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ARTICLE INFO ABSTRACT

Tlumination problem is still a bottleneck of robust face recognition system, which demands extracting
illumination invariant features. In this field, existing works only consider the variations caused by lighting
direction or magnitude (denoted as homogeneous lighting), but the effect of spectral wavelength is always
ignored and thus existing illumination invariant descriptors have its limitation on processing face images under
different spectral wavelengths (denoted as heterogeneous lighting). We propose a novel gradient based
descriptor, namely Logarithm Gradient Histogram (LGH), which takes the illumination direction, magnitude
and the spectral wavelength together into consideration, so that it can handle both homogeneous and
heterogeneous lightings. Our proposal contributes in three-folds: (1) we incorporate LMSN-LoG filter to
eliminate the lighting effect of each image and extract two illumination invariant components, namely logarithm
gradient orientation (LGO) and logarithm gradient magnitude (LGM); (2) we propose an effective post-
processing strategy to make our model tolerant to noise and generate a histogram representation to integrate
both LGO and LGM; (3) we present solid theoretical analysis on the illumination invariant properties of our
proposed descriptors. Extensive experimental results on CMU-PIE, Extended YaleB, FRGC and HFB databases
are reported to verify the effectiveness of our proposed model.
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1. Introduction

Face recognition has attracted significant attention in the last
decades owing to its wide range of applications, including information
security, law enforcement, video surveillance, cooperative user applica-
tions, etc. Many research efforts have focused on the face recognition
problem under relatively well-controlled conditions using sufficient
training data [1-4]. However, in practical application, the performance
of face recognition system is greatly affected by the illumination
condition. Face recognition under wide range of lighting variations is
still an open issue, especially when there is only one sample available
for each person, which is a common scenario in many security system.

This work focuses on single-image-based face recognition model for
handling illumination variations. As indicated by early research [5-7],
the accuracy of a recognition system heavily depends on the number of
training samples for each person. However, in many large-scale
identification applications, such as law enforcement, driver license or
passport card identification, there is usually only one sample per

person stored in the database. The main challenge is how to guarantee
robust performance under this extremely small sample size condition
for each person. Solutions to this problem can be roughly divided into
two aspects [8], i.e., the holistic methods [9—-11] and the local methods
[12—15]. The former one extracted globally stable facial features and
the latter one described each face image as a batch of local features
which are assumed to be invariant to lighting variation.

The illumination problem, as one of the main challenges for existing
face recognition systems, has become a barrier in many face related
applications. The well-known face recognition vendor test (FRVT) 2006
[2] has revealed that large variation in illumination would probably
affect the performance of face recognition algorithms. A variety of
works have been proposed to address this issue and they mainly fall
into three categories [16]: preprocessing and normalization techniques
[17,18], illumination modeling based approaches [19,20] and invariant
feature extraction [14,21-25].

More specifically, preprocessing and normalization methods like
histogram equalization (HE) [17], gamma correction [26] and homo-
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morphic filtering [26] attempt to take holistic normalization on face
images such that the restored images appear to be consistent with those
under normal illumination. However, most of these methods are ad hoc
and hard to obtain satisfactory results when suffering uneven lighting
conditions, although their visual effect appears acceptably in some
cases. To further investigate the cause of illumination problem, the
modeling based approaches turn to exploring the mechanism of face
imaging. Based on the assumption that the surface of face is
Lambertian, images of the same face under varying lighting conditions
can be approximated by a low dimensional linear subspace [19,27]. The
relationships between 2D illuminated images and corresponding 3D
facial surface are investigated in some advanced work, e.g., morphing
face [28] and shape from shading (SFS) [29]. In theory, these methods
model the illumination variation quite well, but they need a great deal
of training samples to learn the variation and easily suffer from the
over-fitting problem, which largely restricts their use in real applica-
tions, especially when only single image per person is available.

Compared to the above two categories, most invariant feature based
methods are more effective and do not demand learning. Classical
methods such as Local Binary Pattern (LBP) [14], Gabor [30] and their
variations [30-32] are widely conceived to be robust to slight
illumination change, but their performance is no longer guaranteed
when the lighting condition becomes severe. To overcome this pro-
blem, a variety of state-of-the-art methods have been proposed by
extracting the reflectance component [21,22,16] or alleviating the
illumination component based on the Lambert's reflectance model
[25,24], and great success using these effective methods has been
reported.

The illumination problem mentioned above is mainly due to the
variations caused by either varying lighting direction or varying light-
ing magnitude. In those methods, a main assumption they make is that
the wavelengths of light are the same, and this case is called the
homogeneous lighting in this paper. However, it is not always the case
in realistic applications. For example, the lighting wavelengths of
indoor and outdoor conditions are always different, so is the case of
visible (VIS) and near infrared (NIR) spectral face images [33]. As a
result, the reflectance component which is determined by the albedo
and the normal direction of facial surface will change, since the albedo
is related to the spectral wavelength. Some related works like [33,34]
consider the VIS-NIR face matching as a multi-modality face recogni-
tion problem rather than an illumination related task. For convenience,
we denote the lighting condition with different spectral wavelengths as
heterogeneous lighting. As far as we know, there is still lack of work on
solving the heterogeneous lighting problem, and theoretical develop-
ment on a valid image descriptor in this aspect is also limited.

In this paper, we formulate a new illumination invariant feature
extraction model for both homogeneous and heterogeneous lightings.
In particular, we propose a novel gradient based descriptor, namely
logarithm gradient histogram (LGH), to eliminate the illumination
variations. We have provided an in-depth analysis on its illumination
invariant property. In addition, we also introduce a multi-scale bank-
pass filtering as a preprocessing to constrain the illumination effect and
enhance facial information. Experiments on several public face data-
bases have been conducted to verify the effectiveness of our proposed
method.

The rest of this paper is organized as follows: Section 2 further
discusses the invariant feature extraction approaches. Section 3
introduces our proposed descriptor in detail. After that, the theoretical
proof of illumination invariant properties of our proposed method is
presented in Section 4. Experiments on CMU-PIE, Extended YaleB,
FRGC v2.0 and HFB databases and further analysis will be carried out
in Section 5 to evaluate our proposed LGH. Finally, the conclusion of
this paper is drawn in Section 6.
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2. Related work

In this section, we mainly review related work on illumination
invariant descriptors for face recognition. In addition, some work about
face recognition using single training image under illumination will be
discussed at the end of this section.

