed Euler clustering
method on five public datasets: Event [Li and Fei-Fei, 20071,
13 Natural Scene Categories [Fei-Fei and Perona, 2005], Cal-
tech 101 [Fei-Fei et al., 2006], Imagenet [Deng er al., 2009],
and Caltech 256 [Griffin et al., 2007], to show its perfor-
mance compared to k-means algorithm [MacQueen, 1967],
kernel k-means algorithm [Scholkopf et al., 1998], normal-
ized cut algorithm [Shi and Malik, 20001, and approximate
kernel k-means algorithm [Chitta et al., 2011]. The Gaus-
sian kernel is a very effective kernel and commonly used in
many fields, and the spatial pyramid matching kernel is often
applied in computer vision. Both two kernels are applied in
kernel k-means, normalized cut, and approximate kernel k-
means. We denote them as G-K-Kmeans (P-K-Kmeans), G-
N-Cut (P-N-Cut), and G-AppK-Kmeans (P-AppK-Kmeans)
when using Gaussian kernel (spatial pyramid matching ker-
nel), respectively.

4.1 Experimental Settings

For all the five datasets, the spatial pyramid image represen-
tation was created for each image. We first extracted 128-
dimensional SIFT descriptors [Lowe, 1999] for each image.
Then we employed the bag-of-features [Fei-Fei and Perona,
2005] to get 512 prototypes for the SIFT features and apply
the spatial pyramid modeling [Lazebnik e al., 2006] to obtain
three-level based pyramid histogram representation, which is

a sparse 10,752-dimensional vector for representing each im-
age.

We measure the clustering performance in terms of the
normalized mutual information (NMI) [Dhillon et al., 2004].
The NMI lies in [0, 1]. The larger the NMI is, the better
the clustering matches the true class distribution. Meanwhile,
the empirical time the compared approaches take to achieve
the convergence is measured to show the efficiency of our
method.

For all the experiments shown in the follow-
ing, the value a of our approach is set to be 700.
For the Gaussian kernel, the kernel width is set as

" & x; —x; |2 .
\/ 12’1127:5(?_”1) I , where [ is selected from the

sequences [0.001,0.005,0.01,...,100,200,...1000]. For
the approximate kernel k-means algorithms, the sample size
is set to be 1,000, such that its clustering performance on
all the five datasets approximate the corresponding kernel
k-means algorithm.

All the methods are implemented in Matlab and run on an
Intel Xeon 2.67GHz processor. To make the performance of
the compared methods comparable, all the results reported
are averaged over 10 runs with 10 different initializations of
the cluster labels of data points. All compared methods are
conducted under the same setting. The maximum number of
iterations is set to be 100 for all compared methods.

4.2 Datasets

Dataset Size Dimension | #Class
Event 1,579 10,752 8
Scene 13 3,859 10,752 13
Caltech 101 8,677 10,752 101
SImagenet 19,911 10,752 12
Caltech 256 | 29,780 10,752 256

Table 1: Five public datasets

Table 1 summarizes the properties of the five datasets, and
the details of these datasets are shown as follows.

e Event: The event dataset contains 8 sports event cat-
egories collected from Internet with the sizes of cate-
gories varying from 137 to 250.

e 13 Natural Scenes: There are 3,859 images covering 13
categories of natural scenes in the 13 Natural Scenes
dataset. The average size of each image is about 250 X
300 pixels.

e Caltech 101: This dataset consists of 8,677 pictures of
objects belonging to 101 categories. There are about 40
to 800 images per category, and most categories have
about 50 images. The images in this dataset are left-right
aligned.

e SImagenet:  The full Imagenet dataset contains
1,261,402 images that are organized into 1,000 leaf
synsets in a synset tree, in which each leaf synset repre-
sents a class of images. We selected 19,911 images from
12 synsets: manhole cover, daily, website, odometer,



