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Half-quadratic based Iterative Minimization for
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Abstract— Robust sparse representation has shown significant
potential in solving challenging problems in computer vision such
as biometrics and visual surveillance. Although several robust
sparse models have been proposed and promising results have
been obtained, they are either for error correction or for error
detection, and learning a general framework that systematically
unifies these two aspects and explore their relation is still an
open problem. In this paper, we develop a half-quadratic (HQ)
framework to solve the robust sparse representation problem. By
defining different kinds of half-quadratic functions, the proposed
HQ framework is applicable to performing both error correction
and error detection. More specifically, by using the additive form
of HQ, we propose an �1-regularized error correction method
by iteratively recovering corrupted data from errors incurred
by noises and outliers; by using the multiplicative form of
HQ, we propose an �1-regularized error detection method by
learning from uncorrupted data iteratively. We also show that
the �1-regularization solved by soft-thresholding function has
a dual relationship to Huber M-estimator, which theoretically
guarantees the performance of robust sparse representation in
terms of M-estimation. Experiments on robust face recognition
under severe occlusion and corruption validate our framework
and findings.

Index Terms— �1-Minimization, Half-quadratic Optimization,
Sparse Representation, M-estimator, Correntropy.

I. INTRODUCTION

SPARSE signal representation arises in application of com-

pressed sensing and has been considered as a significant

technique in computer vision and machine learning [1][2][3].

Based on the �0-�1 equivalence theory [4][5], the solution of an

�0 minimization problem is equal to that of an �1 minimization

problem under certain conditions. Sparse representation has been

widely applied in image analysis [6][7], compressive imaging

[8][9], multi-sensor networks [10], and subspace segmentation

[11]. Recent theoretical analysis [12] and experimental results

[13] show that even if corruptions are high, one can almost recover

corrupted data using �1-based techniques. So far, all the sparse

representation algorithms can be basically categorized into two

major categories: error correction [12][13][14] and error detection

[3][15][16]. The former aims to reconstruct the original data

during robust learning, while the latter detects errors and learns

from uncorrupted data. However, the theoretical support that �1
regularization tends to achieve robustness still needs to be further

studied [17][18]. More importantly, it is still an open issue to

unify these two approaches in a general framework and study

their intrinsic relation.
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A. Related Work

1) Sparse Representation: Given a predefined sample set X
.
=

[x1, x2, . . . , xn] ∈ R
d×n and an input sample y ∈ R

d×1, where n

is the number of elements in X and d is the feature dimension, the

sparse representation problem can be formulated as the following

minimization problem [14],

min
β

||β||1 s.t. Xβ = y, (1)

where ||β||1 =
∑n

i=1 |βi|. Considering that a white noise z

satisfies ||z||2 ≤ ε, we can relax the equality constraint Xβ = y

in the following form,

y = Xβ + z. (2)

Then the sparse representation β can be computed via basis

pursuit denoising (BPDN) method [19][20],

min
β

||β||1 s.t. ||y − Xβ||2 ≤ ε. (3)

By using the Lagrangian method, one can rewrite (3) as an

unconstrained optimization problem [13],

min
β

1
2 ||y − Xβ||22 + λ||β||1, (4)

where λ is a positive regularization parameter. Iteratively

reweighted methods, such as adaptive lasso [21], reweighted �1
minimization [22] and multi-stage convex relaxation [23], are

further developed to enhance sparsity for high-dimensional data.

And various numerical methods [24][25] have been developed

to minimize (3) or (4), where the iterative regularization method

based on soft-shrinkage operator [26] is often used.

2) Error Correction: In robust statistics [27] and computer

vision [1], the errors incurred by corruptions or occlusions may be

arbitrarily large. Hence, one often addresses the following robust

model [27],

y = Xβ + e + z, (5)

where e is a variable describing outliers that are intrinsically

different from uncorrupted data. A number of algorithms have

been developed to deal with outliers in (5) [1][3][13]. They are

actually either for error correction or for error detection. The

algorithms for error correction are mainly for recovering the

groundtruth from corrupted data. One representative algorithm in

the context of robust face recognition was proposed by Wright et

al. [14], which assumes that the error e has a sparse representation

and seeks the sparsest solution via solving the following problem:

min
β,e

||Xβ + e − y||22 + λ(||β||1 + ||e||1), (6)

where e ∈ R
d×1 is an unknown error vector whose nonzero

entries correspond to outliers. In [12][14], (6) is often solved by,

min
ω

||Bω − y||22 + λ||ω||1, (7)
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where ω = [βT , eT ]T ∈ R
(d+n)×1 and B = [X, I] ∈ R

d×(n+d)

(I is the identity matrix). The algorithms to solve (7) estimate

error as a vector variable and correct it in each iteration. And

the �1 norm is an approximation of �0 norm in order to obtain a

sparse solution. Recent analysis and experimental investigations

in [12][13] show that the same �1-minimization algorithm can be

used to recover corrupted data even if the level of corruption is

almost arbitrarily large.

3) Error Detection: The algorithms for error detection are

mainly for selecting the most significant pixels (or uncor-

rupted pixels) in an image for better recognition performance

[28][29][30]. These methods are often based on robust M-

estimators or assume the occlusion masks are provided, which are

widely used in subspace learning and Eigen tracking. Recently,

based on maximum correntropy criterion (MCC) [31] and half-

quadratic (HQ) optimization [32][33], He et al. [3] extended (4)

by substituting mean square error with correntropy and iteratively

computed a non-negative sparse solution for robust face recogni-

tion. He et al. [15] further studied an �1 regularized correntropy

problem for robust pattern recognition, where a robust sparse

representation is computed by iteratively solving a weighted �1-

minimization problem. Furthermore, Yang et al. [16] modeled

robust sparse representation as the robust regression problem with

a sparse constraint and proposed an iteratively reweighted least

squares algorithm. Li et al. [34] developed a structured sparse

error coding method for continuous occlusion based on the error

detection strategy.

To the best of our knowledge, currently there is not a general

framework to unify these two kinds of sparse representation

approaches aforementioned and study their relationship. For ex-

ample, although the sparse representation method in [1] indeed

improves robustness under tough conditions (e.g. 80% corrup-

tion), the reason why it can work under such a dense error still

needs to be further investigated. In addition, robust sparse analysis

is still an open and hot issue in information theory [18][17][35].

B. Contribution

In order to unify robust sparse representation methods for error

correction and error detection into one framework, we first address

a general robust sparse representation problem, i.e.,

min
β

∑d

j=1
φ((Xβ − y)j) + λ||β||1, (8)

where φ(.) is a robust M-estimator and can be optimized by

half-quadratic (HQ) optimization1, and (.)j denotes the j-th

dimension of an input vector. We will investigate a general half-

quadratic framework to minimize (8). Under this framework, a

robust sparse representation problem is reduced to an iterative

regularization problem, which can be optimized by solving a

number of unconstrained quadratic problems. Then, we show that

iteratively reweighted least squares and shrink operator based �1
iterative regularization method are its two special cases.