According to the Lambertian Law, the intensity of the illuminated
image I can be formulated as I(x,y) = F(x, y)L(x, y), which is a
product of the illumination component L(x, y) and the reflectance
component F (x, y). As commonly assumed, the L (x, y) in the Lambert's
reflectance model changes very slowly, and F (x, y) is independent of
lighting condition [35,36,24]. Thus, F (x, y) is commonly regarded as
illumination invariant feature.

In order to extract the illumination insensitive component only
related to F (x, y), self-quotient image (SQI) [21] alleviates the effect of
illumination by dividing itself with its blurred version. Logarithmic
Total Variation (LTV) [22] incorporates TV model to preserve the edge
information and obtain a more elaborate representation. Following a
similar way, Xie et al. [16] computed a better reflectance component by
using logarithmic non-subsampled contourlet transform and obtained
significant improvement on the cost of time consuming. There are also
some other work on investigating the illumination invariant property
by considering the normalized local intensity contrast, such as relative
gradient [37] and Weber face (WF) [25]. Inspired by Weber's Law [38],
the authors in [25] show that the ratio between local difference and the
center degree is insensitive to the illumination change and encouraging
results were reported.

Apart from empirically predefined methods, Cao et al. designed a
learning-based descriptor to handle face recognition in the wild, which
is also suitable for addressing illumination problem [39]. Taking a
further step, Lei et al. proposed a method named discriminant face
descriptor (DFD) [40] to learn a discriminant descriptor in a data-
driven way. This work is effective in handling both homogeneous and
heterogeneous lighting conditions. In addition, deep learning has
shown its great ability in solving wild face recognition involving
lighting, pose, occlusion and some other variations [4,3,41].
However, most of these methods are based on the learning mechanism
that demands multiple training samples for each person. To tackle this
problem, one-shot technique could be applied. For example, a typical
solution is the one-shot similarity kernel (OSSK) approach to incorpo-
rate label information from few training samples. OSSK computes
similarity score that describes the likelihood of each vector belonging to
the same class as the other vectors but not in a class defined by a fixed
set of negative examples, which can naturally use unlabeled data to
help define the class boundary [42]. However, for face recognition, it is
more effective to learn a descriptor even when single image is available
for each person. Recently, Lu et al. proposed an effective binary face
descriptor, named compact binary face descriptor (CBFD), by mapping
the pixel difference vectors (PDVs) in local patches into low-dimen-
sional binary vectors, which achieved advanced results on multiple face
recognition tasks [43]. Moreover, the CBFD method is applicable even
in the single face image recognition problem.

Albeit effective, most of the aforementioned methods do not
provide theoretical proofs for the illumination invariant properties.
One exception is that, Zhang et al. [24] proved that the gradient
orientation is somehow insensitive to the illumination influence both in
theoretical analysis and experimental validation. Though great success
has been achieved in [24], there are still some limitations. First, the
gradient orientations are compared in a pixel-wise manner, making it
sensitive to noise and misalignment. Meanwhile, some important
information in gradient domain like the gradient magnitude is ignored.
Also, it does not discuss the variation caused by the wavelength of light.
Compared to [24], all these issues will be addressed in our proposed
method.

One common assumption is that the face images captured under
various lighting conditions are homogeneous, i.e. having the same
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spectral wavelength; it means that the reflectance component F (x, y) is
independent of lighting variance L(x, y). However, the reflectance
component indeed will be affected by lighting wavelength in reality.
Hence the extracted reflectance components of the same subject under
heterogeneous lighting such as sunlight, electric lamp, near-infrared
camera, etc., are different from each other. To tackle this problem, [33]
suggests encoding the local pattern via LBP followed by Difference-of-
Gaussian (DoG) filtering, and [34] applies Scale-invariant feature
transform (SIFT) [44] descriptor instead. Liu et al. [45] applied
multi-scale DoG filtering and three local descriptors to generate over-
complete feature pool, and then Gentle AdaBoost is used to select the
discriminant features. However, these methods are empirically de-
signed and do not provide theoretical analysis on the illumination
invariant property. In addition, as processed in other learning-based
heterogeneous face recognition methods [46,47], the final feature
representations of the above methods are learned based on multiple
labeled data, which cannot be applicable for single face image recogni-
tion.

Apart from the local image descriptors, there are also related works
addressing this problem in other aspects. For example, Bischof et al.
[48] incorporated a gradient based filter bank into the eigenspace and
they found that the eigenimage coefficients are invariant to linear
filtering. To achieve further illumination insensitivity, they designed a
robust procedure for coefficient recovery. Although their method can be
applied when one sample per person is available, the recovered face
images are easily blurred by the eigenspace trained by all people, so
that the details containing discriminant information for each person
may loss in recognition. Based on 3D Morphable Model [28] and the
spherical harmonic illumination representation [27], Zhang and
Samaras [49] proposed two methods to estimate the spherical harmo-
nic basis images from just one image taken under arbitrary illumina-
tion conditions, and each face image can be represented as a weighted
combination of basis images. Recently, Lu et al. [50] divided a single
image into small patches and formulated the single sample per person
problem as a manifold—-manifold matching problem, and the perfor-
mance turned out well against illumination changes.

In this paper, we study a more general case for the illumination
problem in face recognition, where the lighting direction, magnitude,
and the spectral wavelength will change in different lighting conditions.
We propose a new and efficient illumination invariant descriptor based
on the gradient information in the logarithm domain, which can work
across heterogeneous lighting conditions. Parts of this work have been
first reported in our preliminary conference version [51]. In this work,
we have improved the algorithm so as to gain much better perfor-
mance, and we also offer more detailed solid theoretical and experi-
mental analysis on the illumination invariance of the proposed
descriptor.

3. The approach

In this section, we aim to extract gradient based illumination
insensitive components. Specifically, we will elaborate our proposed
LGH in three folds: (i) the multi-scale bank-pass filtering used for
constraining the illumination effect and enhancing facial information;
(i) two illumination invariant components, i.e., logarithm gradient
orientation (LGO) and logarithm gradient magnitude (LGM), and the
theoretical analysis on the illumination invariant property; (iii) post-
processing for integrating LGO and enhanced LGM into a histogram
based feature representation. The whole procedure is illustrated in
Fig. 1.

3.1. Scale space representation
Multi-scale analysis [52,30,16] can capture both characteristics in

the spatial space and scale space. According to scale-space theory [52],
given any image f:R*>— R, its scale-space representation
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Fig. 1. Flowchart of the whole process, including multi-scale bank pass filtering,
illumination invariant component extraction and robust feature representation.

