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Abstract— In the last decade, illumination problem has been
the bottleneck of robust face recognition system. Extractig
illumination invariant features becomes more and more sig-
nificant to solve this issue. However, existing works in this
field only consider the variations caused by lighting diredbn
or magnitude (denoted ashomogeneous lighting), while the
spectral wavelength is always ignored in most of the develepul
illumination invariant descriptors. In this paper, we claim
that the spectral wavelength is important, and we propose a
novel gradient based descriptor, namely Logarithm Gradien
Histogram (LGH), which takes the illumination direction,
magnitude and even the spectral wavelength together into
consideration (denoted aheterogeneous lighting). Our proposal
contributes in the following three-folds: (1) we incorporae
homogeneous filtering to alleviate the illumination effectfor
each image and extract two illumination invariant componerts,
namely logarithm gradient orientation (LGO) and logarith-
m gradient magnitude (LGM); (2) we propose an effective
postprocessing strategy to guarantee the fault-tolerant laility
and generate a histogram representation to integrate both
LGO and LGM; (3) we present thorough theoretical analysis
on the illumination invariant properties for our proposed
method. Experimental results on CMU-PIE, Extended YaleB
and HFB databases are reported to verify the effectivenessfo
our proposed method.

I. INTRODUCTION

Wei-Shi Zheng*

Jian-Huang Lai

mechanism of face imaging. Based on the assumption that
the surface of face is Lambertian, images of the same face
under varying lighting conditions span a low dimensional
linear subspace [5], [13]. In theory, these methods describ
the illumination variation quite well, but they need a great
deal of training samples to learn the variation and easily
suffer from the over-fitting problem, which largely restsic
their use in real applications. Compared to the above two
categories, invariant feature based methods are mordieffec
and do not demand learning. Classical methods such as Local
Binary Pattern (LBP) [7] and Gabor [14] are commonly
believed to be robust to slight illumination change, but
their performance will drop when the lighting condition
becomes severe. To overcome this problem, a variety of
state-of-the-art methods have been proposed by extracting
the reflectance component [2], [8], [9] or alleviating the
illumination component based on the Lambert’s reflectance
model [11], [12]. Great success using these effective nustho
has been seen.

The illumination problem mentioned above is mainly
referred to the variation caused by either varying lighting
direction or varying lighting magnitude. In those methods,
a main assumption is made that the wavelengths of light

The illumination problem, as a challenging issue in therre the same, which is denoted lsmogeneous lightinin
face recognition, has become a barrier in the development gfis paper. However, it cannot hold in realistic applicasio
many face related applications, such as video surveillangeor example, the lighting wavelengths of indoor and outdoor
face detection, cooperative user applications, etc. The weonditions are always different, so as to the case of visible
known face recognition vendor test (FRVT) 2006 [1] havgVIS) and near infrared (NIR) spectral face images [15].
also revealed that large variation in illumination wouldipr ~ As a result, the reflectance component, which is determined
ably affect the performance of face recognition algorithmsyy the albedo and the normal direction of facial surface,
A variety of works have been proposed to address this issugll change with the varying wavelength since the albedo is
and they mainly fall into three categories [2]: preprocegsi related to the spectral wavelength. For convenient, we tdeno
and normalization techniques [3], [4], face modeling baseghe lighting condition with different spectral wavelengths
approaches [5], [6] and invariant feature extraction [IR}[ heterogeneous lighting\s far as we know, there is still lack

Preprocessing and normalization methods like histograst work that addresses this issue for solving the illumioati
equalization (HE) [3] attempt to normalize face images gsinproblem and makes theoretical development on an valid
image processing techniques such that the processed imaggage descriptor in this aspect. Some related works likg [15
appear to be consistent under different lighting condgionand [16] consider the VIS-NIR face matching as a multi-
However, these methods are hard to obtain notable inmodality face recognition problem rather than an illumi-
provement in recognition though the visual effects appareation related task. In this paper, inspired by the gradient
acceptable. To further investigate the cause of illumamati face [11], we propose a novel gradient based descriptor,
problem, the modeling based approaches turn to explore thgmely logarithm gradient histogran{LGH), and provide

. an in-depth analysis on its illumination invariant progert
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Experimental results on three public face databases verify
the effectiveness of our proposed method for the illumarati
problem.

The rest of this paper is organized as follows: Section I
further discusses the invariant feature extraction appres



Section Il formulates our descriptor by introducing theighting wavelength in reality. Hence the extracted refiece
homomorphic filtering and two newly proposed illuminationcomponents of the same subject under heterogeneous ightin
invariant components. Meanwhile, the theoretical proof afuch as sunlight, electric lamp, near-infrared camera, etc
illumination invariant properties of our proposed methodare different from each other. To tackle this problem, [15]
is given in this part. Experiments on CMU-PIE, Extendeduggests encoding the local pattern via LBP and followed by
YaleB and HFB databases are carried out in Section IV tboG filtering, and [16] applies SIFT [21] descriptor instead
evaluate the performance of our proposed LGH. Finally, thelowever, these two methods do not provide theoretical
conclusion of this paper is drawn in Section V. analysis on the illumination invariant property and theyldo
only be suitable for dealing with VIS-NIR face matching.