Second, by utilizing the additive form of HQ, an �1-regularized

error correction method is developed to iteratively recover cor-

rupted data through estimating errors incurred by noise and

1Note that φ(.) can be a convex function or a non-convex function. And
not all M-estimators can be optimized by HQ. For example, absolute function
cannot be optimized by HQ [33] and |.|α(α ∈ (1, 2]) in �p M-estimator is
not applicable in the additive form of HQ.

outliers; by harnessing the multiplicative form of HQ, an �1-

regularized error detection method is developed through itera-

tively using uncorrupted data to perform learning.

Third, we investigate possible M-estimators (φ(.)) to show that

the shrink operator on errors can be explained as the additive form

of Huber M-estimator in iterative regularization, and the variable

e in (6) can be viewed as an auxiliary variable of Huber M-

estimator in half-quadratic minimization. When the M-estimator

in (8) is Welsch M-estimator, the undetermined linear system (i.e.,

Xβ = y) becomes a correntropy [31] adaptive system, which

has a probabilistic support for large level of corruptions [31].

Numerical results on robust face recognition are run to validate

our claims and demonstrate that our framework is sufficient in

most cases.

In summary, the novelties of our work are as follows:

1. A unified framework is proposed to investigate both error

correction and error detection. The connection and differ-

ence between error correction and detection are extensively

investigated.

2. A deep investigation into Huber M-estimator is presented,

which shows that the absolute function (in �1 regularizer)

solved by shrink operator can be viewed as the dual function

of Huber M-estimator. To the best of our knowledge, it is

the first time to present such a theoretical guarantee of the

robustness of the �1 based sparse representation methods

from the viewpoint of M-estimation.

3. Robust and efficient �1-regularized methods are developed

using correntropy (i.e., Welsch M-estimator), which per-

forms better than other M-estimators in terms of robustness

with lower computational cost.

The rest of the paper is organized as follows. In Section II, we

revisit the HQ minimization for convex or nonconvex functions. In

Section III, we develop error correction and detection methods by

harnessing the additive and the multiplicative form respectively.

In Section IV, we investigate various robust M-estimators and

discuss their robustness from the viewpoint of M-estimation. In

Section V, the proposed approaches are validated by conducting

robust face recognition experiments along with the comparison

with related methods. Finally, we draw the conclusion and discuss

future work in Section VI.

II. HALF-QUADRATIC MINIMIZATION

Since our investigation is relying on the half-quadratic theory,

we first review some theoretical background and half-quadratic

modeling based on conjugate function theory [36][37] for convex

or non-convex minimization.

A. Conjugate Function

Given a differentiable function f(v) : R
n → R, the conjugate

f∗(p) : R
n → R of the function f is defined as [38]:

f∗(p) = max
v∈domf

(pT v − f(v)). (9)

The domain of f∗(p) is bounded above on domf [38]. Since

f∗(p) is the pointwise supremum of a family of convex functions

of p, it is a convex function [38]. If f(v) is convex and closed,

the conjugate of its conjugate function is itself, i.e., f∗∗ = f [38].

Based on conjugate function, a loss function in image restora-

tion and signal recovery can be defined as [33][39][40],

f(v) = min
p

{Q(v, p) + ϕ(p)}, (10)
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where f(.) is a potential loss function (such as M-estimators in

Table I), v is a set of adjustable parameters of a linear system, p

is an auxiliary variable in HQ optimization, Q(v, p) is a quadratic

function (Q(v, p)
.
=

∑
i piv

2
i for p ∈ R

d
+ and v ∈ R

d, or

Q(v, p)
.
= ||v − p||22 for p ∈ R

d and v ∈ R
d), and ϕ(.) is the

dual potential function of f(.) 2. An example of (10) is given in

(61) (Appendix III) for compressed signal recovery.

In the two-step iterative shrinkage/thresholding algorithms [13],

the minimization function of (10) is also known as proximal map-

ping [39][40]; in half quadratic methods, the function Q(v, p) +

ϕ(p) is called the resultant (augmented) cost-function of f(v), and

can be optimized by a two-step alternating minimization way [33].

In [36][37], half-quadratic regularization is developed to minimize

non-convex f(v). In the following, we briefly review the HQ

minimization and discuss its relationship to other methods.

B. Half-quadratic Optimization

Let φv(.) be a function on a vector v ∈ R
d that is defined as

φv(v)
.
=

∑d

j=1
φ(vj), (11)

where φ(.) is a potential loss function in HQ [33][41] and vj is

the j-th entry of v. In machine learning and compressed sensing,

one often aims to compute the following minimization problem:

min
v

φv(v) + J(v), (12)

where J(v) is a convex penalty function on v. According to half-

quadratic minimization [36][37], we know that for a fixed vj , the

following equation holds,

φ(vj) = min
pj

Q(vj , pj) + ϕ(pj), (13)

where ϕ(.) is the dual potential function of φ(.), and Q(vj , pj)

is the half quadratic function which can be modeled in the

additive or the multiplicative form as shown later. Let Qv(v, p)
.
=∑d

j=1 Q(vj , pj), we have the vector form of (13),

φv(v) = min
p

Qv(v, p) +
∑d

j=1
ϕ(pj). (14)

By substituting (14) into (12), we obtain that

min
v

{φv(v) + J(v)} = min
v,p

{Qv(v, p) +

d∑
j=1

ϕ(pj) + J(v)}, (15)

where pj is determined by a minimization function δ(.) that

is only related to φ(.) (See Table I for specific forms). In HQ

optimization, δ(.) is derived from conjugate function and satisfies

that {Q(vj , δ(vj))+ϕ(δ(vj))} ≤ {Q(vj , pj)+ϕ(pj)}. Let δv(v)
.
=

[δ(v1), . . . , δ(vd)], and then one can alternately minimize (15) as

follows,

pt+1 = δv(v), (16)

vt+1 = arg min
v

Qv(v, pt+1) + J(v), (17)

where t indicates the t-th iteration. Algorithm 1 summarizes the

optimization procedure. At each step, the objective function in

(15) is reduced alternatingly until it converges.

2Note that for different types of Q(v, p), the dual potential functions ϕ(.)
may be different.

Algorithm 1: Half-quadratic based Algorithms

Input: data matrix X, test sample y, and v = 
0.

Output: v

1: while “not converged” do
2: pt+1 = δv(v)

3: vt+1 = arg min
v

Qv(v, pt+1) + J(v)

4: t = t + 1

5: end while

C. The Additive and Multiplicative Forms

In HQ minimization, the half-quadratic reformulation Q(vj , pj)

of an original cost-function has two forms [36][37]: the additive

form denoted by QA(vj , pj) and the multiplicative form denoted

by QM (vj , pj). Specifically, QA(vj , pj) is formulated as [37],

QA(vj , pj) = (vj
√

c − pj/
√

c)2, (18)

where c is a constant and c > 0. The additive form indicates

that we can expand a function φ(.) to a combination of quadratic

terms and the auxiliary variable pj is related to vj . During iterative

minimization, the value of vj is updated and refined by pj .

The multiplicative form QM (vj , pj) is formulated in the

form [36],

QM (vj , pj) =
1

2
pjv

2
j . (19)

It indicates that we can expand a non-convex (or convex) function

φ(.) to quadratic terms of the multiplicative form. The auxiliary

variable pj is introduced as a data-fidelity term. For vj , pj

indicates the contribution of vj to the whole data v.