M: R?> x R, — R is defined by

M(50) = gCn* (), 1)
where g: R? x R, — R denotes the Gaussian kernel given by
1 2
1) = —e~(xIPyen,
$C 0= o @

and the variance t is the scale parameter. Hence, the scale-space
derivatives are defined as

M (1) = 0xeM (-51) = g« (50)*f, 3)

where a denotes the order of differentiation. The induced operators are
widely used in a large number of visual operations. Interestingly,
neurophysiological studies have found that some profiles in the
mammalian retina and visual cortex can be well modeled by super-
positions of Gaussian derivatives [53].

Although the scale-space theory provides a well-founded framework
for representing image structures (e.g. edges, blobs) at multiple scales,
the amplitude of spatial derivatives will decrease as scale increases
according to Eq. (3). To overcome this problem, Lindeberg [53]
suggested using y-normalized derivatives o; = 17?9, to obtain the
normalized measure of feature strength among different scales. A
commonly used normalized derivative is 1V2L, which is sensitive to
the structure like edges and blobs [52,53].

3.2. Logarithmic multi-scale normalized Laplacian-of-Gaussian
filtering

According to the Lambertian reflectance function, the intensity of a
2D surface I can be described as

I(x,y) = R(x, y)L(x, y), (4

where I, L, R represent the intensity, illumination component and
reflectance components, respectively. It is assumed that L changes
very slowly [35,36,24], so the illumination effect mainly lies in the low-
frequency domain. Thus, it is possible to alleviate the illumination
effect by taking a bank-pass filtering in the frequency domain.
However, as we can see in Eq. (4), it is not feasible to apply filtering
on L since the reflectance component R and illumination component L
are combined in the multiplicative form. To overcome this problem,
taking the logarithm transformation at the first step is able to make the
two components combined additively, so that the filtering on I can be
separated into the sum of the filtering on L and that on R in the

logarithm domain as follows
D@, NI, y) = D(x, R, y) + Dx, WL(x, ), )

where T(x, y), Rx, y) and (x, y) represent In(/ (x, y)), In(R (x, y)) and
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In(L (x, y)), respectively, and D (x, y) denotes the filtering function.

Always, the very high-frequency components of image I are mostly
conceived to be noise, and the illumination effect is assumed to mainly
lie in the low-frequency domain [26]. Therefore, bank-pass filtering can
be applied here to suppress low frequency illumination effect and high
frequency noise, and meanwhile enhance the mid-frequency facial
characteristics.

As a kind of approximate second derivative measurement,
Laplacian filter is able to capture the rapid intensity change. Since
the second derivative is also sensitive to noise, a Gaussian smoothing
will be always taken before applying the Laplacian filtering. Such a
processing is well-known as the Laplacian-of-Gaussian (LoG) filter,
which is indeed a kind of bank-pass filtering used to reduce high
frequency noise components. The 2D LoG function with zero center
and standard Gaussian deviation has the following form:

x24y?

]e_ 22,
©)
However, taking the LoG filtering on multi-scale image representation
is somehow time consuming when the number of scale becomes larger.
A more efficient choice is calculating the differences of Gaussian
smoothed images, which is known as Difference-of-Gaussian (DoG),
an approximation of the scale-normalized LoG filtering. The relation-
ship between DoG and LoG is based on the (heat) diffusion equation:

X2+ y?
262

LoG(x,y) = —%[1 -
e

oL _ oV2L,
do

@)

where o is the scale parameter having ¢ = /7. Hence, we can get the
approximation as follows:

V2L = lim L&Y, €0) = L.y, 0)  L(x.y, co) = L(x,y, 0)

c—1

coO — 0 co — O (8)
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Fig. 2. Illustration of the logarithm gradient components. From top to bottom: original face images, the corresponding logarithm gradient magnitudes (LGM) and logarithm gradient
orientations (LGO).

Finally, rearranging Eq. (8) yields

(¢ = D6®>V2L = L(x, y, ko) — L(x, y, 6). 9)
That is,
(¢ = 1)6LoG = DoG. (10)

As shown, DoG approximates the scale normalized LoG up to a
(negligible) multiplicative constant ¢ — 1. In another word, we can
efficiently generate the LoG results via suitable multi-scale representa-
tion. The DoG filtering, as a kind of classical bank-pass filter, has
already shown its ability in eliminating illumination variations [23,33].
We denote the multi-scale normalized LoG filtering as MSN-LoG. In
the following section, we will further analyze the illumination invariant
property in detail.

3.3. The logarithm gradient histogram

The shapes, contours and the relative small-scale facial objects such
as eyes, nose and mouths are key features for face recognition [22]. The
gradient information (e.g., magnitude and orientation) around these
components contain much more valuable information than facial skin
area. More importantly, as shown in Fig. 1, the gradient magnitudes of
these parts are always large and fluctuant, while those of the skin area
are relatively small. As a result, it is helpful to take the gradient
magnitudes as important measurement of facial components. However,
as mentioned in Gradient Face [24], the gradient magnitudes of face
image do not satisfy the illumination invariant requirement. In this
work, we find that this problem can be solved by transferring the
derivation into logarithmic domain so that the multiplicative combina-
tion in the original input domain will become the additive form. Thus,
different from Gradient Face, which only retains gradient orientations
as the illumination invariant features, we incorporate both gradient
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magnitude and orientation in the logarithmic domain to form our
illumination insensitive features.

Until now, we have obtained the local filtered face images where
edges and contours are enhanced and meanwhile the partial lighting
effect is alleviated. We further claim that the gradient orientation and
gradient magnitude in the logarithmic domain are insensitive to both
homogeneous and heterogeneous illumination variations. Detailed
inferences can be referred to Section 4. In the following part, we
present extracting the logarithmic gradient orientation (LGO) and
logarithmic gradient magnitude (LGM) as illumination insensitive
components. Some examples are shown in Fig. 2.

To obtain robust description, postprocessing is taken on the two
components before generating the histogram representation. Since the
gradient orientation is somehow sensitive to the quality of image, a
local smoothing operation is implemented on LGO in order to alleviate
the impulse responses caused by discrete noises and make the gradient
direction changes smoothly. For such a postprocessing, taking inter-
polation or using a suitable o for Gaussian kernel as similarly done in
[24] is applicable.

After that, we quantify the values in LGO into several bins to
achieve fault-toleration. Since the Lambertian assumption does not
strictly hold everywhere, there are cast shadows in face images. As a
result, the pixels with dominating values in LGM may belong to the
boundaries of shadows, and meanwhile the edges of facial objects (e.g.,
eyes, mouths) may become less significant especially when the lighting
condition becomes severe. In this case, taking a local normalization
operation may help extracting illumination invariant features. On one
hand, it enhances the weak edges lying in dark areas which belongs to
the facial objects, and on the other hand it also alleviates the global
domination caused by the strong edges of shadows. More importantly,
the multiplicative constant coefficient shown in Eq. (10) can be
eliminated in the local normalized LGM. As a result, the sub-histogram
generated in each scale can be treated equally.