In this paper, we study a more general case for the illu-

According to the Lambertian Law, the intensity of themination problem where the lighting direction, magnitude,
iluminated image I can be formulated ad(x,y) = as well as the spectral wavelength will change in different
F(z,y)L(x,y), that is, a product of the illumination com- lighting conditions. We inherit the high efficiency propert
ponentL(z,y) and the reflectance componefitz,y). As  of feature extraction approaches and propose an illuntinati
commonly assumed, thi(z, y) in the Lambert's reflectance invariant descriptor based on the gradient informatiorhim t
model changes very slowly an8i(z,y) is independent of logarithm domain. The main contributions of this paper are
lighting condition [11], [17], [18]. Thus,F(z,y) is com- summarized as follow:

Il. RELATED WORK

monly regarded as illumination invariant feature. 1) We introduce homogeneous filtering as a preprocessing
Hence, in order to extract the illumination insensitive eom to constrain the illumination effect and enhance facial

ponent only related td(z,y), Self Quotient Image (SQI) information.

[8] alleviates the effect of illumination by leIdIng itdalith 2) We propose a new histogram based illumination invari-

the blurred version. Logarithmic Total Variation (LTV) [9] ant feature descriptor LGH by integrating both gradient

incorporates TV model to preserve the edge information and  magnitude and gradient orientation in the logarithm
obtain a more elaborate representation. Following a simila domain.

way, Xie et al. [2] computed a better reflectance component 3) Thorough theoretical analysis on the illumination in-
by using Logarithmic Non-subsampled Contourlet Transform variant property is given for our proposed LGH, guar-
and obtained Significant improvement at the cost of time anteeing its performance in both homogeneous and

consuming. heterogeneous lightings.

There are also some other works investigating the il- 4) Experimental results show that our proposed method
lumination invariant property by considering the normal- outperforms the related state-of-the-art approaches in
ized local intensity contrast, such as relative gradie®f [1 the field of illumination problem.
and weber face (WF) [12]. Inspired by the Weber's Law
[20], the authors in [12] show that the radio between lo- IIl. L OGARITHM GRADIENT HISTOGRAM

cal difference and the center degree is insensitive to theln this section, we are going to elaborate our proposed
illumination change and encouraging results are obtainedGH in three folds: (i) the homomorphic filtering used
Most of the aforementioned methods verify their robustnedsr constraining the illumination effect and enhancingidéc
against varying lighting conditions but few of them provideinformation; (ii) two illumination invariant componentse.,
theoretical proofs for the illumination invariant progest logarithm gradient orientation (LGO) and logarithm grauie
One exception is that Zhang et al. proved that the gradientagnitude (LGM), and the theoretical analysis on the illumi
orientation, denoted as Gradient Face (GF) [11], is somehavation invariant property; (iii) post-precessing for igitating
insensitive to the illumination influence both in theoratic LGO and enhanced LGM into the histogram based feature
analysis and experimental validation. Though great siscceepresentation.

has been achieved in [11], there are still some limitations. L

First, the gradient orientations of all pixels are involwethe A. Homomorphic Filtering

pixel-wise comparison, taking the noise and face unrelated Homomorphic filtering [22] is a classical tool used in
information into account, which will probably degeneratémage processing, attempting to normalize the brightness
the recognition performance. Meanwhile, some importar@Cross an image and increase contrast via high-boostrfiteri
information in gradient domain like the gradient magnitudén logarithm domain. The whole procedure of homomorphic
is neglected since it is not supported by the illuminatiofiltering is illustrated in Fig. 2.

invariant property. Also, it does not discuss the variation According to the Lambertian reflectance function, the
caused by the lighting wavelength. However, all these ssuétensity of a 2D surfacé can be described as

will be solved in our new proposed method. .