Experimental results in [33] show that when the additive form

is applicable, the number of iterations required to converge for the

additive form seems to be larger than that for the multiplicative

one. However, the computational cost of the additive form is

much lower than that of the multiplicative one. Although the

computational cost of the additive form is cheap, the additive

form has not received much attention in the past decades [33].

By using different forms of quadratic functions, we are able to

specifically obtain error correction or detection models as shown

in Section III. Before that, we in the next section first discuss

the relationship between the half-quadratic minimization with

existing works.

D. Connection to Sparse Representation Modeling

By combining the additive form or the multiplicative one, the

half-quadratic framework is well connected with some existing

popular sparse representation models. We specify J(v) to be two

convex functions (i.e., J(.) = λ||.||1 and J(.) = λ||.||22), and

discuss its relationship with other algorithms.

First, by substituting J(v) = λ||v||1 into (12), we obtain the

following �1-minimization problem:

min
v

λ||v||1 +
1

2
φv(v). (20)

By combining (20), (18) and (14), we have

v∗ = arg min
v

λ||v||1 +
1

2

d∑
j=1

(vj
√

c − pt+1
j /

√
c)2. (21)

According to the additive form of HQ [33], we have that the

minimization function δ(v) = cv − φ′(v). Then we have,
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pt+1
j = cvt

j − φ′(vt
j). (22)

By substituting (22) into (21), we have the iterative scheme,

vt+1 = arg min
v

λ||v||1 +
1

2
||√cv − (

√
cvt − (∇φv(vt)/

√
c))||22,

(23)

where ∇φv(vt) = [φ′(vt
1), . . . , φ

′(vt
d)]T . Let ct = 1

c , we can

rewrite the above equation as follows,

vt+1 = arg min
v

λ||v||1 +
1

2ct
||v − (vt − ct∇φv(vt))||22. (24)

The iterative scheme in (24) is a basic scheme in �1 minimiza-

tion [24]. Many algorithms [26][42][43][44], have been proposed

based on (24). Each of its components vi can be independently

obtained by soft shrinkage operator [24].

In addition, by substituting v = Xβ − y and J(β) = ||β||22 into

(12), (12) then takes the form:

min
β

φv(Xβ − y) + λ||β||22. (25)

If we make use of the multiplicative form of HQ in Algorithm 1

to solve (25), Algorithm 1 becomes the iterative reweighted least

squares (IRLS) of robust statistics [28][31]. It has been shown in

[32] that IRLS is a special case of half-quadratic minimization.

III. HALF-QUADRATIC BASED ROBUST SPARSE

REPRESENTATION ALGORITHMS

Based on the HQ framework, this section addresses the robust

problem in (8). We can rewrite (8) as follows:

J(β)
.
= min

β
φv(Xβ − y) + λ||β||1, (26)

where φ(.) in φv(.) is a non-convex (or convex) M-estimator

and can be optimized by HQ. (26) can be viewed as a robust

formulation of (4) by substituting �2-norm with φv(.). When φ(.)

is Welsch M-estimator, (26) is actually based on maximum cor-

rentropy criterion (MCC) (see Appendix II in the supplementary

file). Since φ(.) is a robust M-estimator, the minimization of

(8) is actually a M-estimation of β. We adopt the two forms

of HQ to optimize (26). When the additive form is used, we

gain an �1 regularized error correction algorithm. The auxiliary

variable of HQ actually models errors incurred by noise. When

the multiplicative form is used, we obtain an �1 regularized error

detection algorithm. The auxiliary variable can be viewed as a

weight to detect noise. The following will detail the technique

respectively.

A. Proposed Error Correction

In this subsection, we utilize the additive form of HQ to

optimize (26). Let Qv(Xβ− y, p) = ||Xβ− y− p||22, we have the

following augmented objective function of (26) [32][33],

JA(β, p)
.
= min

β,p
||Xβ − y − p||22 +

d∑
j=1

ϕ(pj) + λ||β||1, (27)

where auxiliary variable p is uniquely determined by the mini-

mization function w.r.t. φ(.).

Let f t+1 .
= pt+1 + y, we can alternatingly minimize (27) as

follows,

f t+1 = y + δv(Xβt − y), (28)

βt+1 = arg min
β

||Xβ − f t+1||22 + λ||β||1. (29)

Note that, to save computational costs,it is efficient to find a

solution in (29) that satisfies JA(βt+1, pt+1) ≤ ĴA(βt, pt+1).
Algorithm 2 summarizes the optimization procedure. As in

Remark 2 in [33] (page 3), Algorithm 2 alternately minimizes

the augmented objective function JA(β, p) until it converges

(Proposition 2). In each iteration, it tries to re-estimate the value

of an input sample y (f t+1). Since φ(.) is a robust M-estimator,

corrupted entries in y will be corrected step by step. Hence

we denote Algorithm 2 as error correction. The minimization

subproblem in (29) can be solved and expressed in a closed form

as a shrinkage [24]. To easily tune the parameters, we give an

active algorithm in Appendix I (See the supplementary file) to

implement Algorithm 2.

Algorithm 2: �1-regularized Error Correction

Input: data matrix X, test sample y, and β = XT y.

Output: β

1: while “not converged” do
2: f t+1 = y + δv(Xβt − y)

3: βt+1 = arg min
β

||Xβ − f t+1||22 + λ||β||1
4: t = t + 1

5: end while

Proposition 1: The sequence {JA(βt, pt), t = 1, 2, . . . } gen-

erated by Algorithm 2 converges.
Proof: According to the properties of the minimizer function

δ(.) ({Q(vj , δ(vj))+ϕ(δ(vj))} ≤ {Q(vj , pj)+ϕ(pj)}), for a fixed

βt, we have JA(βt, pt+1) ≤ JA(βt, pt). And according to (29),

for a fixed pt+1, we have that JA(βt+1, pt+1) ≤ ĴA(βt, pt+1)

such that

JA(βt+1, pt+1) ≤ ĴA(βt, pt+1) ≤ ĴA(βt, pt).

Since JA is bounded below, the sequence

{. . . , JA(βt, pt), JA(βt, pt+1), JA(βt+1, pt+1), . . . }
converges as t → ∞. In particular, JA(βt+1) ≤ JA(βt), for all

t, and the sequence JA(βt) is convergent.
Similar to S1-�1-MAGIC, Algorithm 2 also estimates noise at

each iteration3. However, different from S1-�1-MAGIC which as-

sumes that noise has a sparse representation as well, Algorithm 2

has no such a specific assumption. If noise is indeed sparse in

some applications, Algorithm 2 will naturally obtain a sparse

solution of p due to the fact that outliers are significantly different

from uncorrupted entries.
Fig. 1 (d) and (e) show two examples of the auxiliary variables

when Algorithm 2 converges. From Fig. 1 (b), we see that there

are two occluded regions. One is highlight occlusion, and the

other is sun-glasses occlusion. We see that Algorithm 2 can ac-

curately estimate these two occlusions in this case. This is because

M-estimators can efficiently deal with outliers (occlusions) that

are significantly different from uncorrupted face pixels. As shown

in Table I in Section IV, the minimizer functions of M-estimators

in the additive form can estimate outliers and meanwhile keep

the variations of uncorrupted data. More experimental validations

are given in Section V. In Fig. 1 (d) and (e), the red regions

with large positive values correspond to the highlight conclusion,

and the blue regions with small negative values correspond to the

sun-glasses conclusion.

