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Abstract

Online learning is very important for processing sequential data and helps alle-

viate the computation burden on large scale data as well. Especially, one-pass

online learning is to predict a new coming sample’s label and update the model

based on the prediction, where each coming sample is used only once and never

stored. So far, existing one-pass online learning methods are globally modeled

and do not take the local structure of the data distribution into consideration,

which is a significant factor of handling the nonlinear data separation case. In

this work, we propose a local online learning (LOL) method, a multiple hyper-

plane passive aggressive algorithm integrated with online clustering, so that all

local hyperplanes are learned jointly and working cooperatively. This is achieved

by formulating a common component as information traffic among multiple hy-

perplanes in LOL. A joint optimization algorithm is proposed and theoretical

analysis on the cumulative error is also provided. Extensive experiments on 11

datasets show that LOL can learn a nonlinear decision boundary, overall achiev-

ing notably better performance without using any kernel modeling and second
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order modeling.
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1. Introduction

We are concerning the one-pass online learning without keeping any tracks

of passed samples. The key idea is to update current model by retaining the

new learned model close to the current one and meanwhile imposing a margin

separation on the most recent sample. After prediction and updating current5

model, the sample is abandoned, which means it could not be used for training

again. Therefore, one-pass training reduces the consuming of memory so greatly

that it is very practical in some circumstances. For example, a closed-circuit

television camera with very limited resources is allowed to learn from video

stream in one-pass manner to enhance its performance of recognition. Hence,10

one-pass online learning reduces the burden of the learning system and makes

machine learning models more applicable and flexible.

One of the most widely known one-pass online learning methods is the first-

order Passive-Aggressive (PA) method [1], which updates a marginal classifi-

er according to the feedback of the prediction of each sequential data point.15

In order to explicitly consider the uncertainty of weights of linear classifier,

confidence-weighted(CW) learning [2] as well as its variants soft confidence-

weighted (SCW-I, SCW-II)[3], adaptive regularization of weight vectors (AROW)[4]

have been recently investigated. However, the passive-aggressive and its related

confidence-weighted learning methods still assume that samples are almost lin-20

early separable, which is not always true since data points are always nonlinearly

separable in the original input space.

To address the nonlinear separation problem in online learning, there are in-

deed some nonlinear algorithms, but not all of them are one-pass based. These

algorithms include direct application of kernel trick on online linear classifier-25

s [5, 6], budget-based online models [7, 8, 9, 10], and kernel approximation map-

ping based models [11] by using random Fourier features or Nyström method.
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However, limitations exist in these methods, including (1) memory overflow after

processing a large amount of data due to keeping historical wrong classified sam-

ples as support vectors (SVs) in [5, 6], (2) large computational burden caused30

by processing on SVs in the budget in [7, 8, 9, 10], and (3) data-independence

and not adaptation to data stream in [11].

In offline learning, besides kernelizing linear classification models to solve

the linearly non-separable problems, local classifiers have also been investigat-

ed recently to assign data samples to a set of prototypes and then infer the35

weights for model combination of local classifiers. Locally linear support vector

machine(LLSVM)[12], and local deep kernel learning(LDKL)[13] were proposed

to solve non-linear classification tasks using a weighted combination of multi-

ple local hyperplanes, whose weights can be determined by local coding. As an

extreme, the 1-nearest prototype classifier(1-NN)[14] combines prototype learn-40

ing and nearest neighbor search to perform classification. Local classifiers has

better adaptability to various types of data distribution than kernel classifiers,

and the advantage of combining local classifiers is to avoid kernel modeling,

so as to avoid computational expensive for large scale data. However, existing

works mentioned above are not specifically designed for online learning tasks.45

Hence how to derive online local learning and how local online approach works

for on-the-fly classification are still unknown.

In this paper, we propose a novel online approach by jointly learning multiple

local hyperplanes to nonlinearly process sequential data in an one-pass manner.

In particular, we extend the single hyperplane passive-aggressive method to a50

multiple local hyperplanes one. All local hyperplanes will be connected by a

common component and optimized simultaneously. In our modeling, the lo-

cal specific components of hyperplanes allow our model to make more accurate

prediction locally (i.e. sensitive to a probe data point), while the common

component shared by these local hyperplanes alleviates the over-fitting caused55

by the local information. A novel optimization algorithm is proposed and the

theoretical relationship between the single and multiple hyperplane passive ag-

gressive algorithms is derived from the aspect of cumulative error. We call our
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proposed model the local online learning (LOL) method. Our method achieves

notable better performance on various tasks, especially on multi-class classifi-60

cation tasks, such as Multi-PIE Identity recognition of 249 subjects, achieving

more than 95% accuracy and at least 13% higher than the compared methods.

The details will be discussed in the experiment section (Sec. 5).

It is indeed that there are related online developments in pattern recognition

such as online tracking [15], online face recognition [16, 17], incremental object65

matching [18], and online action recognition [19]. There are also works on using

sequential algorithm to learn a classifier when only limited source is available

for computation such as [20]. However, these models are not generally designed

to make themselves be applicable for other applications, or they only conduct

the learning when the size of dataset is increasing but are not one-pass based70

suitable for locality sensitive classification. Compared to these work, we aim to

learn an online classifier for general purpose and make it suitable for one-pass

online learning.

The remainder of this paper is organized as follows: Sec. 2 briefly reviews

the related one-pass online learning algorithms. Sec. 3 and Sec. 4 detail the pro-75

posed local online learning algorithms and the corresponding theoretical analy-

sis. Experimental results are presented in Sec. 5. Finally we draw the conclusion

in Sec. 6.