Finally, we obtain the quantified gradient orientation and normal-
ized gradient magnitude for each pixel in a face image. Since conduct-
ing pixel-wise matching on these two components between different
face images is quite unreliable, we integrate LGO and LGM to form a
unified histogram based feature representation. The histogram is
generated in a block-wise form; that is the post-processed gradient
magnitudes of all pixels in the block will accumulate according to the
orientation bins they belong to. At last, we concatenate histograms of
all blocks into a long vector to form our histogram based feature
representation. The whole procedure is illustrated in Algorithm 1.

Algorithm 1. Generation of logarithm gradient histogram.

Input: LGO, LGM, k (the number of bins in histogram for en-
coding each block)

Output: H (histogram of a face image)

1: Quantify LGO in k bins {5y, ..., b;} to increase the fault-tolerant

capability;

2: Divide LGM and LGO into small blocks evenly, and denote M’
and O as the ith block in LGM and LGO separately;

3: For each MY, calculate the weighted normalized gradient

M (p.gW (p,
P.OW(p.q) _, or else

. i _
magnitude by M"(p, q) = v M0 4 W )

Mi(p, ¢) = Mi(p, q), where W denotes the Gaussian weight ma-
trix.

4: Generate the histogram for each block,

Hi(t) = sum {M'(j)|0'(j)==b,}, for t = 1,...,k, and then con-
catenate them into a long vector H = [H'] to represent a face
image.
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4. Illumination invariant analysis

In the former section we claim that LGO and LGM are two
illumination insensitive components. In this section, we will prove
the illumination invariant property of our proposed features based on
the following theorems.

4.1. Homogeneous lighting

Lemma 1. Assume that I (x, y) is an illuminated image of Lambertian
face, which is captured under the homogeneous lighting (i.e., with
arbitrary lighting direction and magnitude but with the same light
wavelength). Let T(x, y) denote the logarithmic image of I (x, y), i.e.,
T, y) = In{U (x, )), then the partial derivation 8,1 (x, y) and d,I (x, y)
are insensitive to the illumination variation.

Proof. For any function f(x, y) > 0, we denote f(x, y) = In(f (x, y)).
Let us consider two neighboring points (x,y) and (x + Ax, y). According
to the Lambertian Law, we have

I(x,y) = R(x, )L, y), (1D
I(x + Ax, y) = R(x + Ax, y)L(x + Ax, y), (12)
and then
T y) =R, y) + Lix, y), (13)
T(x+ Ax,y) = R(x + Ax, y) + L(x + Ax, y). (14)
Hence we have
T+ Ax,y) =T, y) = Rx + Ax, y) — R(x, y))

+ L+ Ax, y) = L(x, y). 15)

It is commonly assumed that L varies very slowly while R can change
abruptly [22,16]. The same assumption holds for I and R. Therefore,
as inspired by [35,36,24], it is reasonable to draw the conclusion that
the difference between L(x + Ax, y) and L(x, y) can be discarded as
compared to that between R(x + Ax, y) and R(x, y) when Ax is small
enough. As a result, taking the limit of both sides in Eq. (15), we have
the following approximation:

I (x, y) ® AR (x, y). (16)
Also, by following the same procedure we can obtain
a},IN(x, V)~ ayl?(x, y). a7

In a word, the partial derivation o (x, y) and 6,7 (x, y) are dominated by
the reflectance component R instead of the illumination component L
and thus insensitive to the illumination variation. o

Theorem 1. Let I (x, y) be an illuminated image of Lambertian face,
which is captured under the homogeneous lighting (i.e., with
arbitrary lighting direction and magnitude but with the same light
wavelength). Let T(x, y) =In((x,y)), and then the gradient
orientation and gradient magnitude of T(x, y) are both illumination
invariant components.

Proof. We use the same denotation in Lemma 1. It is easy to calculate
the gradient orientation and magnitude of T(x, y) as

LGO(x, y) = arctan(d,] (x, y)/a,1 (x, y)), (18)
and
LGM (x, y) = 0T (x. y)* + (0,T(x, y))*. (19)

As proved in Lemma 1, both o (x, y) and 0le (x, y) are insensitive to
illumination change, so that it is straightforward to have the conclusion
that both LGO(x,y) and LGM (x,y) are illumination invariant
components. 0

So far we have known that the gradient orientation LGO (x, y) and
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gradient magnitude LGM (x, y) of I (x, y) are invariant to the illumina-
tion change caused by varying lighting direction and magnitude.
However, as mentioned, “the same light wavelength” assumption in
homogeneous lighting can hardly hold in real world applications, since
the spectral wavelengths will change in different environments. In the
next section, we will further investigate the illumination invariant
property of our proposed LGO and LGM when relaxing the assumption
on spectral wavelength.

4.2. Heterogeneous lighting

According to the Lambertian model, the reflectance component,
which is determined by the albedo (related to spectral wavelength) and
facial normal direction, will turn out to be different when suffering
from heterogeneous lighting." Generally, it is not feasible to tackle this
problem under wild assumption. For example, the facial skin reflec-
tance under visible and far infrared light differ so much that the
obtained face images are hardly the same. Nevertheless, according to
the work on skin reflectance spectra simulation [54], we find that the
response of skin reflectance spectra changes smoothly as the lighting
wavelength increases within the visible and near-infrared spectral
range (450—-1100 nm). Inspired by this observation, we assume that
within a small patch of facial skin, the reflectance components under
two different light of different wavelengths are approximately propor-
tional. We denote it as the locally proportional reflectance assumption
(see Theorem 2). Therefore, the key of solving such a general
illumination problem is to extract illumination invariant features under
this assumption. In the following part, we prove that our proposed LGO
and LGM are also invariant components in such a scenario.

Theorem 2. Assume that L(x,y)=R(x, y)L(x,y) and
L(x,y) = R(x,y)Ly(x,y) are Lambertian face images of the same
subject captured under two heterogeneous light (i.e., with different
lighting directions, magnitudes and even spectral wavelengths). Let
T(x,y) =In{ (x, ). If Ri(x, y) is locally proportional to R (x, y), i.e.,
Ri(x, y) = wRy(x, y) for some constant w which is determined by
N(x,y) (the neighborhood of (x,y)), then the gradient orientation
and gradient magnitude of 1(x, y) and Dex, y) are equal, i.e., they are
both invariant components for the illumination problem.