3We denote the �1-MAGIC toolbox used to solve (47) as S1-�1-MAGIC.
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Fig. 1. Error and weight images learned by different methods. An error (or weight) image is obtained by reshaping an error vector e or auxiliary variable
p. (a) An uncorrupted face image in the AR database. (b) An input face image y with sun-glasses occlusion. (c) The error image of S1-�1-MAGIC. (d)
The error image of Fair M-estimator based error correction. (e) The error image of Welsch M-estimator based error correction. (f) The weight image of Fair
M-estimator based error detection. (g) The weight image of Welsch M-estimator based error detection.

B. Proposed Error Detection

In this subsection, we make use of the multiplicative form to

optimize (26). Let Qv(Xβ−y, p) =
∑

j (pj(yj − ∑
i xijβi)

2), we

have the following augmented objective function of (26) [32][33],

JM (β, p)
.
= min

β,p

d∑
j=1

(pj(yj −
n∑

i=1

xijβi)
2 + ϕ(pj)) + λ||β||1.

(30)

According to HQ optimization, a local minimizer (β, p) of (30)

can be alternately calculated by

pt+1
j = δ(yj −

n∑
i=1

xijβ
t
i ), (31)

βt+1 = arg min
β

(y − Xβ)T P (y − Xβ) + λ||β||1, (32)

where P is a diagonal matrix whose diagonal element Pjj =

pt+1
j . The optimization problem in (32) can be rewritten as the

following �1-regularized quadratic problem:

min
β

||X̂β − f t+1||22 + λ||β||1, (33)

where X̂ =
√

PX and f t+1 =
√

Py. Note that, to save compu-

tational cost, it is unnecessary to find the global solution of (33).

It may be more efficient to find a sparse solution that satisfies

JM (βt+1, pt+1) ≤ ĴM (βt, pt+1).

Algorithm 3 summarizes the optimization procedure. It alternat-

ingly minimizes the augmented objective function JM (β, p) until

it converges (Proposition 2). Since outliers are far away from the

portion of uncorrupted data, their contributions to the optimization

of the objective function will be smaller, as they always gain

small values in matrix P t+1. Therefore, outliers will have weaker

influence on the estimation of β such that Algorithm 3 can

compute a sparse representation based on uncorrupted entries in

y. And hence, we denote Algorithm 3 as error detection.

Algorithm 3: �1-regularized Error Detection

Input: data matrix X, test sample y, and β = XT y.

Output: β, p

1: while “not converged” do
2: P t+1

jj = δ(yj −
n∑

i=1
xijβ

t
i )

3: f t+1 =
√

P t+1y and X̂ =
√

P t+1X

4: βt+1 = arg min
β

||X̂β − f t+1||22 + λ||β||1
5: t = t + 1

6: end while

Proposition 2: The sequence {ĴM (βt, pt), t = 1, 2, . . . } gen-

erated by Algorithm 3 converges.

Proof: According to the properties of the minimizer function

δ(.) ({Q(vj , δ(vj)) + ϕ(δ(vj))} ≤ {Q(vj , pj) + ϕ(pj)}), we have

the following form for a fixed βt, JM (βt, pt+1) ≤ JM (βt, pt).

And for a fixed pt+1, we have JM (βt+1, pt+1) ≤ JM (βt, pt+1)

such that

JM (βt+1, pt+1) ≤ ĴM (βt, pt+1) ≤ ĴM (βt, pt).

Since JA is bounded below, the sequence

{. . . , JM (βt, pt), JM (βt, pt+1), JM (βt+1, pt+1), . . . }
converges as t → ∞. In particular, JM (βt+1) ≤ JM (βt), for all

t, and the sequence JM (βt) is convergent.

Fig. 1 (f) and (g) show two examples of auxiliary variables

when Algorithm 3 converges. We see that Algorithm 3 treats the

two occlusions in the same way. It assigns the two occluded

regions small values (weights) due to the robustness of M-

estimators. The auxiliary variable in Algorithm 3 actually plays

a role of weighting function in each iteration.

IV. M-ESTIMATION FOR LARGE CORRUPTIONS

We leave the discussion of φ in the previous sections. In this

section, we focus on it and connect it with the M-estimation. In

robust statistics, one popular robust technique is M-estimation

[45] (See Appendix II), which is defined as the minima of

summation of functions of data and has been used with a history

of more than 30 years. Table I tabulates the corresponding

minimization functions δ related to the multiplicative and the

additive forms of HQ respectively for different potential M-

estimators φ. The first row tabulates potential M-estimators and

their curves [45]. The dashlines in these figures correspond to

�1 M-estimator4. The second row tabulates their corresponding

minimization functions of the multiplicative form. The third

row tabulates their corresponding minimization functions of the

additive form. From Table I, we see that all M-estimators achieve

the minima (zero) at origin.

In information theoretic learning (ITL) [46], it has been proved

that the robustness of correntropy [31] and Renyi’s quadratic

entropy [41] based algorithms is actually related to Welsch M-

estimator. If we substitute φ(.) with Welsch M-estimator, the

adaptive linear system in (8) is a correntropy based adaptive

system (See Appendix II). In ITL, correntropy has a probabilistic

meaning of maximizing the error probability density at the origin

[31] and its adaptation is applicable in any noisy environment

4In this section, we discuss the �1 M-estimator in robust statistics [45].
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TABLE I

MINIMIZATION FUNCTIONS δ RELEVANT TO THE MULTIPLICATIVE AND THE ADDITIVE FORM OF HQ FOR DIFFERENT POTENTIAL M-ESTIMATORS φ. α IN

M-ESTIMATOR IS A CONSTANT.

estimators �1-�2 Fair log-cosh Welsch(σ2 = 0.5) Huber (λ = 0.1)

Potential

function

φ(t)

√
α + t2 − 1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

|t|
α

− log(1 + |t|
α

)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

log(cosh(αt))

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1 − exp(− t2

σ2 )

0 0.5 1 1.5 2
0

0.5

1

1.5

2

{
t2/2 |t| ≤ λ

λ|t| − λ2

2
|t| > λ

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Multiplica

-tive form

δ(t)

1/
√

α + t2

0 0.5 1 1.5 2

0.5

0.6

0.7

0.8

0.9

1

1/α(α + |t|)

0 0.5 1 1.5 2

0.4

0.6

0.8

1

α tanh(αt)
t

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

exp(− t2

σ2 )

0 1 2

0.2

0.4

0.6

0.8

1

{
1 |t| ≤ λ
λ
|t| |t| > λ

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Additive

form

δ(t)

t − t√
α+t2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t − t
α(α+|t|)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t − α tanh(αt)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t − t exp(− t2

σ2 )

0 0.5 1 1.5 2
0

0.5

1

1.5

2

{
0 |t| ≤ λ

t − λsign(t) |t| > λ

0 0.5 1 1.5 2
0

0.5

1

1.5

2

when its distribution has the maximum at the origin [31]. This

probabilistic property enables the theoretical support that corren-

tropy adaptation can deal with large corruption. Hence learning

algorithms will obtain high accuracy if the uncorrupted pixels are

discriminative enough. In the following, we mainly discuss two

commonly used M-estimators: Huber and Welsch.