P-AppK-Kmeans
Euler-Clustering

0.3584 £ 0.0143
0.382 + 0.0187

0.5094 £ 0.0358
0.582 + 0.0103

0.4447 £ 0.0066
0.4869 + 0.0066

0.4651 £ 0.0133
0.5146 £+ 0.0074

Event Scene 13 Caltech 101 SImagenet Caltech 256
Kmeans 0.1326 £ 0.0306 0.255 £ 0.037 0.3227 £ 0.0082 0.2142 £0.0075 | 0.2206 £ 0.0042
G-K-Kmeans 0.227 £0.0084 | 0.3125£0.0109 | 0.3344 + 0.0088 0.2594 £ 0.0081 | 0.2342 £ 0.0051
P-K-Kmeans 0.3576 £0.0124 | 0.514 £ 0.0355 0.4475 £+ 0.0051 0.4694 = 0.0123 0.2965 £ 0.004
G-N-Cut 0.1357 0.2717 0.3535 0.2847 0.2775
P-N-Cut 0.3059 0.393 0.4458 0.4267 0.3054
G-AppK-Kmeans | 0.2266 £ 0.0138 | 0.306 £ 0.0065 0.3365 £ 0.0093 0.26 = 0.0088 0.2313 £ 0.0019

0.2943 £ 0.004
0.3175 £ 0.002

Table 2: Average NMI over 10 runs on the five datasets

Event Scene 13 Caltech 101 SImagenet Caltech 256
Kmeans 5.18 £1.35 21.03+£8.32 | 241.03 +47.46 | 166.86 £ 41.83 2141.69 £ 35.93
G-K-Kmeans 4.09+0.11 24.26 = 1.86 139.84 £ 9.26 638.44 £ 48.5 3871.81 £ 353.70
P-K-Kmeans 232.12+£0.15 | 244.15+1.28 | 141248 +13.69 | 11522.27 = 77.0 | 23292.58 £ 283.37
G-N-Cut 4.26 22.47 145.65 549.41 2682.05
P-N-Cut 195.17 240.80 1248.48 12140.52 20596.08
G-AppK-Kmeans | 9.24 £0.51 | 18.12+1.06 | 61.09 £8.72 94.25 £ 6.7 345.3 £ 8.88
P-AppK-Kmeans | 228.97 £0.28 | 129.99 +1.39 | 311.91 +4.63 1207.53 £5.49 1545.59 £ 30.85
Euler-Clustering | 8.23 £ 2.56 36.16 £9.94 | 156.53 £41.28 | 283.77 £101.59 | 2036.28 + 297.73

Table 3: Average cost in seconds over 10 runs on the five datasets

monarch butterfly, rapeseed, cliff dwelling, mountain,
geyser, shoji, door, villa, to construct a small dataset
SImagenet [Chitta ez al., 2011].

e Caltech 256: The collection of this dataset contains
30,607 images of objects belonging to 256 categories
and 1 clutter. We discarded the images in the clutter,
and chose the other images to construct this dataset con-
sisting of 29,780 images covering 256 categories. Com-
pared to Caltech 101, there are more images per cate-
gory, and the images are not left-aligned in this dataset,
thus it is harder to identify.

4.3 Experimental Results

As aforementioned, we compare all methods in terms of the
NMI and the computational cost on the five datasets in the Ta-
ble 2 and Table 3. Table 2 tabulates the average NMI over 10
runs for the five public datasets. On all datasets, Euler clus-
tering achieves the best clustering performance among all the
compared approaches. It improves the clustering significant-
ly.

Compared to Non-approximate kernel methods, such as k-
means, Euler clustering enhances the clustering performance
with almost 1~2 times higher average NMI on Event, Scene
13 and SImagenet, and 50% higher average NMI on Cal-
tech 101 and Caltech 256. Compared to the Gaussian kernel
based kernel k-means and normalized cut, Euler clustering
obtains great improvement as well. In particular on Scene
13 dataset, Euler clustering obtains 0.27 higher average NMI
against G-K-Kmeans, and 0.31 higher average NMI against
G-N-Cut; on SImagenet dataset, 0.255 higher average NMI
and 0.23 higher average NMI are achieved as compared to G-
K-Kmeans and G-N-Cut respectively. Even compared to the
spatial pyramid matching kernel based ones that are popular-

ly used in literature for image categorization, Euler clustering
improves the clustering with almost 10%~15% higher NMI
values as well.