Proof. As indicated in Theorem. 1, both the gradient orientation and
gradient magnitude of 7(x, y), i.e., LGO(x,y) and LGM (x,y) are
invariant to varying illumination directions and magnitudes.
Therefore, in this part we only need to prove the invariant property
against the varying wavelength. By substituting Eq. (16) and (17) into
Eq. (18) and (19), we have

LGO(x, y) = arctan[W] = ammn(dyli(x,y)]
.1 (x, y) 2R y)
(O}R(x, IR (x, y)] (()YR(X, y))
= arctan| ——————— | = arctan| ———— |,
0,R(x, y)/R (x, y) OR(x, y) 20)

and

LGM (x,y) = 0T (. y)? + @1 (x. ) = JOR(x. 1)) + O,R (x, )
_ JORG ) + OR(x, )
R(x, ) '

(21)

Assume that R, (x, y) and R, (x, y) are locally proportional. That is,
Ri(x,y) = wRy(x,y) (22)

for some constant w > 0 which is determined by N (x, y). Thus,

1 Especially, the heterogeneous lighting here refers to the light with different
wavelengths.
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(ale 63 y)) (asz @, y)J
arctan| ——— | = arctan| —— |,
O.Ri (x, y) Ry (x, y) (23)
ie.,
LGO,(x, y) = LGOy(x, y). 24)
Also, we have
JOR (x, 1)) + @R (x. y)?
LGM,(x, y) =
Ri(x, y)
kAR (e, ) + (kO Ry (v, 1))
kRZ (X, y)
R (x, )2 + (0,R (x, y))?
_ VOR 0 + @R (x, 1)) oM )
Ry (x, y) (25)

Hence, we now can draw the conclusion that LGO (x, y) and LGM (x, y)
are both insensitive to the illumination variation caused by the change
of spectral wavelength under the local proportional assumption. o

5. Experiments

In this section, we conducted a series of experiments to evaluate the
proposed illumination invariant descriptor for single-image-based face
recognition. Three scenarios will be considered in our experiments: (1)
the case when images were approximately captured under controlled
homogeneous lighting, i.e., with different lighting directions and
magnitudes but with the same spectral wavelength; (2) the case when
images were captured in uncontrolled lighting conditions, e.g., outdoor
environment; (3) the case when images were captured under hetero-
geneous lighting, i.e., with varying lighting direction, magnitude and
wavelength. For the first and second cases, we compared our method
with HE [17], SQI [21], LTV [22], Weber Face [25], Gradient Face [24]
and TT-LTP [23] on CMU-PIE [55], Extended YaleB [19] and FRGC
v2.0 [1] databases. For the third case, we particularly consider the
heterogeneous face recognition and compared our method with DoG
+LBP [33] and SIFT descriptor used in [34] on the heterogeneous face
biometric (HFB) database [56]. In our experiments, we mainly
evaluated the performance of different image descriptors and thus
simply adopted the cosine distance as the similarity measurement and
used nearest neighborhood classifier for classification.

5.1. Controlled homogeneous lighting

5.1.1. Databases

In this experiment, we evaluated the performance of various
methods on CMU-PIE and Extended YaleB databases. To form the
set of frontal face images, 1428 frontal face images from 68 individuals
captured under 21 different illumination conditions were selected from
CMU-PIE database. For Extended YaleB, face images from 38 indivi-
duals of nine poses were captured under 64 different lighting condi-
tions, and we only used 64 x 38 = 2432 frontal face images here. All
images were simply aligned according to eyes coordinates and resized
to 128x128.

5.1.2. Compared methods

We compared our LGH with several classical and state-of-the-art
methods, including HE [17], SQI [21], LTV [22], Weber Face (WF)
[25], Gradient Face (GF) [24] and TT-LTP [23] on both CMU-PIE and
Extended YaleB databases. All methods were implemented with the
parameters as suggested in the references. For our LGH, the kernel size
of DoG filtering was fixed as 7x7, the array of o was empirically set as
[1,2, 4,8, 16] (i.e., the number of scales was 4), and 5 bins were
adopted to represent the block histogram. PCA was conducted to obtain
a compact representation and at last 500 dimensions were reserved.
Unless otherwise stated, the block size is set as 4x4, unsigned gradient
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Fig. 3. Recognition rates with different galleries on CMU-PIE.

orientation was adopted and 5 bins were used for the quantization
procedure.

5.1.3. Results on CMU-PIE

The subset used here consists of 21 images for each person, which
were captured under 21 different illumination conditions as shown in
Fig. 3. Only one image per individual was chosen as the gallery and the
other formed the probe. We varied the gallery from the 1st image to the
21st one for each person in order to ensure that all illumination
conditions were tested. The final results are illustrated in Fig. 3. As
shown, in general, the performances of different algorithms degenerate
as the lighting orientation changes from the frontal direction to much
more non-frontal ones. All seven methods except HE achieved the best
performance when using the frontal lighting images (No. 12) as
galleries, and the corresponding results for various methods are as
follows: 96.84% for SQI, 95.88% for LTV, 100% for WF, 99.93% for GF,
95.88% for TT-LTP and 100% for LGH. What is more, some
approaches such as SQI, LTV and WF turned out less effectively when
the illumination condition becomes severe, while both GF and LGH
performed well even under the most extreme situation. Also, our
proposed LGH outperformed all other methods almost in all lighting
conditions and achieved the best average recognition rate at 99.66%.
The average results of HE, SQI, LTV, WF, GF and TT-LTP are 47.59%,
86.47%, 81.17%, 98.06%, 98.76% and 88.62%, respectively.

5.1.4. Results on Extended YaleB

Different from CMU-PIE, the face images in Extended YaleB
database were captured in more complex/challenging environments.
Some examples can be found in Fig. 4(a). The whole dataset has been
divided into 5 sets according to the angle between lighting source
direction and the frontal face direction. To better explore the perfor-
mance of our proposed illumination invariant descriptor, we conducted
experiments using all frontal lighting images as gallery and the rest to
form the probe set. Recognition accuracies were reported on set 1 to set

(a) YaleB-Extended

5 separately.