In the compressed sensing community, the fast iterative

�1-minimization algorithms [13][24] often rely on the soft-

thresholding function. Since the �1-norm ||p||1 =
∑

j

∣∣pj

∣∣ in those

algorithms is separable, each entry pj of p is the minimization

solution of the following problem,

min
pj

1

2
(xj − pj)

2 + λ|pj |, (34)

where pj ∈ R and xj ∈ R is the j-th entry of vector x. In

compressed sensing, the optimal solution p∗j of (34) is popularly

found by the following soft-thresholding function, i.e.,

p∗j = soft(xj , λ) =

{
0 |xj | ≤ λ

xj − λsign(xj) |xj | > λ
. (35)

By substituting p∗j = soft(xj , λ) into (34), we have,

min
pj

1

2
(xj − pj)

2 + λ|pj | =

{
x2

j/2
∣∣xj

∣∣ ≤ λ

λ
∣∣xj

∣∣ − λ2

2

∣∣xj

∣∣ > λ
. (36)

The right part of equation (36) is often denoted as Huber loss

function φH(.) in HQ (or Huber M-estimator in robust statistics).

By conducting a summation on (36) over j, we have the following

equation,

min
p

1

2
||x − p||22 + λ||p||1 =

∑
j
φH(xj). (37)

The formulations in (36) and (37) have also been studied for the

HQ minimization in terms of the additive form where Huber loss

function φH(.) has the following additive form (See Equations

(3.26) to (3.28) in Section 3.3 of [33]),

min
xj

φH(xj) = min
xj ,pj

1

2
(xj − pj)

2 + λ|pj |, (38)

where pj is an auxiliary variable and is uniquely determined by

the minimization function of φH , i.e., soft-thresholding function

in (35). In HQ, the right-hand side of equation (38) is often called

augmented objective function.

Note that no matter which side (the left- or the right-hand side

of (36) and (38)) is used to model a problem, the dual relationship

between Huber loss function and absolute function is uniquely

determined by soft-thresholding function. And it always holds no

matter vector p is sparse or not. If p is used to model dense

noise, one can also correctly detect outliers due to the robustness

of Huber M-estimator.

Based on this conjugate perspective, we learn that when the

problem in (6) is solved using soft-thresholding methods, (6) is

equivalent to the following problem by substituting ej with −p∗j
in (35) and applying (38),

min
β

∑d

j=1
φH((Xβ − y)j) + λ||β||1. (39)

And according to the additive form of HQ, we can also have the

augmented problem of (39), i.e.,

min
β,e

∑d

j=1
(((Xβ + e − y)j)

2 + λ|ej |) + λ||β||1, (40)

where the function |.| is the dual potential function of Huber loss

function [33]. When one resorts to iterative shrinkage threshold-

ing for solving (6) and (40) and uses a descending λ (i.e., λ

approaches 0), φH(x) = mine
1
2 (x − e)2 + λ |e| will approach

mine
1
2 (x − e)2 (i.e., e∗ = arg mine

1
2 (x − e)2 = x) such that
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the solutions of both (6) and (40) tend to be the solution of

Xβ − y = e.

Different from the assumption that e in (6) has a sparse

representation [1][14], the �1-norm in (40) means the dual po-

tential function of Huber M-estimator (See (37)) rather than an

approximation of �0-norm. Hence both (39) and (40) are robust

to outliers due to M-estimation. Recent experimental results on

robust face recognition [13][14] also show that the model in (6)

can achieve high recognition accuracy even when corruption is

larger than 50%. From this dual viewpoint, we learn that this

robustness is potentially because the soft-thresholding function

used to solve (6) plays a role of robust Huber M-estimator.

Looking at the curve of Welsch M-estimator, we can observe

that its segment between 0 and 1 is similar to that of �1-norm.

However, the segment of Welsch M-estimator between 1 and ∞
tends to be flattened out and is significantly different from �1-

norm. It imposes the same penalties to all outliers so that it

can efficiently deal with those outliers with large magnitudes.

Looking at the multiplicative minimization function of Welsch

M-estimator, we can observe that the minimization function

decreases dramatically when t > 0.5. That is to say, outliers will

be given small weights during optimization. Fig. 1 (g) shows an

example of the weight image of Welsch M-estimator by reshaping

the auxiliary variable p of our error detection algorithm. Looking

at the additive minimization function of Welsch M-estimator, we

can observe that the minimization function tends to be diagonal

when t > 0.5. This means that an algorithm based on Welsch

M-estimator can accurately estimate outliers that are intrinsically

different from the uncorrupted ones. Fig. 1 (e) shows an example

of the error image of Welsch M-estimator by reshaping auxiliary

variable p of our error correction algorithm.

Fig. 1 also shows visual results of error correction and detection

algorithms for robust face recognition along with the comparison

with S1-�1-MAGIC. (More results will be reported in the exper-

imental section.) Fig. 1 (a) shows an uncorrupted face image in

the AR database [47]. And Fig. 1 (b) shows an input face image

y with sun-glasses occlusion. We can observe that there are two

types of occlusions: one is incurred by sun-glasses and the other

is incurred by the highlight in the sun-glasses. Fig. 1 (c) shows

the error image of S1-�1-MAGIC by reshaping error vector e in

(6). Fig. 1 (d) and (e) show the error images of Fair and Welsch

M-estimators respectively by reshaping the auxiliary variable p

of our error correction algorithm; and Fig. 1 (f) and (g) show the

weight images of Fair and Welsch M-estimator respectively by

reshaping the auxiliary variable p of our error detection algorithm.

From Fig. 1, we can observe that the methods based on Welsch

M-estimator can accurately estimate or detect the occluded region

in a face image. Compared with the results of Fair M-estimator,

those of Welsch M-estimator are smoother, especially in non-

occluded regions. This means that the method based on Welsch

M-estimator can estimate occlusions more accurately than the one

based on Fair M-estimator. Comparing Fig. 1 (c) with (e), we can

observe that the error correction algorithm based on Welsch M-

estimator likely computes a smoother result than S1-�1-MAGIC.

V. EXPERIMENTAL RESULTS

In experiments, we focus on the robust face recognition prob-

lem [14][29] and demonstrate the effectiveness of the proposed

methods for solving occlusion and corruption problems. Two

public face recognition databases, namely the AR [47] and

Extended Yale B [48] databases, were selected for experiments.

Recognition rate and computational cost were used to evaluate

the compared methods. All algorithms were implemented using

MATLAB on an AMD Quad-Core 1.80GHz machine with 2GB

memory.

A. Experimental Setting and Face Databases

Databases. All grayscale images of the two public face

databases were aligned by manually locating eyes of face images.

The two selected databases are as follows.