2. Related Work

2.1. Passive Aggressive Algorithm (PA)80

Like Perceptron[21], the first order Passive-Aggressive algorithm (PA)[1] fo-

cuses on learning linear classification model for each new sample x ∈ Rd, formed

as:

g(x) = sign(wTx), (1)

where sign function outputs the prediction label (-1 or +1) of the input and

w is a weight vector. Passive-Aggressive method aims to use the pre-learned
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globally linear hyperplane to guide the prediction of new observed sample xt

labeled with yt ∈ {−1, 1} at time step t by solving the following problem:

wt+1 = arg min
w

1

2
‖w −wt‖2

s.t. `pa(w; (xt, yt)) = 0

(2)

where wt is the model/hyperplane at time step t before update. Here, `pa is the

hinge loss function, i.e. `pa(w; (xt, yt)) = max{0, 1 − yt · wTxt}. In practice,

a non-negative slack variable ξ is introduced so that the above optimization

problem becomes:

wt+1 = arg min
w

1

2
‖w −wt‖2 + Cξ,

s.t. `pa(w; (xt, yt)) ≤ ξ and ξ ≥ 0

(3)

where C is a positive parameter. This optimization problem can be understood

as searching a new optimal hyperplane that does not differ from the current

one too much in order to meet the loss constraint with respect to a new input

sample. The solution of the problem (3) is given by

wt+1 = wt + ηtytxt, ηt = min{C, `pa

‖xt‖2
} (4)

where ηt is the learning rate. Obviously, Passive-Aggressive method learns a

globally linear decision function without considering the local distribution of

data.

2.2. Confidence Weighted Online Learning Algorithm Family

Confidence weighted algorithm (CW)[2], soft confidence weighted algorithms

(SCW-I, SCW-II) [3] and adaptive regularization of weight vectors (AROW)[4]

were proposed to explore the underlying structure of features. Confidence-

weighted learning is actually inspired by Passive-Aggressive learning but holds

a Gaussian distribution assumption over the weights. Confidence weighted al-

gorithm assumes that a Gaussian distribution with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d is imposed on linear weights . The distribution is obtained by
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minimizing the Kullback-Leiber divergence between the new distribution (pa-

rameterized by N (µt+1,Σt+1)) and the old one (parameterized by N (µt,Σt))

in a passive-aggressive way, forcing the probability of accurate prediction of

current sample xt greater than a threshold η below:

(µt+1,Σt+1) = arg min
(µ,Σ)

DKL(N (µ,Σ),N (µt,Σt)) (5)

s.t.Prw∼N (µ,Σ)[yt · (wTxt) ≥ 0] ≥ η

The problem (5) has a solution of the following form:

µt+1 = µt + αtytΣtxt, Σt+1 = Σt − βtΣtx
T
t xtΣt (6)

Soft confidence-weighted (SCW-I, SCW-II)[3] and adaptive regularization of85

weight vectors (AROW)[4] are extensions of confidence weighted algorithm [2],

sharing the same update form but with different rules to learn the coefficients.

These methods model the globally linear weight with a distribution and thus

introduce variations of linear hyperplanes into the modeling. However, this

modeling is still globally linear.90

2.3. Online Kernel (Approximation) Algorithms

Inspired by the successful application of kernel tricks [22] to enhance the

linear classifiers, some researchers intend to employ kernel tricks for online lin-

ear classifier learning. Correspondingly, a lot of kernel approximation methods

have been developed to reduce the computational complexity caused by the95

employment of kernel tricks [23] [24]. However, these method need to keep all

historical wrong classified samples as support vectors (SVs). Alternatively, on-

line learning with a budget[7][8][9] is also proposed by maintaining a limit on the

number of SVs, based on some strategies for balancing sacrifice of accuracy and

computational burden. However, keeping SVs albeit limited in a budget makes100

these methods not strictly one-pass because these methods would revisit the

passed samples to adjust their model. For example, budgeted online learning

algorithm with a certain removal strategy needs to check which SVs to remove

and therefore the cost of each update is expensive.
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While kernelization provides opportunity for solving nonlinear classification105

problem, it introduces heavy computational burden with the growth of numbers

of support vectors (SVs). To solve the problem, budgeted online learning algo-

rithms such as Budgeted Stochastic Gradient Descent(BSGD)[10] which limits

the number of SVs were proposed to bound the number of SVs. BSGD describes

a budgeted version of kernelized SGD for SVM by controlling the number of SVs110

through one of several budget maintenance strategies, such as removal of SVs.

An alternative way to solve the problem is two recently proposed methods,

namely Fourier Online Gradient Descent(FOGD) and Nyström Gradient De-

scent(NGOD) [11], which integrate kernel approximation techniques into online

learning. These methods adopt kernel feature mappings on input space, where

the corresponding inner product space is induced by the desired mercer kernel,

such as Gaussian kernel. After the mapping, they learn a linear prediction model

in the feature space afterwards. The key difference between FOGD and NOGD

is that FOGD adopts Random Fourier feature sampling technique, while NOGD

adopts Nyström method to set up the kernel feature mapping. More specifically,

for processing the sample xt at time step t, FOGD performs online learning in

the following space:

zt = [cos(uT1 xt), sin(uT1 xt), ..., cos(u
T
Dxt), sin(uTDxt)], (7)

where ui is sampled from a Gaussian distribution N(0, σ−2I). NOGD learns in

another space below:

zt = [K(x1,xt),K(x2,xt), ...,K(xB ,xt)]VkD
−1/2
k , (8)

where the Nyström method samples k columns from kernel matrix K consisting

of the first B samples, i.e. x1, · · · ,xB , (B � T ), and Vk, Dk are derived

from the singular value Decomposition(SVD) of Kk = VkDkV
T
k where Kk is

the best rank-k approximation[11] of K. Fourier feature sampling is obviously115

data independent, while Nyström sampling is only applied to the first portion

(small if the data stream is large) of the data stream. Therefore, there is no

guarantee that these methods could adapt to the change of data distribution,
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since the kernel approximation methods they used are only based on the early

data distribution in a data stream and do not take any future data distribution120

change into consideration as more and more data points are accessed.