It is worth mentioning that the angle between frontal face direction
and lighting orientations increases from set 1 to set 5. That is, it is
generally more challenging to handle the face recognition task as the
angle increases. This is confirmed by the results in Table 1, where the
“All” in Table 1 means the results were calculated by taking all other 63
images per subject except the gallery one as probe. As shown in Table 1,
it is interesting to find that most methods performed well when the
angle is small but dramatically degenerate when the angle is large. For
example, HE obtained the best accuracy 97.81% on set 1, even higher
than those of WF and GF, but only achieved 13.43% recognition rate in
set 5. The reduction in accuracy is notable about 84%. However, WF,
GF and our proposed method turned out to be consistently robust,
achieving relative high performances in all subsets. The general
recognition accuracies of WF, GF and LGH on YaleB-Extended
database are 86.88%, 86.93% and 99.37% respectively. Specially, we
observe that our proposed LGH outperformed all other methods and
achieves consistent highest performance in all subsets. The accuracies
of LGH on set 1 to set 5 are 100%, 100%, 99.12%, 99.44% and 98.89%,
respectively, obtaining 4.82%, 0%, 15.13%, 19.74% and 15.65%
improvement as compared to the second best approach (i.e., GF).

5.2. Uncontrolled homogeneous lighting

5.2.1. Databases and setting

For a more challenging test, we evaluated our proposed method on
the Face Recognition Grand Challenge version 2 data set (FRGC v2.0)
[1], which is a large public data set involving illumination changes. It
contains about 50,000 images captured from 625 subjects, under
controlled environments, uncontrolled indoor and outdoor settings,
and all images contain diverse variations in illumination, expression,
and ornaments (glasses). To be more detailed, the controlled images
with two facial expressions were taken under two lighting conditions,
and the uncontrolled images were taken in the varying illumination

(b) FRGC

Fig. 4. Image samples in (a) YaleB-Extended and (b) FRGC datasets. For FRGC dataset, the ones in the upper row come from the controlled subset, and those in the bottom row come

from the uncontrolled subset.
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Table 1
Results on Extended YaleB (in accuracy (%)).

Methods Setl Set2 Set3 Set4 Set5 All

HE [17] 97.81 92.76 36.18 10.90 13.43 40.35
SQI [21] 83.33 100.00 69.30 75.75 72.99 79.03
LTV [22] 87.28 99.78 66.45 45.30 43.07 62.03
WF [25] 78.95 99.78 78.51 89.29 84.76 86.88
GF [24] 95.18 100.00 83.99 79.70 83.24 86.93
TT-LTP [23] 100.00 100.00 95.61 61.28 33.38 70.47
LGH 100.00 100.00 99.12 99.44 98.89 99.37

conditions, e.g., hallways, atriums, and outdoor. Following the protocol
used in [57], we selected the subset containing at least five controlled
images and five uncontrolled images with neutral expressions. At last,
we formed a dataset containing 339 identities where each identity has 5
controlled images and 5 uncontrolled images. All images were aligned
according to eyes coordinates, cropped and resized to 128x128. Some
examples are shown in Fig. 4(b).

5.2.2. Results on FRGC

Since there are two subsets (i.e., controlled and uncontrolled) in
FRGC database, we evaluated our proposed method according to the
following two protocols:
® Protocol I: In each subset, one image per subject was chosen as
gallery and the other four images per subject were used as probes.
Protocol II: One image per subject in the controlled subset (denoted
as Controlled) was chosen as gallery and all five images per subject
in the uncontrolled subset (denoted as Uncontrolled) were used as
probes.

Protocol I: According to Protocol I, we chose one out of five images
per subject to form the gallery set at each time. The whole process was
repeated five times and we reported the average recognition accuracies.
The comparisons were carried out on the two subsets separately. All
results are illustrated in Fig. 5(a) and (b). As shown in Fig. 5, all
different methods performed similarly to the case on CMU-PIE and
YaleB-E in general, but their average accuracies reduced. It is because
there are various variations including illumination changes on this
database, so that most of the compared methods cannot model the
non-illumination effect. Nevertheless, as a kind of histogram based
descriptors, TT-LTP and our proposed LGH outperformed other
descriptors in this setting, achieving relative high recognition rates,
i.e., 89.70% and 92.24%, respectively.

On the more challenging uncontrolled subset, WF and GF, which
performed well in the controlled setting, degenerated significantly here
and achieved average rank-1 accuracies less than 50%. TT-LTP and our
proposed method again obtained better performance than other
methods, but the difference between TT-LTP and LGH is clear. The
average recognition rate of LGH is 72.01%, obtaining more than14%
improvement when compared to TT-LTP.

Protocol 1I: Following Protocol II, we conducted experiments using
one sample per subject from the controlled subset to form the gallery
and all samples in the uncontrolled subset form the probe set. Similar
to the case in Protocol I, we repeated five times to ensure that each
image in the controlled subset has been involved in the experiment.
The final average cumulative match score curves are reported in
Fig. 5(c). As expected, the results of traditional methods such as HE,
SQI, LTV and GF are not satisfactory in this setting. In addition to the
various variations in the dataset itself, the reason is because the face
images captured in the uncontrolled environment were affected by
other interference factors. Also, the commonly used Lambertian
reflectance model may not strictly hold in this complex uncontrolled
environment. In comparison, our proposed LGH also outperformed all
other methods and achieved much better results, where LGH gained
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more than 25% matching rate at rank-1 recognition as compared to the
second best approach.

5.3. Heterogeneous lighting

5.3.1. Databases and setting

To further investigate the effectiveness of our proposed LGH in
handling heterogeneous lighting, we selected VIS-NIR subset of HFB
database [56] for evaluation. The HFB VIS—-NIR dataset contains 100
people, and each one has 4 VIS and 4 NIR face images. Note that the
spectral wavelength of NIR light used here is around 850 nm and that
of VIS light is smaller than 700 nm. It is more challenging since they
were captured under two distinct heterogeneous light sources with no
overlapping wavelength. As in FRGC dataset, variations caused by
expression and occlusion (by glasses) also exist in HFB, making the
recognition more challenging. All images were aligned according to the
eyes coordinates, cropped and resized to 128x128. For comparison, the
results of DoG+LBP [33] and SIFT descriptor used in [34] accompa-
nied with methods mentioned in the former section are also reported.

5.3.2. Results on HFB

In this part, the gallery set consisted of one VIS face images per
individual and the probe one contains all NIR face images. We report
the means and standard deviations of recognition accuracies using
different galleries in Fig. 6. As shown, the traditional approaches which
are designed to overcome the homogeneous illumination problem
failed in this scenario. In Fig. 6, the overall performance of all methods
degenerated dramatically as compared to the case under controlled
homogeneous lighting. The average recognition rates of traditional
approaches such as HE, SQI, LTV, WF, GF and TT-LTP are only 3.25%,
4.13%, 7.56%, 15.56%, 9.88% and 12.50%, respectively. Meanwhile,
the two task specific methods, namely DoG+LBP [33] and SIFT [34],
did not show their superiorities here without the learning-based feature
selection procedure. However, our proposed LGH obtained significant
better results due to its relative robust and effective histogram based
representation. As analyzed, it is not so sensitive to the heterogeneous
illumination variation and thus is able to achieve the best results
among all compared approaches.