1) AR Database [47]: it consists of over 4,000 face images from

126 subjects (70 men and 56 women). For each subject, 26 facial

images were taken in two separate sessions. These images suffer

different facial variations including various facial expressions

(neutral, smile, anger, and scream), illumination variations (left

light on, right light on and all side lights on), and occlusions

by sun-glasses or scarf. This database is often used to compare

robust face recognition methods. In our experiments, we used the

same subset used in [3] that consists of 65 male subjects and 54

female subjects. Facial images were cropped and the resolution

is 112 × 92.

Fig. 2. Cropped facial images of the first subject in the AR database. Images
in the first row are from the first session and images in the second row are
from the second session.

2) Extended Yale B Database[48][49]: it is composed of 2,414

frontal face images from 38 subjects. Cropped and normalized

192 × 168 face images were captured under various controlled

lighting conditions [49][14]. Fig. 3 shows some face images of

the first subject in this database. For each subject, half of the

images were randomly selected for training (i.e., about 32 images

for each subject), and the rest were for testing.

Fig. 3. Cropped facial images of one subject in the YALE B database.

Methods. We categorize the compared methods into two

groups. The first group is not robust to outliers, and the second

group is robust to outliers.

First Group In our experiments, the first group includes five

sparse representation models, detailed as follows:

1) For the first sparse representation model formed by

min
β

||β||1 s.t. ||Xβ − y||2 ≤ ε, (41)

we denote the �1-MAGIC toolbox5 used to solve (41) as S0-�1-

MAGIC.

5http://users.ece.gatech.edu/ justin/l1magic/
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2) For the second sparse representation model formed by

min
β

‖Xβ − y‖2
2 + λ||β||1, (42)

we denote the feature-sign search (FSS) algorithm [50]6, fast

iterative shrinkage-thresholding algorithm (FISTA) [51] and Ho-

motopy (HOMO) [52] algorithm used to solve (42) as S0-FSS,

S0-FISTA and S0-HOMO respectively.

3) For the third sparse representation model formed by

min
β

||β||1 s.t. Xβ = y, (43)

we denote the polytope faces pursuit (PFP) [53] method used to

solve (43) as S0-PFP.

4) For the fourth sparse representation model formed by

min
β

‖Xβ − y‖2
2 + λ

∑
i
wi |βi|, (44)

where w = [w1, . . . , wn] is a weight vector. We denote the method

used to solve the above adaptive LASSO problem [21] as S0-

ALASSO.

5) For the fifth sparse representation model formed by

min
β

∑
i
wi|βi| s.t. Xβ = y, (45)

we denote the method used to solve the above reweighted �1
minimization problem [22] as S0-�1-W.

In addition, we also compare three linear representation meth-

ods. In the half-quadratic minimization for image processing, one

considers the following model to deal with white Gaussian noise,

min
β

‖Xβ − y‖2
2 + λ

∑
i
φ(βi − βi+1), (46)

where φ(x) =
√

ε + x2 is a half-quadratic loss function. And the

regularization in (46) models the first order differences between

neighboring elements in β. We denote the additive form and the

multiplicative form to (46) as HQSA and HQSM respectively.

Linear regression based classification (LRC) [54] and collab-

orative representation based classification (CRC) [55] are also

compared.

Second Group The second group consists of three robust sparse

representation models detailed as follows.

1) For the first sparse representation model formed by

min
β,e

||β||1 + ‖e‖1 s.t. ||Xβ + e − y||2 ≤ ε, (47)

we denote the �1-MAGIC toolbox used to solve (47) as S1-�1-

MAGIC.

2) For the second sparse representation model formed by

min
β,e

‖Xβ + e − y‖2
2 + λ(||β||1 + ||e||1), (48)

we denote the method FSS, FISTA and HOMO used to solve (48)

as S1-FSS, S1-FISTA and S1-HOMO respectively.

3) For the third sparse representation model in the form

min
β,e

||β||1 + ‖e‖1 s.t. Xβ + e = y, (49)

we denote the polytope faces pursuit (PFP) [53] method used to

solve (49) as S1-PFP.

PFP, FISTA, HOMO, and sparse reconstruction by separable

approximation (SpaRSA) [56] methods were implemented by

6http://redwood.berkeley.edu/ bruno/sparsenet/

‘fast �1 minimization’ MATLAB package [13]7. We tuned the

parameters of all the compared methods to achieve the best

performance on the training set, and then used these parameter

settings on the testing set. Since these methods take different

optimization strategies and a corrupted testing set may be different

from a training one, different sparse representation methods may

obtain different results.

Classifier. Wright et al. [1][14] proposed a linear classification

method for sparse representation, and He et al. [3][15] developed

a nonlinear one. In this section, to fairly evaluate different robust

methods, we classify an input sample y as suggested in [14].

For each class c, let ψc : R
n → R

nc be a function which

selects the coefficients belonging to class c, i.e. ψc(β) ∈ R
nc

is a vector whose entries are the entries in β corresponding to

class c. Utilizing only the coefficients associated to class c, a

given sample y is reconstructed as ŷc = Xcψc(β) where Xc is a

matrix whose samples all belong to the class c. Then y can be

classified by assigning it to the class corresponding to the minimal

difference between y and ŷc, i.e.,

arg min
c

||y − Xcψc(β)||2. (50)

Algorithm setting. As suggested by [14], we normalized the

columns of X to have unit �2-norm for all compared algorithms.

We make use of a robust way to estimate the parameters of M-

estimators. For Huber M-estimator, the threshold parameter is

estimated as a function of median, i.e.,

λ = a × median
j

(|yj −
∑n

i=1
xijβ

t
i |). (51)

And the kernel size of other M-estimators is estimated as a

function of mean [3],.i.e.,

σ2 = a × mean
j

((yj −
∑n

i=1
xijβ

t
i )

2). (52)

The constant a in (51) and (52) is empirically set to be 0.8 and 0.5

respectively. More experimental results on the parameter selection

of M-estimators will be shown in Section V-D. There are various

strategies for the implementation of Algorithm 2 and Algorithm

3. Here we implement them by the active set algorithm detailed

in Appendix I.

B. Sun-glasses Occlusion

In this subsection, we investigate different methods against sun-

glasses occlusion. For training, we used 952 non-occluded frontal

view images (about 8 faces for each subject) with varying facial

expressions in the AR database. Fig. 2 shows an example of 8

selected images of the first subject. For testing, we evaluated the

methods on the images occluded by sun-glasses. Fig. 1 (b) shows

a facial image from the testing set. Fig. 4 shows the recognition

performance of different methods using different downsampled

images of dimension 161, 644, and 2576 [14][54] corresponding

to downsampling ratios of 1/8, 1/4, and 1/2, respectively.

Fig. 4 (a) shows experimental results of the methods that are not

robust to outliers. Although these ’S0-’ methods all aim to find a

sparse solution, they obtain different recognition rates, as similarly

shown in [13]. This is because they take different strategies for

optimization and the corruption level in the testing set is unknown

such that one can not tune parameters of each method to obtain

the same result for each testing sample. We also see that sparse

7http://www.eecs.berkeley.edu/ yang/software/l1benchmark/
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Fig. 4. Recognition rates of different methods against sun-glasses occlusion in the AR database. (a) Recognition rates of the methods that are not robust to
outliers. (b) Recognition rates of the sparse representation methods that are robust to outliers. (c) M-estimators are optimized by the additive form (Algorithm
2). (d) M-estimators are optimized by the multiplicative form (Algorithm 3).

representation methods outperform linear presentation methods

(HQSA, HQSM, LRC and CRC). In addition, HQSA and HQSM

perform slightly better than LRC and CRC.