3. Local Online Learning

3.1. The Model

The proposed local online learning (LOL) aims to learn multiple hyperplanes

locally on one-pass data points. LOL consists of two parts: 1) developing a125

multiple hyperplane passive-aggressive algorithm to learn multiple hyperplanes

locally and jointly, making the online learning locally sensitive to data distri-

bution; 2) incorporating online clustering in order to assign each probe sample

to its specific prototype domain, which is the region of the prototype closest to

the probe sample. The prototype domain is the description of data distribution130

for our online learning method. We detail our model below.

Inspired by recent local prototype methods [25, 12, 14] and the joint local

multiple hashing modeling [26] which are offline methods, we develop a new

online learning approach based on the following k local prototype model:

f(x) =

k∑
i=1

fi(x) · 1(x ∈ D(Pi)) (9)

where k is the number of prototypes, D(Pi) denotes domain of the ith prototype

Pi, 1(·) is an indicator function whose value is 1 if x ∈ D(Pi) or 0 otherwise,

and fi(x) is defined as:

fi(x) = wT
i x (10)

Although data is not always globally linearly separable, it is still possible that

they are locally linearly separable. Eq.(9) assumes that the combined linear

prediction model achieves locally sensitive classification depending on where

the test data point locates.135

Now, we start to develop local online learning (LOL) based on Eq.(9). As-

sume that each local component wi can be factorized into two components: a
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common component w shared by all local components and prototype specific

component ui, i.e. wi = w + ui, i = 1, · · · , k. The key idea of our model is

to optimize the common component w and the local components ui separately

and connect them by balancing the extent of their update using a balance pa-

rameter λ. For online learning, both common component and local components

are updated by passively neglecting correct classified samples but aggressive-

ly adjusting all components to fit the wrong classified samples. Updating the

common component w bridges all local hyperplanes, while updating each local

components if necessary helps refine prototype specific hyperplane (i.e. the local

hyperplane). To this end, for a new input data xt labeled with yt ∈ {−1, 1}

at time step t, we propose to optimize the following objective function for our

LOL problem:

wt+1,u1,t+1, . . . ,uk,t+1 =

argmin
w,u1,...,uk

λ

2
‖w −wt‖2 +

1

2

k∑
i=1

‖ui − ui,t‖2

s.t. `lol(w,u1, . . . ,uk; (xt, yt)) = 0

(11)

where wt and ui,t are the common component and the ith local component at

time step t before update, respectively, and the loss function is:

`lol(w,u1, . . . ,uk; (xt, yt))

=

 0 yt · f(xt) ≥ 1

1− yt · f(xt) otherwise
(12)

To make Eq. (11) more practical, a slack variable is introduced into the above

optimization problem to achieve soft-margin maximization:

wt+1,u1,t+1, . . . ,uk,t+1 =

argmin
w,u1,...,uk

λ

2
‖w −wt‖2 +

1

2

k∑
i=1

‖ui − ui,t‖2 + Cξ

s.t. `lol(w,u1, . . . ,uk; (xt, yt)) ≤ ξ, ξ ≥ 0

(13)

Since w is the common component of our target local hyperplanes that

require the hyperplane of each local prototype to align with, w builds the infor-

mation traffic and controls the shared information among different prototypes.
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Pos. sample 

Neg. sample 

(a)

Pos. sample 

Neg. sample 

New sample 

(b)

Pos. sample 

Neg. sample 

New sample 

(c)

Figure 1: Example of how PA processes new input samples: (b) is the decision

boundary (hyperplane) updated from (a), and (c) is the hyperplane update from

(b).

In this way, the learned local hyperplanes are not separated in each prototype.

It is therefore able to avoid over-fitting in each local prototype.140

Figure 1 shows that Passive-Aggressive method (PA) updates the model

when a wrong prediction is made. In comparison Figure 2 shows that in local

online learning (LOL) a new sample is assigned to a prototype domain first and

then the local model is updated if the local model makes a wrong prediction.

Figure 3 shows an example of decision boundary learned by PA and LOL, which145

shows LOL is able to learn nonlinear boundary locally.

Independent local online learning (I-LOL). When we eliminate the com-

mon component w from the Criterion (13), i.e. setting w = 0, then the proposed

local online learning (LOL) becomes a direct extension of Passive-Aggressive

method learned on different prototype domains adaptively. Here, we denote150

such a simplified version as independent local online learning (I-LOL). Howev-

er, we show in our experiments that such a simplified local online learning is not

always optimal. As shown in our experiments, on 8 datasets among all, lower

test errors could be obtained if all these local hyperplanes are learned jointly

rather than independently.155
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Prototype 

Pos. sample 

Neg. sample 

(a)

New sample 

Prototype 

Pos. sample 

Neg. sample 

(b)

New sample 

Prototype 

Pos. sample 

Neg. sample 

(c)

Figure 2: Example of how local online learning (LOL) processes new input

samples: (b) is the decision boundary (hyperplane) updated from (a), and (c)

is the hyperplane update from (b)

3.2. Optimization

Updating Hyperplanes for local online learning (LOL). Although LOL

has to update quite a lot of local components and a common component, we

show in the following that after certain transformation, LOL can be easily solved

by the Passive-Aggressive algorithm (PA) itself, although LOL is a local model160

and PA is a global model.