Compared to approximate kernel clustering methods such
as G-AppK-Kmeans and P-AppK-Kmeans, Euler clustering
also gains significant improvement on the NMI performance.
The figures in Table 2 and Table 3 show the approximate
methods, especially G-AppK-Kmeans, is always much faster
than Euler clustering. However the price is that its perfor-
mance is still much lower than Euler clustering, although it
may suggest a combination of the approximation methodol-
ogy and Euler clustering would be a promising extension in
future.

Among all datasets, Euler clustering performs much better
on Scene 13, Caltech 101 and SImagenet. Although dataset
Event contains less images and less categories, the cluster-
ing performances of all approaches are lower than the ones
on Scene 13, SImagenet, and Caltech 101, because the im-
ages from Event contain more semantic information. All ap-
proaches do not work very well on Caltech 256 as shown in
Table 2, since it is large and contains diverse categories with
large intra- and inter- class variations. Nevertheless, Euler
clustering still obtains comparable performance on the two
datasets.

Regarding the stability of Euler clustering, Table 2 also
shows that Euler clustering not only obtains the best cluster-
ing performance in terms of NMI but also obtains the most
robust clustering performance in terms of the standard de-
viation of NMI values against initializations. It obtains the
smallest standard deviation of NMI values on SImagenet and
Caltech 256. Although the absolute standard deviation values
on Scene 13 and Caltech 101 it obtains are not the smallest,
the relative standard deviation values with respective to the
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Figure 1: The clustering performance of Euler clustering on
the five datasets with different o values

NMI values are the smallest. On Event, the relative standard
deviation value it obtains is not the smallest, but it is not larger
than the ones obtained by G-K-Kmeans and P-AppK-Kmeans
too much.

Finally, the time for each method to take to achieve the
convergence is shown in Table 3. Table 3 shows that Euler
clustering is an efficient and more robust approach, although
it is not the fastest on the five datasets. Compared to k-means,
Euler clustering takes comparable time, as Euler clustering
needs additional processing to compute the mapping. How-
ever, it converges with less iterations on the datasets Caltech
101 and Caltech 256. The reason why Gaussian kernel based
clustering, namely G-K-Kmeans runs faster than Euler clus-
tering and even k-means on Event and Scene 13 as shown in
Table 1 is because the sizes of Event and Scene 13 are much
smaller than the dimensionality of data, so the Gaussian k-
ernel matrix can be calculated efficiently. However, as long
as the size of dataset increases, G-K-Kmeans takes more and
more time than Euler clustering on SImagenet and Caltech
256. This is because by the representation theorem, the com-
putational complexity of G-K-Kmeans is a quadratic func-
tion of the number of samples and G-K-Kmeans therefore
becomes more costly for large scale dataset. P-K-Kmeans
always takes a lot of time, because modeling spatial pyramid
takes time. Although P-K-Kmeans always gets better perfor-
mance than G-K-Kmeans, it is however still clearly performs
inferior to Euler clustering in the aspect of both computation-
al cost and NMI performance (10%-15% lower NMI values
than Euler clustering).

4.4 Parameters

In this section, we will show that our proposal is robust to the
parameter value. For investigation, we plot the average NMI
values it achieves on all the five datasets by varying « in the
range [0.1,1000] in Figure 1.

Figure 1 shows that when « lies in the range [0.1, 2], Euler
clustering performs similarly to the k-means algorithm with

the NMI values being close to the ones achieved by k-means,
which are shown in Table 2, because the cosine based dis-
tance ensembles the /5 norm distance when « is small. As «
increases, the clustering becomes better matching to the true
class distribution. When « is in the range [100, 1000], Euler
clustering performs much better than k-means as shown in
Figure 1. Figure 1 also shows that Euler clustering performs
stably when « in the range [100, 1000].

5 Conclusion

In this paper, we introduce Euler clustering in order to solve
the existing largely unsolved problems for kernel clustering,
namely the large scale computation problem and robust clus-
tering. This is achieved by incorporating Euler kernel in line
with kernel k-means. Euler kernel differs from existing ker-
nels and is a complex function. It provides a cosine distance
based measure between data and meanwhile induces an em-
pirical mapping of the same dimension as input data. Our
experiments have validated our approach against related ap-
proaches.
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