Fig. 4 (b) plots the results of different sparse representation

methods that are robust to outliers. Comparing Fig. 4 (b) with

Fig. 4 (a), we see that recognition rates in Fig. 4 (b) are obviously

higher than those in Fig. 4 (a). Although the same �1 minimization

methods are used, one ’S1-’ method can deal with outliers better

than its corresponding ’S0-’ method. The recognition rate of S1-

�1-MAGIC is twice higher than that of S0-�1-MAGIC. The results

in Fig. 4 (a) and Fig. 4 (b) suggest that �1 minimization methods

’S0-’ fail to deal with outliers that are significantly different from

the uncorrupted data. If outliers are not corrected, they will affect

the estimation of sparsity largely. And if outliers are corrected as

in the ’S1-’ methods, the estimated sparse representation can be

more accurate. We also illustrate the effect of outliers on sparse

estimation in Appendix IV.

Fig. 4 (c) and Fig. 4 (d) show the results computed by the addi-

tive form (Algorithm 2) and the multiplicative form (Algorithm 3)

respectively. We observe that recognition rates of the additive

and multiplicative forms using the same M-estimator are very

close. As shown by [3], S1-�1-MAGIC is not robust enough to

contiguous occlusion for face recognition. As the results shown in

Fig. 4, we observe that algorithms based on Welsch M-estimator

significantly outperforms S1-�1-MAGIC and other methods. This

is due to the fact that Welsch M-estimator places the same

penalties to the outliers incurred by sun-glasses as shown in

Table I. This is consistent with the results reported in correntropy

[3][31] and M-estimation [45] where Welsch M-estimator (or non-
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Fig. 5. Variation of nonzero entries of errors in error correction algorithms
when the feature dimension is 2576.

convex M-estimators) has shown to be an efficient tool for big

outliers and non-Gaussian noise. We can also observe that error

correction algorithms (or error detection algorithms) based on

Huber and Fair M-estimator achieve similar recognition accuracy

as compared with S1-�1-MAGIC. This is because they all make

use of the absolute function in their objectives.

Fig. 5 further shows the variation of the �0 norm (i.e., the

number of nonzero entries of error e) of error e in error correction

methods as a function of the number of iterations. We see

that robust M-estimator with kernel size parameter in (51) or

(52) performs significantly different as compared with Huber

M-estimator and �1 minimization methods. Since S1-FSS, S1-

HOMO and S1-PFP all use the active set method, they estimate

only one entry as the error in each iteration. As a result, when
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Fig. 6. Recognition rates of various methods under random corruption. Capital letters ‘A’ and ‘M’ indicate the additive and the multiplicative forms
respectively. (a) Recognition rates of the methods that are not robust to outliers. (b) Recognition rates of the methods that are robust to outliers.

the level of corruptions is large, these three methods will count

on more iterations.

For the Huber M-estimator based method and �1 minimization

methods, the �0-norm of error e increases until they converge.

For other robust methods with the kernel size parameter, the �0
norm of error e decreases as the number of iterations increases.

This may be because the median operator in Huber M-estimator

and the soft-threshold operator in �1 minimization adaptively

decrease the value of their threshold parameters. A large value

of the parameter can lead to the scenario that only a small

number of data entries are estimated as outliers at the beginning

of iterations. In contrast, the kernel size parameter does not play

a role of truncation function. As shown in Table I, there is a

nonzero segment around the kernel size parameter so that its

corresponding methods estimate a large number of data entries

as noise at the beginning of iterations. Fig. 5 also shows that

different M-estimators will cause different strategies to estimate

errors incurred by noise although they are used in the same error

correction algorithm.

C. Random Pixel Corruption

We tested the robustness of different methods on the Extended

Yale B Face Database. For each subject, half of the images

were randomly selected for training, and the rest half were

for testing. The training and testing set contained 1205 and

1209 images respectively. Since the images in the testing set

incurred large variations due to different lighting conditions or

facial expressions, it is a difficult recognition task. Each image

was resized to 24 × 21 8 and stacked it into a 504-D vector.

Each test image was corrupted by replacing a set of randomly

selected pixels with a random pixel value which follows a uniform

distribution over [0, 255]. We vary the percentage of image pixels

that suffer corruptions from 10% to 80% [14].

Fig. 6 shows the recognition accuracy of different methods, as a

function of the level of corruption. Here we focus on Welsch and

Huber M-estimator based methods. We see that the recognition

rates of all compared methods are close when the level of corrup-

tion is 10%. But the recognition rates of those methods in Fig. 6

(a) decrease rapidly as the level of corruption increases. In Fig.

6 (b), we can observe that S1-FSS, S1-PFP, S1-SpaSRA and S1-

HOMO perform worse than the other methods. This may be due

8The matlab ‘imresize’ function was used to resize image.

to the different modeling on sparsity under different parameters

and optimization strategies. The two methods based on Welsch

M-estimator can perform slightly better than �1 minimization

methods when the level of corruption is larger than 50%. And

the two methods based on Huber M-estimator perform slightly

worse than S1-�1-MAGIC and almost obtain similar results as S1-

FISTA. This is due to that the Huber M-estimator based methods

and S1-FISTA all resort to soft-thresholding function. When the

level of corruption is larger than 30%, the sparsity assumption

on the noise vector e cannot be made. However, methods based

on (26) can still achieve high recognition rates due to the use

of M-estimator in their objective functions. Even if there are

large corruptions, the error correction algorithm (or the error

detection algorithm) can still utilize uncorrupted pixels to correct

(or detect) errors incurred by the noise. As a result, they achieve

high recognition accuracy.

D. Robustness, Sparsity and Computational Cost

In real-world applications, occlusion and corruption are often

unknown. Hence, a parameter obtained from cross-validation on

uncorrupted training set may not be realistic for corrupted testing

data. A common way for parameter selection of M-estimators

is robust parameter selection method, such as median [28] and

Silverman’s rule [31]. However, those robust parameter selection

methods are only developed for small level of corruptions. When

the corruption and occlusion are larger than 50%, those methods

will fail. To the best of our knowledge, there seems no existing

work to discuss the parameter selection of M-estimators for large

corruptions. In order to overcome this difficulty, we follow the

approach in [31] to investigate parameter selection and discuss its

effect on recognition accuracy, computational cost and sparsity of

coefficient β.