Let

x̃t =

[
xt√
λ

T
,0T ,0T , ...,xt

T , ...,0T
]T

(14)

where the (i + 1)th component of x̃t is xt. Accordingly, the global and local

components could be represented as follow:

w̃ =
[√

λwT ,uT1 ,u
T
2 , ...,u

T
i , ...,u

T
k

]T
(15)

By using Eq.(14)and Eq. (15), the objective function(13) could be rewritten

as:

w̃t+1 = arg min
w̃

(
1

2
‖w̃ − w̃t‖2 + Cξ

)
s.t. `lol(w̃; (x̃t, yt)) ≤ ξ, ξ ≥ 0. (16)

In this way, we convert local online learning (LOL) into the same mathematical

form as Eq.(3). However, we shall emphasize that LOL is intrinsically differ-

ent from Passive-Aggressive method (PA), LOL learns locally sensitive online
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Figure 3: Decision boundaries learned on SVMGUIDE1 dataset after PCA Pro-

jection into a two-dimensional space: a globally linear one learned by Passive-

Aggressive method (left) and a piece-linear one by our local online learning

(right).

classifier but PA method is not. Then, as in [1], we first define the Lagrangian:

L(w̃, ξ, η, γ) = arg min
w̃

1

2
‖w̃ − w̃t‖2 + Cξ − η( `lol(w̃; (x̃t, yt))− ξ)− γ · ξ

(17)

where η and γ are Lagrange multipliers. The optimal solution is obtained when

the gradients equal to zero. By solving Eq.(17), we obtain

w̃t+1 = w̃t + ηtx̃t (18)

ηt = min{C, `lol

‖x̃t‖2
} (19)

The optimal update for the new w̃ has the form of a gradient descent step with

a step size ηt.

Updating Prototypes for local online learning (LOL). Different from

Passive-Aggressive method (PA), local online learning (LOL) is relying on quan-

tizing input data to different prototype domains. Since LOL is developed for

online learning, not all samples are provided in advance and thus it is necessary

to update the prototype domain online. In order to process data points xt for
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prototyping in a sequential order: t = 1, 2, . . ., we adopt a sequential version of

K-means[27] which uses the first k data points as initial prototypes, then assigns

a new data point xt, t>k to the closest prototype learned from step t − 1, and

finally updates the corresponding prototype after the assignment. The rule of

online update of prototypes could be written as:

Pi = Pi +
1

ni
(xt − Pi) (20)

where Pi is the ith prototype and ni is the total number of previous samples

assigned to the ith prototype. After we predict the nearest prototype of xt,165

the ith one for example, then the original prototype Pi is updated. It could

be viewed that the prototype Pi moves towards the sample xt at time t. It

is worth mentioning that due to the sequential manner of clustering we use,

it might be probably that noisy clustering could affect the performance of our

online learning. However, our experiments in a latter section will show that the170

gap caused by sequential K-means and the offline K-means (if available) is small

enough to be tolerated after sufficient training.

4. Theoretical Analysis

We analyze the relative error rate of local online learning (LOL) as compared

to one of Passive-Aggressive method [1]. Let

w̃pa =
[√

λwT ,0T ,0T , ...,0T , ...,0T
]

(21)

Based on the definition of x̃t in Eq. (14), we have w̃paT x̃t = wTxt and thus

`pa(w; (xt, yt)) = `lol(w̃pa; (x̃t, yt)), where `pa is the hinge loss function de-

fined in Eq. (2) and `lol is hinge loss function defined in Eq. (15). Hence,

local online learning (LOL) (Eq.(16)) is actually equivalent to linear passive-

aggressive method if we constrain the projection in Eq.(11) in the set Q ={
[
√
λwT ,0T ,0T , ...,0T , ...,0T ] | w ∈ Rd

}
as follows:

w̃pa
t+1 = arg min

w̃pa∈Q

(
1

2
‖w̃pa − w̃pa

t ‖
2

)
s.t. `lol(w̃pa; (x̃t, yt)) = 0. (22)
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Algorithm

Input: aggressiveness parameter: C>0

the number of prototypes: k

1: initialize w̃0: w̃0 = 0

2: for t = 1, 2, . . . do

3: receive instance: xt ∈ Rd

4: if t ≤ k then

5: initialize prototype: Pt ← xt, nt = 1 /* initialize k prototypes*/

6: else

7: get the nearest prototype: i← arg min
j

(Dist(Pj ,xt))

8: update prototype: Pi ← Pi + 1
ni

(xt − Pi), ni ← ni + 1

9: end if

10: x̃t = [xT ,0T , . . . ,xT ((i+ 1)th position), . . . ,0T ]T , x̃t ∈ Rkd

11: predict: ŷt = sign(w̃T
t x̃t)

12: receive correct label: yt ∈ {−1, 1}

13: compute loss: `lolt = max{0, 1− yt(w̃T
t x̃t)}

14: set: ηt = min{C, `lolt

‖x̃t‖2
}

15: update: w̃t+1 = w̃t + ηtytx̃t

16: end for

Output: model: w̃ ∈ Rkd

Hence, the best solution w̃pa
t of Passive-Aggressive method (PA) may be actually

a suboptimal solution of local online learning (LOL), i.e.