Most popular models assume that the face images captured Hz,y) = Rlw,y)L(z,y) @)
under various lighting conditions share the same spectrahere I, L, R represent the intensity, illumination compo-
wavelength, i.e., the reflectance compongiit, y) is inde- nent and reflectance component respectively. Note that, it
pendent of lighting variancé(z, y). However, as previously is assumed thaf. changes very slowly [11], [17], [18],
mentioned, the reflectance component should be affected by the illumination effect mainly lies in the low-frequency



fs) > In —> FT  — Hluy) — IFT — exp —>g(xy) B. Logarithm Gradient and its lllumination Invariant Prop-
erty: Homogeneous Lighting

From observation, the shapes, the contours and the relative
small-scale facial objects such as eyes, noses, mouths, etc
can be key features for face recognition [9]. The gradient
7 S information (e.g., magnitude and orientation) around ¢hes
components contain much more valuable information than
that of the skin areas. More importantly, the gradient magni
tudes of these parts are always large and fluctuant whilethos

D@.v) of the skin areas are relative small. As a result, it is fdasib
®) to take the gradient magnitudes as importance measurement
of facial components. However, as mentioned in Gradient
Fig. 1. Homomorphic filtering: (a) flowchart of the homomaigpfiltering; Face [11], the gradient magnitudes of original face image
(b) illustration of high-boost filter (u, v) used in (2). do not satisfy the illumination invariant requirement. éed,
this problem can be solved by transferring the derivatido in

logarithm domain so that the multiplicative combination in

domain. Thus, it is possible to alleviate the iIIuminationthe original domain will become the additive form. Thus

effect by taking a high-pass or high-boost filtering in th(.edifferent from Gradient Face, which only retain gradient

frequenc_y domain. Hoyvev_er, as we can see In (), it rientation as the illumination invariant feature, we aupa
not feasible to apply filtering or. since the reflectance . . . T
X . . to incorporate both gradient magnitude and direction in

componentR and illumination component are combined : . . L :
the logarithm domain to generate our illumination invatian

in the multiplicative form. Nevertheless, we find that th . oS .
homomorphic filtering takes the logarithm transformatio eatures. The illumination invariant property of our prepd
P 9 9 r}neature is based on the following theorems.

at the first step, making the two components combined i
the additive form, so that the high-boost filtering ércan Lemma 1. Assumel(z,y) is an illuminated image of
be separated into the sum of the high-boost filtering ohambertian face, which is captured under the homogeneous
L and that ofR in the logarithm domain. Thus, applying lighting (i.e., being with arbitrary lighting direction ah
homomorphic filtering will contribute to alleviate the effe magnitude but with the same lighting wavelength). Let
caused by illumination variation: I(z,y) = In(I(x,y)), then the partial derivatiord, I(z,y)

- and 9, I(z,y) are insensitive to the illumination variation.
H (u,0) 7 (1, ) @ | o)
~ = Proof: For any function f(x,y) > 0, we denote
_ ar - ’
=H (u,v) 7 (F(z,y)) + H(u,v)F (L(z,y)) f(z,y) = In(f(z,y)). Let us consider two neighboring

where I(z,y), R(z,y) and L(z,y) represent It(z,y)), points (z,y) and (x + Az, y). According to the Lambertian

In(R(z,y)) and I(L(z,y)) respectively,Z(-) denotes the LaW, we have

Fourier Transform. (FT), andl (u, v) is the filtering function. I(z,y) = R(z,y)L(z,y) (5)
Note that the high-frequency components are assumed to

represent the reflectance mostly, whereas the illumination I(x + Az,y) = R(x + Az, y)L(x + Az, y) (6)

effect is mainly assumed to lie in the low-frequency do-

(@

H(u,v)

7L

main [22]. Therefore, high-boost filtering can be applietehe then - . -
to suppress low frequency illumination effect and amplify I(z,y) = R(z,y) + L(z,y) ()
high frequency facial characteristics. Specifically, wed i A ) A i A 8
the following kind of high-boost filter: (z+Az,y) = R@ + Az,y) + Lz + Az,y) - (8)
_ (u—ug)?+(w—vg)? thus
H(u,v) = (yva — )1 —e o )+, () I(x + Az,y) — I(z,y)

where (ug,vo) represents the center locationy, v, and  =(R(z + Az,y) — R(x,y)) + (L(z 4+ Az, y) — L(z,y))
o are parameters to control the filter. After the filtering _ _ ©
processing, we can obtain the enhanced images in the spafigl commonly assumed, varies very slowly whileR can
domain via Inverse Fourier Transform (IFT). That is, change abruptly. The same assumption holds/fand E.

. _ Therefore, as similarly suggested in [11], [17], [18], it is

I(z,y) = 7~ (H (u,0).7 (1(u,0))) (4)  reasonable to draw the conclusion that the difference ketwe

(x + Az,y) and E(:c,y) can be ignorable comparing to
at betweenR(z + Az, y) and R(z,y) when Az is small
%nough. As a result, take the limit of both sides in Eq. (9),
we have the following approximation:

The whole procedure of homomorphic filtering is iIIustrateth
in Fig. 2. Note that, different from the general homomorphi
filtering which takes exponential transform df(my) at the
final step, we are going to extract the illumination invatian

feature oni (z,y) directly. 0.1 (z,y) ~ 0. R(x,y) (10)