We conducted two experiments in this subsection. The setting

of the first experiment is the same as that of Section V-C. In the

second experiment, we study our proposed methods via phase

transition diagram [27][57]. As in [27], we address the following

problem,

y = Xβ0 + e

where β0 is zero except for s entries drawn from N(0, 1), each

Xij ∼ N(0, 1) with column normalized to unit length, and e is

zero except for (0.1 × d) entries (i.e., the level of corruption is

10%.). To simulate outliers, the nonzero entries of e are drawn
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Fig. 7. Recognition accuracy, sparsity, and total CPU time of Huber and Welsch M-estimator based methods under 10% corruption.
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Fig. 8. Recognition accuracy, sparsity, and total CPU time of Huber and Welsch M-estimator based methods under 80% corruption.
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Fig. 9. Phase transition diagrams [57][27] of different methods, where the level of corruption is fixed at 10% and the number of samples n is fixed at 200.
Horizontal axis: δ = d/n (the number of feature dimension / the number of samples). Vertical axis: ρ = s/d (the number of nonzero elements / the number

of feature dimension). Each color indicates a different median of normalized l2 error of ||β̂ − β0||2/ ‖β0‖2 over 30 runs.

from {2 × maxj |(Xβ0)j |} × N(0, 1) 9. As in [27], white noise

is not used. Since Huber loss function has a dual relationship to

absolute function |.|, we only report phase transition diagrams of

Huber M-estimator based methods.
The recognition accuracy, sparsity, and CPU time of Huber and

Welsch M-estimator based methods are plotted in Fig. 7 and Fig. 8

as a function of the value of a (in (51) and (52)) respectively. And

the phase transition diagrams of the four compared methods are

shown in Fig. 9. Capital letters ‘A’ and ‘M’ indicate the additive

and the multiplicative form respectively. The main observations

from the experiments are summarized below.
Parameter selection: As discussed in correntropy, the kernel

size of Welsch M-estimator controls all properties of robustness

[31]. We can see that for the two selected M-estimators, their

parameters control recognition rates, sparsity of coefficient β, and

9Since there will be several types of outliers in real world problems, we
generate outliers in a different way from [27].

computational cost. Moreover, the effect of their parameters seems

to be different under different levels of corruptions. In the case of

10% corruption, the best accuracy is achieved when a is around

1.2, suggesting the use of a large a; in the case of 80% corruption,

the best accuracy is achieved when a is around 0.3, suggesting the

use of a small a. When the percentage of corruption or occlusion

is smaller than 50%, the mean (or median) is mainly dominated by

uncorrupted pixels, and therefore a can be set to a larger value

to adapt to uncorrupted pixels; when the level of corruption is

larger than 50%, the mean (or median) is mainly dominated by

corrupted pixels, and therefore a can be set to a smaller value to

punish outliers seriously.

Sparsity: From Fig. 7, Fig. 8, Fig. 9 and Fig. 13, we see

that outliers will significantly affect the estimation of sparse

representation. Since S0-�1-MAGIC method does not concern

outliers very well, it fails to find the ground truth solution β0 in

Fig. 9 (a) and Fig. 13 (a). And for all the compared methods,
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the estimation errors of β increase as the level of corruption

increases. Although M-estimators do not directly penalize the

sparse coefficient β, they control uncorrupted pixels during learn-

ing. In each iteration, robust methods make use of uncorrupted

pixels to estimate corrupted pixels. For the additive form, the

corrupted pixels of a test sample are iteratively corrected; for

the multiplicative form, the corrupted pixels are eliminated by

reweighting. Since the sparsity of coefficient β is related to the

linear model which mainly depends on uncorrupted pixels, M-

estimators will also affect sparsity.

Computational cost: the computational cost of the multiplica-

tive form is much higher than that of the additive form. That is, the

minimization using the additive form is faster than the one using

the multiplicative one. One simple reason is that the method based

on the multiplicative form often involves matrix multiplication in

each iteration (e.g., weighting the data in the training set). These

results are consistent with those reported in [33]. Therefore the

use of the additive form is recommended for high dimensional

data. In addition, since the proposed methods aim to learn a

sparse representation and deal with outliers at the same time,

their computational cost will be larger than those ’S0’ methods.

However, since our methods are based on M-estimation rather

than sparse assumption on errors, our methods are potentially

helpful for dense errors.

Convex and non-convex M-estimators: From the experimental

results, we see that recognition rates of the multiplicative and the

additive forms are close for each M-estimator. And different M-

estimators will result in different recognition rates. In the case

of 80% corruption, Welsch M-estimator (non-convex) seems to

consistently outperform Huber M-estimator (convex) in terms of

recognition rate. Although convex loss functions have a global

solution, they do not handle outliers well. In real world applica-

tions, there are often several types of outliers, such as sunglasses

and highlight occlusion in Fig. 1 (b). As plotted in Table I, a

convex M-estimator gives different errors different loss such that

it may give much attention on large errors. In contrast, non-

convex loss functions often enhance sparsity for high dimensional

problem [23], or improve robustness to outliers in [45]. Moreover,

the study in information theoretic learning [31] shows that the

performance sensitivity to kernel size is much lower than the

selection of thresholds in M-estimators. Hence the selection of

M-estimators is important for robust sparse representation and a

non-convex M-estimator may be more applicable.

Error correction and detection: The performance of error

correction and detection is different in the aspects of recognition

rates, sparsity and computation cost, although they optimize

the same objective function from the viewpoint of HQ. This

difference of the two forms always exists in HQ methods [33].

Note that the augmented objective functions of the multiplicative

form is convex only when its auxiliary variables are fixed, which

makes local minimum solutions for the pair (β, p). In addition,

the recognition rate of error detection algorithms seems to be

higher than that of error correction algorithms in a large range

of a. And in Fig. 9 and Fig. 13, the green and blue regions

of the multiplicative form are larger than those of the additive

form, which indicates better recovery performance. Theoretically

speaking, the two forms of HQ methods should have similar

results if their parameters are well tuned for each testing sample.

However, in practice, the multiplicative form is often more robust.

This is because the parameter of the multiplicative form seems to

be more adaptive and easily tuned for different corruption levels.

VI. CONCLUSION AND FUTURE WORK

We have presented a general half-quadratic framework for solv-

ing the problem of robust sparse representation. This framework

unifies algorithms for error correction and detection by using the

additive and the multiplicative forms respectively. Some effective

M-estimators for the proposed half-quadratic framework have

been investigated. We have shown that the absolute function in

�1 regularizer solved by soft-thresholding function can be viewed

as the dual form of Huber M-estimator, which gives a theoret-

ical guarantee of the robustness of robust sparse representation

methods in terms of M-estimation. Experimental results on robust

face recognition have shown that when applicable, Welsch M-

estimator is potentially attractive and effective to handle large

occlusion and corruption than other M-estimators, and error

correction algorithms are suitable for high-dimensional data than

error detection algorithms.

Our study of the HQ based robust sparse representation also

shows that outliers significantly affect the estimation of sparse

coding and different M-estimators will result in different ro-

bustness. Non-convex M-estimators seem to be more robust to

real-world outliers that are often complex. The first avenue for

future research is to introduce structure prior of errors, such

as smooth constraint [33] and tree structure, into our robust

framework to deal with a particular occlusion task. In addition,

soft-thresholding function and iteratively reweighted methods

have drawn much attention in subspace segmentation [11], robust

alignment [58], nuclear norm minimization [59][60] and structure

sparsity [61][62] where the used minimization functions are

related to HQ optimization. The second avenue is to establish the

relationship between different methods in these applications and

to develop new methods by HQ optimization. Lastly, considering

that linear representation (including sparse representation) meth-

ods in Appendix IV need a lot of samples to form a dictionary

(or subspace), another avenue is to study the undersampling case

for linear representation methods.
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