`lol(w̃lol
t ; (x̃t, yt)) ≤ `lol(w̃pa

t ; (x̃t, yt)) = `pa(wpa
t ; (xt, yt)). (23)

This shows LOL would not obtain a higher error rate than PA. Beyond the

above, we can further have the following relationship between the cumulative175

errors of LOL and PA with respect to Eq. (2) and Eq. (11).

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a series of samples where xt ∈ Rd,

yt ∈ {+1,−1} and ‖xt‖ ≤ R for all t. Assume that there exists a vector ũlol such

that `lol?(ũlol; (x̃t, yt)) = 0 for all t = 1, 2, · · · , T . Then the relation between

cumulative errors of local online learning (LOL) and that of Passive-Aggressive

14



method (PA) can be further described below:

T∑
t=1

(`lolt )
2 ≤ 1

2
(1 +

1

λ
)R2

(
‖ ũlol ‖2 +

T∑
t=1

(`pat )
2

‖x̃t‖2

)
, (24)

where `lolt = `lol(w̃lol
t ; (x̃t, yt)), `

pa
t = `lol(w̃pa

t ; (x̃t, yt)), and x̃t is a mapping of

xt as defined in Eq.(14).

Proof. By using the Lemma 1 in [1], we first have

T∑
t=1

ηlolt (2`lolt − ηlolt ‖ x̃t ‖2) ≤‖ ũlol ‖2,

where ηlolt =
`lol(w̃lol

t ;(x̃t,yt))

‖x̃t‖2
. By using Eq.(23), we have `lolt ≤ `pat and thus

ηlolt ≤
`pa(w̃pa

t ;(x̃t,yt))

‖x̃t‖2
= η

′

t. Then

T∑
t=1

2ηlolt `lolt − η
′

t · η
′

t ‖ x̃t ‖2≤‖ ũlol ‖2, (25)

That is
T∑
t=1

2
(`lolt )

2

‖x̃t‖2
− (`pat )

2

‖x̃t‖2
≤‖ ũlol ‖2 (26)

Since ‖x̃t‖2 = (1 + 1
λ ) ‖xt‖2 ≤ (1 + 1

λ )R2, we have

T∑
t=1

(`lolt )
2 ≤ 1

2
(1 +

1

λ
)R2

(
‖ ũlol ‖2 +

T∑
t=1

(`pat )
2

‖x̃t‖2

)
. (27)

5. Experimental Results180

5.1. Datasets

We evaluated our method on 11 benchmark datasets from different fields,

including two digit datasets ( MNIST1 and USPS2), two face datasets (CBCL-

Face 3 and the first section of CMU Multi-PIE [28]), the dataset of KDDCUP

1http://yann.lecun.com/exdb/MNIST/
2http://www-i6.informatik.rwth-aachen.de/~keysers/USPS.html
3http://cbcl.mit.edu/software-datasets/FaceData2.html
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2008, and other datasets as SVMGUIDE1, IJCNN1 and LETTER from LIB-185

SVM website4. It is worth noting that in the following, the Multi-PIE dataset

will be used for two purposes. One is for pose classification (15 different poses)

and we denote the Multi-PIE dataset as “Multi-PIE Pose” in this case. An-

other is for classifying identities (249 subjects) and we denote the Multi-PIE

dataset as “Multi-PIE Identity” in such a case. More characteristics about190

these datasets are summarized in Table 2. Since online learning is designed for

large scale problem, we also introduced two large scale classification tasks: 1)

malicious urls detection and 2) web spam detection. We denote the dataset

we used for malicious urls detection as “URL”5. We performed classification on

such a dataset to detect malicious urls. The dataset “URL” has 2.4 million urls195

and 3.2 million features collected in a real-time system[29], a typical task which

offline kernel machines could not afford. As for the dataset we used for web

spam detection, we denote it as “WEBSPAM” 6. WEBSPAM contains 350,000

records (web spam pages) collected by a fully automated web spam collection

method[30] and we adopted the normalized unigram version available on the200

LIBSVM site.

Since the update form of the second order methods (see Eq.(6)) needs to

keep a covariance matrix of the weight vector, which makes the training slow

and even infeasible. For example, computation of the URL dataset with 3.2

million features yields a very large full covariance matrix consuming 381 GB.205

In order to compare these methods on “URL”, we have to perform dimension

reduction. In this paper, we performed Gaussian random projection [31] to

reduce the data dimension for all methods to 100 dimension on URL.

About the training and testing on all dataset except KDDCUP2008, Multi-

PIE Pose, Multi-PIE Identity and URL, we followed the existing training and210

testing division rules in literatures7. Since there is no default training and

4http://wwww.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
5http://sysnet.ucsd.edu/projects/url/
6http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
7http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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testing protocols for KDDCUP20088, Multi-PIE-Pose, and Multi-PIE-Identity,

we conducted as follows. For KDDCUP2008, we randomly selected 3/4 of the

samples for training and the rest for testing. For Multi-PIE-Pose and Multi-

PIE-Identity, we randomly divided them into half for training and another half215

for testing. For URL, we used the data samples collected in the first 100 days

for training and the remaining 21 days’ data samples for testing. For all the

datasets except WEBSPAM and URL, experiments were run 10 times with

different permutations of training set (i.e. sequences in different orders) and the

averaged results are reported. As for URL data samples which were captured220

already in the order of time, due to the use of random projection, we performed

10 performed Gaussian random projection, computed the performance, and the

average result was finally reported. The first 200,000 records of WEBSPAM

were used for training and the remaining 150,000 records were for testing.