5.4. Further analysis

5.4.1. Toleration to pose variation

We claimed that our local patch histogram based representation is
more robust against misalignment or small pose variation as compared
to the pixel-wised matching. In this section, we verify it on CMU Multi-
PIE dataset [58].

The CMU Multi-PIE face database contains more than 750,000
images of 337 people recorded up to four sessions over five months.
Subjects were imaged under 15 view points and 19 illumination
conditions, and facial expressions exist. Since this work concerns
illumination and pose variation, we only used the subset captured in
session01, which contains images captured under 5 view points (+00,
—15, +15, =30, +30) and under all illumination conditions with natural
expression. Note that the denotation of view point +00 represents the
angle between frontal face direction and the camera view; that is, “+00’
indicates the frontal setting as used in all former databases. For
convenience of description, we also used “+00”, “~15”, “+15”, “=307,
and “+30” to denote the subsets in session01. The frontal illuminated
images in subset +00 were used as galleries, and the rest images in +00
and those in other four subsets formed five probe sets separately. For
comparison, two local patch histogram based descriptors, i.e. LBP [14]
and HOG [59], were used as baselines. All results are shown in Table 2.

Most of the compared methods turned out to be saturated in this
setting, so the distinction between pixel-wise representation and local
histogram based representation is not clear. However, when the angle
increases to 157, the recognition rates of pixel-wise methods signifi-
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Table 2
Results on CMU Multi-PIE dataset (in accuracy (%)).

Methods +00 -15 +15 -30 +30

HE [17] 66.96 48.49 45.26 22.89 23.45
SQI [21] 99.79 26.33 26.55 11.53 9.26
LTV [22] 94.44 5.24 4.58 2.49 2.53
WF [25] 100.00 48.49 45.78 20.76 19.18
GF [24] 99.66 55.84 54.86 23.49 25.60
TT-LTP [23] 97.95 70.38 66.37 31.39 31.71
LBP [14] 66.96 48.49 45.26 22.89 23.45
HOG [59] 98.63 64.38 65.20 32.07 31.69
LGH 100.00 90.48 87.95 46.49 39.50

cantly dropped. For instance, the recognition accuracy of SQI reduced
from 99.79% to around 26%, and the situation is even worse for LTV
which dropped from 94.44% to about 5%. A small disturbance in
alignment or pose variation would probably impose great impact on the
recognition accuracy of pixel-wise matching. Fortunately, owing to the
illumination insensitive components extraction and local patch histo-
gram representation, our proposed LGH has shown its great toleration
in small pose variations. The recognition rates of LGH in subset —15
and +15 are 90.48% and 87.95%, with 20% better than the second best
approach (i.e., TT-LTP). However, as the angle increases to 30°, pose
variation becomes dominant and thus all methods turned out unsa-
tisfactory. Nevertheless, the overall performance of local patch histo-
gram based methods is still better than that of using pixel-wise
representation, and meanwhile our LGH outperformed all other
methods.

5.4.2. Contribution of each component in LGH

Since LGH consists of three parts including LMSN-LoG filtering
(denoted as LoG), logarithm gradient magnitude (LGM) and logarithm
gradient orientation (LGO), we explored the contribution of each part.
In this section, we conducted experiments on CMU-PIE, Extended
YaleB, FRGC and HFB VIS-NIR databases and report the recognition
rates of each part separately in Fig. 7. Note that, only one near frontal
illuminated face image was used as gallery in all four databases, and the
LoG filtering used here was only conducted using a single scale. The
final results validate our previous analysis that (i) the LMSN-LoG
filtering is able to restrain the illumination effect; (ii) gradient
magnitude and gradient orientation in logarithmic domain are insen-
sitive to the illumination change; (iii) our proposed LGH integrates the
above two components in an effective way and achieves great success
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Fig. 7. Contribution of each part in LGH. Only one near frontal illuminated face image was used as gallery. Notations used in the x-axis from left to right indicate original image (None),
image after LoG filtering (LoG), logarithm gradient magnitude followed by LoG filtering (LoG+LGM), gradient orientation followed by LoG filtering (LoG+LGO) and the whole LGH

(LGH), respectively.

on tolerance of lighting change, especially when the change is severe.

5.4.3. Parameter selection and time complexity

In this section, we evaluated the effect of parameters and the time
consumption empirically of the proposed LGH. Two main parameters
of LGH are the number of scale s in multi-scale representation and the
number of bins used in histogram generation. In the following part, we
evaluated the effect of parameters by varying the number of scale and
bin at the same time. Specifically, s was set to increase from 1 to 6 with
step 1, and the bin was chosen in the set of bins = [2, 3, 5, 7, 9, 11, 13].
Since the size of face image is 128x128 only, the maximum number of
scale we used was set to 6. All results are shown in Fig. 8. As observed,
using a suitable number of scales such as s € {2, 3, 4} may lead to
better recognition results when compared to using single scale. But
using a too large scale (e.g. s=6) may do harm to the recognition
performance, e.g., the cases as shown in Fig. 8(c—f). This is caused
probably because the features extracted from large scale belong to the
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very low frequency domain, and thus they are easily corrupted by the
illumination change. Regarding the number of bins, we find that
significant improvement is gained when the number of bins varies
from 2 to 5, and the performance still increases slightly as more bins
are incorporated, but finally the performance may degenerate when
larger bin is used (e.g., bin=13 in Fig. 8(a), (b) and (f)).

We evaluated the time consumption of LGH feature extraction on
different databases using different scales and bins. All experiments
were conducted on a server with Intel i5 2.2 GHz cores CPU and the
average time consumption is reported in Fig. 9. It can be found that the
time cost of LGH is linear to the number of probe images and the
number of scales. It took about 16.7 ms to calculate LGH feature for
each 128x128 face image using 1 scale when bin=>5, and the time cost
for 4 scales is 66.7 ms, exactly 4 times of the 1 scale's. What is more,
the more bins we use the more time it needs. Hence, a balance between
time cost and performance is necessary.
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Fig. 8. Performances of the proposed method under different parameters. The number of scales increases from 1 to 6 with step 1, and the number of bins is chosen from the set
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5.4.4. Comparison with the state-of-the-art face descriptor

Recently, learning based approaches, especially the deep learning,
have achieved great success in face recognition [4,3,41,43]. However,
these results were reported on Internet images, in which there can be
multiple images available for each person and the lighting change is not
serious, while our focus (including our model) is specific to face
recognition against serious lighting change. Hence, we would like to
compare our face representation to state-of-the-art learning based
features. In this part, by following the one sample per person protocol,
we compared our method to VGG-Face CNN descriptor (VGG) [41] and
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a recently proposed learning-based compact binary face descriptor
(CBFD) [43]. Note that, we conducted LMSN-LoG filtering on both four
scales and one single scale in order to see the difference of scale
selection. All results can be found in Table 3. On FRGC database, VGG
and CBFD achieved slightly better results in homogeneous lighting
condition on both the controlled subset (denoted as FRGC-C) and
uncontrolled subset (denoted as FRGC-U), but the case changes when
matching uncontrolled lighting face images with the controlled ones
(denoted as FRGC-C-U). In the latter case, our proposed LGH and the
CBFD obtained significant better performance than VGG. The same
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Table 3
Comparison between LGH and learning-based features.