5.2. Measurement225

Cumulative Error. It is defined by
∑t

1 I(yt!=ŷt)

t . This measure is to tell how

the online learning is trained on sequential training data. It reflects 1) the cu-

mulative error rate caused by the online model for processing new input training

data points before time step t and 2) how the accuracy of prediction changes

over the data sequence.230

Test Error. Different from the Cumulative error, traditional test error (on the

unseen test set) is also tested on the final model after online training (on training

set) process. It is necessary because the test error indicates the generalization

ability of the learned online model on unseen data.

Cumulative error sometimes will be much higher than test error on the same235

dataset, because it is largely affected by initial wrong predictions.

8The original test dataset does not contain label information.
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Table 1: Characteristics of the compared methods

methods Second order Using kernel Non-linear Local

PA[1] No No No No

Pegasos[32] No No No No

CW[2] YES No No No

SCW-I[3] YES No No No

SCW-II[3] YES No No No

AROW[4] YES No No No

BSGD[10] No Yes Yes No

FOGD[11] No Yes Yes No

NOGD[11] No Yes Yes No

I-LOL No No Yes Yes

LOL No No Yes Yes

5.3. Compared Methods

We compared the proposed method with the first order Passive Aggressive

Algorithm(PA) and the second order confidence weighted family such as confi-

dence weighted algorithm (CW)[2], soft confidence-weighted algorithms (SCW-I,240

SCW-II)[3], and adaptive regularization of weight vectors (AROW)[4]. Addi-

tionally, we also compared our method with Pegasos[32], a widely used linear

SVM. Different from the original Pegasos algorithm using sub-sampling k sam-

ples in each iteration, we used it in an online way, i.e. sampling one sample in

each iteration and that sample is then removed from the sample pool. To fairly245

evaluate the performance with several online learning algorithms, we adopted

the implementation of LIBOL[33] for the compared methods and followed similar

parameter setting for the methods in [3]. As for budgeted stochastic gradien-

t descent method (BSGD), we used the BudgetedSVM toolbox[34]. To show

that the proposed method local online learning (LOL) is benefited from locality250

sensitive modeling without using kernel, we also compare some kernel approxi-

mation online learning methods Fourier Online Gradient Descent(FOGD) and

Nyström Gradient Descent(NGOD) [35] and an budgeted stochastic gradien-

t descent method (BSGD)[10]. Finally, we compare the proposed local online
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Table 2: Description of the datasets

Dataset #Training #Testing #Features #Classes

SVMGUIDE1 3,089 4,000 4 2

CBCL Face 6,977 24,045 361 2

IJCNN1 49,990 91,701 22 2

KDDCUP08 95,470 31,824 127 2

WEBSPAM 200,000 150,000 254 2

URL 1,976,130 420,000 100 2

USPS 7,291 2,007 256 10

LETTER 15,000 5,000 16 26

MNIST 60,000 10,000 780 10

Multi-PIE Pose 74,700 74,700 100 15

Multi-PIE Identity 74,700 74,700 100 249

learning (LOL) with Independent local online learning (I-LOL), the independent255

version without a common component to bridge local hyperplanes, to show the

benefit of modeling the common component shared by all local hyperplanes.

The characteristics of the compared methods are summarized in Table 1.

Parameter Setting: The parameter C in Passive-Aggressive method (PA),

soft confidence-weighted (SCW-I, SCW-II) was determined by cross validation260

from {2−4, 2−3, . . . , 23, 24}; the parameter η in CW, SCW-I, SCW-II was cross-

validated from {0.5, 0.55, . . . , 0.9, 0.95}. The balancing parameter λ in Pega-

sos was cross-validated in {10−4, 10−3, . . . , 102, 103}. The size of budget B of

budgeted stochastic gradient descent method (BSGD), Fourier Online Gradient

Descent(FOGD), Nyström Gradient Descent(NGOD) was set to 200, and D in265

FOGD was set as 10×B and k in NOGD was set as B. The kernel bandwidth

was set by cross validation over the range {1, 10, 100, 1000} and the learning

rate was set to 0.0001. In order to determine the optimal parameters for our

online model on this dataset, we first performed a cross validation by repeatedly

and randomly split the whole training set into two equal halves: one for training270

and the other for validation data. For each split, a set of online models with

different parameter sets were learned on the training data and then tested (test
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Table 3: Part I: Comparison of test errors (%) for different methods (Bold texts

indicate the best results)

method SVMGUDIE1 CBCL Face IJCNN1 KDDCUP2008 WEBSPAM URL

PA 30.35%±0.107 7.12%±0.059 34.98%±0.038 38.74%±0.047 7.56% 15.99% ± 0.052

Pegasos 37.49%±0.126 20.84%±0.182 25.48%±0.068 45.75%±0.030 11.58% 16.10%±0.023

CW 50.09%±0.243 3.64%±0.003 46.41%±0.028 34.52%±0.030 10.66% 36.46% ± 0.089

SCW-I 21.42%±0.010 3.20%±0.001 46.96%±0.079 25.95%±0.103 6.58% 9.01% ± 0.019

SCW-II 22.63%±0.002 3.08%±0.001 61.59%±0.314 44.89%±0.022 7.77% 9.31% ± 0.019

AROW 21.51%±0.002 3.22%±0.001 34.27%±0.005 43.98%±0.011 7.25% 9.28% ± 0.020

BSGD 5.73%±0.009 2.14%±0.004 4.36%±0.000 0.57%±0.001 5.27% 20.00%±0.023

FOGD 7.68%±0.013 6.47%±0.037 11.48%±0.070 0.70%±0.001 5.68% 9.72%±0.013

NOGD 5.75%±0.009 6.38%±0.017 11.99%±0.063 0.73%±0.003 14.82% 10.56% ±0.012

I-LOL 6.54%±0.021 5.34%±0.010 4.10%±0.006 0.65%±0.001 5.56% 8.70%±0.007

LOL 5.26%±0.014 3.68%±0.014 3.15%±0.006 0.69%±0.002 4.95% 7.20%±0.007

error) on the validation data. Then the parameters with the best average results

over 10 random splits were selected to train our final online model on the whole

training set. We report the test error of the learned model on the unseen test275

set in Table 3 and Table 4.

Since the local online learning (LOL) is not very sensitive to the parameters,

we adopt a group of fixed parameters for all the tasks. The number of proto-

types k is set to 60, the balancing parameter λ is set to 1.0 and the aggressive

parameter C is set to 1.0. The influence of λ and k would be further evaluated280

in Section 5.4.4. In the Independent local online learning (I-LOL), parameters

C and k are set as the same as LOL. In the multi-class classification problems,

FOGD, NOGD , I-LOL and our LOL adopt one-vs-all strategy to predict the

result.

To show our adopted sequential K-means holds a close performance to the285

“offline” K-means9, we also performed experiment on 6 datasets with the pre-

9For comparison, we have to assume all the sequential data samples have been observed

and the offline K-means can be run.
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Table 4: Part II: Comparison of test errors (%) for different methods. (Bold

texts indicate the best results)

method USPS LETTER MNIST Multi-PIE Pose Multi-PIE Identity

PA 12.36%±0.015 34.17%±0.017 12.31%±0.011 4.22%±0.003 43.64%±0.003

Pegasos 20.87%±0.081 60.74%±0.049 21.73%±0.082 15.01%±0.025 83.35%±0.013

CW 10.78%±0.004 93.57%±0.038 12.56%±0.003 4.26%±0.001 31.17%±0.001

SCW-I 9.73%±0.003 37.33%±0.019 19.59%±0.008 4.37%±0.000 78.43%±0.004

SCW-II 9.29%±0.002 26.34%±0.003 12.04%±0.004 3.54%±0.000 29.04%±0.002

AROW 9.06%±0.004 33.03%±0.007 29.26%±0.090 6.63%±0.001 31.49%±0.002

BSGD 14.03%±0.008 29.28%±0.059 4.33%±0.002 8.99%±0.000 46.18%±0.102

FOGD 9.84%±0.024 19.24%±0.016 6.57%±0.002 3.58%±0.004 18.17%±0.007

NOGD 9.29%±0.015 23.16%±0.015 10.07%±0.005 10.78%±0.012 79.45%±0.014

I-LOL 10.19%±0.008 20.83%±0.012 4.82%±0.002 3.48%±0.002 31.95%±0.009

LOL 7.88%±0.008 17.69%±0.011 3.03%±0.001 2.15%±0.001 4.62%±0.003

trained prototypes via offline K-means, i.e. the prototypes are fixed before online

training and no prototype update is made during the online learning process.

The number of prototypes is set to the same value as the sequential one.
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Figure 4: Cumulative error (%) on training data for different methods. For test

error on probe, see Tables 3 and 4

5.4. Results290

5.4.1. Comparison to Online Linear Classifiers

From Table 3, Table 4 and Figure 4, we show that local online learning

(LOL) consistently outperforms Passive-Aggressive method (PA). Always, LOL

algorithm has a much lower error rate than PA. Pegasos has a close performance

to PA and thus is also clearly inferior to LOL. This shows that exploring local295

hyperplanes during online update is very important for addressing the non-

22



linearly separable data problem, while only preserving a global hyperplane is a

notable weakness in PA. The results have provided empirical supports for our

theoretical analysis in the previous section that LOL is able to achieve lower

error rate.300

We then compare local online learning (LOL) with the second-order al-

gorithms, i.e. confidence weighted algorithm (CW), soft confidence-weighted

(SCW-I, SCW-II) and adaptive regularization of weight vectors (AROW). They

are all passive-aggressive like methods, but they are second-order, because they

learn the weights of projection under Gaussian distribution. As shown in Ta-305

ble 3 and Figure 4, compared to LOL, LOL still performs better and obtains

notable improvements on SVMGUIDE1, IJCNN1, KDDCUP2008 and WEB-

SPAM. Although all the linear models perform rather well on URL, LOL still

has stable improvement as compared to the second order algorithms. On USPS

and MNIST, which consist of 10 classes, the second order methods still work310

well. On the LETTER dataset that consists of 26 classes, the gap between LOL

and these second order methods are large. In the Multi-PIE pose recognition

task of 15 poses, their performances are still comparable to LOL, but for the

identity classification of 249 people, they fail to keep high accuracy while the

performance of LOL has only a slight increase of test error from 2.1% to 4.6%.315