Dataset Chi-square  Recognition accuracy (%)
distance
Intensity LGH LGH VGG [41] CBFD [43]
(s=1) (s=4)
CMU-PIE 0.1565 37.54 99.57 99.66 92.38 98.61
YaleB-E
ALL 0.1395 37.80 98.25 99.37 62.91 97.45
SET1 0.8193 99.12 100 100 100 100
SET2 0.6347 97.15 100 100 99.56 100
SET3 0.1148 37.28 98.46 99.12 85.31 100
SET4 0.0396 7.89 99.62  99.44  48.68 96.80
SET5 0.0179 3.32 97.09  98.89  24.38 93.91
FRGC-C 0.6229 70.18 89.00 92.24 95.08 98.08
FRGC-U 0.3587 43.42 67.89  72.01 73.11 72.46
FRGC-C-U 0.0309 4.22 51.60  55.75 36.85 53.03
HFB 0.0358 5.19 56.69 58.56 38.00 59.00

comparison results can be found on HFB database, where LGH
obtained great improvement as compared to VGG due to its robustness
in handling heterogeneous lighting, which is not considered by VGG.
We also note that although the proposed LGH is non-learning-based
and CBFD is learning-based, the overall performance of LGH is similar
to that of CBFD, which verifies the effectiveness of LGH. Some failure
cases of CBFD and LGH are shown in Fig. 10. Since the proposed LGH
is learning free and only requires basic photometric operations, it is a
competitive tool in handling face recognition involving both homo-
geneous and heterogeneous lighting variations.

5.4.5. Further discussion

In order to have a deep insight into the selected four publically
available datasets, we attempt to quantify the difficulty level of face
datasets. For convenience, we summarize a brief description of all
datasets used in the experiment in Table 4. We first calculated the Chi-
square distance between samples from the same class, denoted as
matched score, and the distance between samples from different
classes, denoted as non-matched score, using the original intensities
as image feature. We used this overlap to measure the difficulty level of
face classification (some examples are shown in Fig. 11). A smaller Chi-
square distance indicates that the classification is more difficult. At the
same time, we report the recognition accuracies using the original
image intensity feature as baselines. All results are shown in Table 3.
From the results, we find that:
(€9) The CMU-PIE and Yale-B Extended datasets (denoted as
Group A) only contain variations caused by illumination c-
hanges, but the samples in FRGC and HFB datasets (denoted
as Group B) suffer from diverse variations, such as facial e-
xpression, glasses occlusion and illumination changes. For
each group, a small Chi-square distance between the distri-
bution of matched scores and that of non-matched scores
will probably lead to low recognition accuracies, indicating
that the classification on that dataset is more difficult. Typ-
ically, in the YaleB-Extended dataset, the angle between the
frontal view direction and the lighting direction increases f-
rom set 1 to set 5, and the Chi-square distance decreases
correspondingly. And it is the fact that the classification task
becomes more challenging as the set number increases.
The performance on FRGC and HFB datasets (denoted as

(a) CBFD failed

Fig. 10. Failure cases of CBFD and LGH. The upper row represents probe images to be recognized, while the middle row illustrates misclassified results for CBFD and LGH methods,
and the ground truth gallery images are shown in the bottom row. (a) LGH makes correct match but CBFD does not; (b) CBFD makes correct match but LGH does not.
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(b)
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Table 4
Description of the datasets employed in the experiments.

Pattern Recognition 66 (2017) 313—-327

Dataset Description
CMU-PIE 68 individuals, 21 different lighting conditions; all images captured in a few seconds, mainly caused by illumination variation
YaleB-E
ALL 38 individuals, 38 different lighting conditions; all images captured in a few seconds, mainly caused by illumination variation
SET1 The angle between lighting direction and frontal direction, denoted as S, is smaller than 12 degree
SET2 12° < § £ 25°
SET3 25° < § <50°
SET4 50° < §<77°
SET5 S>77°
FRGC
Controlled 339 identities; controlled indoor environment; suffering from diverse variations in illumination, expression and glasses occlusion
Uncontrolled 339 identities; uncontrolled indoor and outdoor environment; suffering from diverse variations in illumination, expression and glasses

occlusion
Controlled—uncontrolled
HFB

1 controlled image used as gallery and 5 uncontrolled images used as probes
100 individuals, each having 4 VIS images and 4 NIR images; variations caused by heterogeneous lighting, expression and glasses occlusion; 1

VIS image used as gallery and 4 VIS images used as probes

Group B) is inferior to that on CMU-PIE and Yale-B Exten-
ded datasets when the Chi-square distances are similar. The
reason could be that, on one hand the samples in FRGC and
HFB suffered from variations caused by other factors but not
just the illumination change, and on the other hand, the c-
omplex lighting condition in FRGC and HFB datasets in-
volves various spectral wavelengths, so that the classification
on FRGC and HFB is more difficult.

6. Conclusions

In this paper, we have proposed a novel illumination invariant
descriptor LGH to address the illumination problem in face recogni-
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tion. Different from the existing models, we consider variations caused
by the lighting direction, magnitude and the spectral wavelength
together, so that the new proposed descriptor is able to handle face
recognition under both homogeneous and heterogeneous lighting
conditions. We have proposed two illumination invariant components
in the logarithm domain after bank-pass filtering, i.e., LGO and LGM.
After that, we integrate them into a histogram based feature repre-
sentation followed by post-processing to enhance the fault-tolerant
ability. We have provided solid theoretical analysis on illumination
invariant property of the proposed descriptors. Experimental results
verify the effectiveness of our proposed model on tackling single-
image-based face recognition under serious illumination problems
from the homogeneous lighting to heterogeneous lighting.
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Fig. 11. Distributions of matched scores and non-matched scores on YaleB-E dataset.
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