Regarding the result of two real-world datasets: WEBSPAM and URL, LOL

also outperforms the compared methods. Although the second order methods

apply confidence weighting on features, they are still limited since they assume

that data points are almost linearly separable. Hence, with the increase of the

diversity of classes, the impact of local modeling is much more obvious.320

5.4.2. Comparison to Online Kernel (Approximation) Classifiers

We also compare the recently proposed online kernel learning methods such

as Fourier Online Gradient Descent (FOGD), Nyström Gradient Descent (N-

GOD) and budgeted stochastic gradient descent method (BSGD)[10]. The re-

sults are presented in Table 3, Table 4 and Figure 4. For two-class classification325

task, the comparison results show that the proposed local online learning (LOL)
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obtains lower test error on all datasets except KDDCUP2008 , and notable im-

provements are gained on IJCNN1, e.g. LOL gaining 3.15% test error while

FOGD and NOGD gain about 12%. Compared to BSGD, although BSGD

achieves slightly better results on CBCL-Face and KDDCUP2008, LOL is on-330

ly slightly inferior to BSGD especially on the KDDCUP2008 dataset. While

FOGD, NOGD and BSGD have an improvement on WEBSPAM but close per-

formance on URL comparing to the linear models, our proposed LOL holds

steady and lower error on these two real-world datasets.

For the multi-class classification task, the gap is more clear. LOL signifi-335

cantly outperforms FOGD, NOGD and BSGD on all the multi-class datasets.

On Multi-PIE, the proposed method achieves the lowest test error, obtaining

a notable and clear margin. Especially, on Multi-PIE identity, there are 249

classes and only the proposed LOL achieves a test error about 5%, while the

others are higher than 18%.340

Although the proposed LOL is not a kernel based method, the gain of supe-

riority of LOL is due to the fact that LOL can directly model the classification

decision boundary locally and adapted to the change of data stream. Never-

theless, the comparison here shows that our local online learning modeling can

be an robust alternative approach to generalize the online linear learning for345

handling nonlinearly separable sequential data.

5.4.3. Comparison to independent local online learning (Independent local on-

line learning (I-LOL)) classifiers

To show the importance of the joint learning of local hyperplanes in local

online learning , we compare local online learning (LOL) and independent local350

online learning (I-LOL). Table 3, Table 4 and Figure 4 show that although I-

LOL could also model local information from data, it is obvious that I-LOL

performs worse overall than LOL due to the lack of joint learning in I-LOL

that there is no shared/common information between local prototype domains,

especially in the Multi-PIE Identity task.355
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Figure 5: Test error of local online learning (LOL) with respect to the number

of prototypes k with fixed λ = 1
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Figure 6: Test error of local online learning (LOL) with respect to the value of

λ with fixed number of prototypes k = 60

5.4.4. Evaluation of parameters

Here, we would study the influence of two key parameters in local online

learning (LOL) , namely the number of prototypes k and the balance parameter

λ in Eq. (13) .

Regarding the number of prototypes used in LOL algorithm, Figure 5 shows360
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how test error varies with different numbers of prototypes k. We here selected

six of the datasets to display the results. It is indeed that a specific value of

k is preferred for LOL to achieve higher accuracy on some datasets, such as

SVMGUIDE1, IJCNN1. On some datasets, such as USPS and MNIST, their

results are not so sensitive to the value of k.365

But fortunately, in these cases, the difference of prediction ability is very

small among different k values; for example, whatever value the k is, the results

of MNIST are almost the same (97± 0.06%).

Regarding the balance parameter λ, Figure 5 shows that the test error first

decreases as λ increases but raises again after λ keeps growing. As mentioned in370

the previous sections, λ balances the globally shared common component and

those local ones. Hence, making a suitable amount of information shared across

local hyperplanes will be beneficial to online performance.

5.4.5. Effect of Sequential Clustering in LOL

Figure 7 shows the performance comparison between our proposed LOL375

using sequential clustering and the LOL using the pre-trained prototypes learned

by offline K-means. At the beginning of training, there is indeed clear difference

between them. However, after training for a while, the gap becomes smaller

and smaller, and the difference vanishes when sufficient training samples have

been processed on large-scale dataset. On one hand, as long as more samples380

are processed online, sequential clustering is approximating the offline K-means

and would not lower the effectiveness of LOL. On the other hand, for real world

online learning, it is hard to perform an offline clustering over a large dataset

in advance, and thus performing sequential clustering seems to be a proper and

effective way for clustering sequential stream data.385

5.4.6. Summary

From the experimental results above, we summarize the findings and obser-

vations as follows:
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Figure 7: LOL with online (sequential) K-means vs. LOL with offline K-means

(λ = 1.0, k = 60).

1) Existing online linear models cannot tackle the nonlinear separation prob-

lem;390

2) The local approach proposed in this work achieves notably better perfor-

mance, especially on data with large variations (e.g. Multi-PIE datasets);

3) Compared to the kernel online learning, our results suggest that a local mod-

eling can be an alternative way to deal with the nonlinear data separation

problem for one-pass online learning, retaining better and more stable395

performance;

4) It is important to learn all the local hyperplanes jointly (via a common

component shared among them), rather than learning them independently.

6. Conclusion

To address the nonlinearly separable case in the one-pass online learning, we400

propose a local online learning (LOL) method. LOL learns from sequential data
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and updates locally sensitive model, so that for each test point a local bound-

ary would be explored for classification, thus solving the nonlinearly separable

problem. More importantly, by formulating a share component as information

traffic among them, LOL learns those local decision boundaries (i.e. local hyper-405

planes) jointly but not independently. Theoretical analysis on the connection

between LOL and the global passive-aggressive is also given. Our results show

that LOL can be an alternative approach that is easy to compute for gener-

alizing online learning for solving nonlinear separation problem without using

kernel approximation and any second order modeling.410
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