Also, following the same procedure we can obtain

In a word, the partial derivatiod, (z,y) and d,1(z,y)
are dominated by the reflectance compon&ninstead of
the illumination componenf. and thus insensitive to the = ,
illumination variation. ] (@) CMU-PIE (b) Extended YaleB

Theorem 1. Assumel(z,y) is an illuminated image of ggga
Lambertian face, which is captured under the homogeneous = ' y -
lighting (i.e., being with arbitrary lighting direction ah
magnitude but with the same lighting wavelength). Let
I(z,y) = In(I(z,y)), then the gradient orientation and
gradient magnitude of (z, y) are both illumination invariant

components. (c) HFB VIS (d) HFB NIR

Proof: Using the same denotation in Lemma. 1, it isFig. 2. lllustration of the logarithm gradient componenEom top
easy to calculate the gradient orientation and magnitude @f bottom: original face images, the corresponding lobaritgradient

< magnitudes (LGM) and logarithm gradient orientations (DGO
I(z,y) as

LGO(x,y) = arctan(9y I (v,y)/0:1(z,y)) ~ (12) . I _
solving such a general illumination problem is to develop an

and illumination invariant feature under this assumption. te t
= 5 = 5 following part, we further prove that our proposédO and
LGM (x,y) = \/(81](96,34)) + (0yI(z,y)) (13) @M are also invariant components in such scenario.

As proved in Lemma. 19, 1(x,y) and0,I(z,y) are both Theorem 2. Assumel;(z,y) = Ri(z,y)Li(z,y) and
insensitive to illumination change, so that it is straightf [,(x,y) = Ra(z,y)L2(x,y) are Lambertian face images of
ward to get the conclusion th&tGO(x,y) andLGM (z,y) the same subject captured under two heterogeneous light-
are both illumination invariant components. B ings (with different lighting directions, magnitudes ancgp

So far we have known that the the gradient orientatiospectral wavelengths). Lé(z,y) = In(I(z,y)), if Ri(z,y)
LGO(z,y) and gradient magnitudéGM (z,y) of I(z,y) is locally proportional with Ry(z,y), i.e., Ri(z,y) =
are both invariant to the illumination changes caused byR,(z,y) for some constantv which is determined by
varying lighting direction and magnitude. However, as prev N'(x,y) (the neighborhood of(z,y)), then the gradient
ously mentioned, "the same lighting wavelength” assunmptioorientation and gradient magnitude f(z,y) and I»(z, y)
in homogeneous lighting can hardly hold in real worldare equal, i.e., they are both invariant components for the
applications since the spectral wavelengths will changh wiillumination problem.
environment. In the next section, we will further investea
the illumination invariant property of our proposéd:O and
LGM when relaxing the assumption on spectral wavelengt

Proof: As indicated in Theorem. 1, the gradient orienta-
jon and gradient magnitude dfz,y), i.e., LGO(z,y) and
GM (x,y) are both invariant to the varying illumination
C. lllumination Invariant Property: Heterogeneous Lighgi ~ direction and magnitude. Therefore, in this part we only

According to the Lambertian model, the reflectance conﬂeed to prove the i_nva_riant property against the varying
ponent, which is determined by the albedo (relate to srjectr\é(avelength' By substituting (10) and (11) into (12) and (13)

wavelength) and facial normal direction, will turn out to\Ve have

be different when suffering from heterogeneous lightings. B Oyl(z,y), Oy R(x,y)
Generally, it is not feasible to tackle this problem undddwi (z,y) = arCtan(m) = afcmn(m)
assumption. For example, the facial skin reflectance under R(xmy)/ : (,9) * P 1,{(3: )
visible and far infrared light differ so much that the obtin = arctan(ayR ’ 7 =) = arCtan(#)
face images are hardly the same. Nevertheless, according R(x,y)/ Rz, y) z ($=g1)4)

to the work on skin reflectance spectra simulation [23], wgq
find that the responds of skin reflectance spectra change
smoothly as the lighting wavelength increases within the LGM (z,y) = \/(amf(x,y))z 4 (ayf(x,y)y
visible and near-infrared spectral regions (450nm-1100nm - ~
Inspired by this observation, we assume that within a small = \/((%R(:E, Y)?+ (0yR(z,y))*  (15)
patch of facial skin, the reflectance components under two V(0. R(z,y))? + (0, R(x,y))?
different lights (with different wavelengths) are proxireky = R(z.y)

proportional. We denote it as tHecally proportional re- Y
flectance assumptiofsee Theorem 2). Therefore, the key toAssume that?, (z,y) and Rx(z, y) are locally proportional.




That is, Algorithm 1 Generating Logarithm Gradient Histogram

Ri(z,y) = wRy(z,y) (16) Input: LGO, LGM, k (the number of bins in histogram

. . encoding each block)
for some constanty > 0 which is determined by (z, y). Output: H (histogram of a face image)

Thus, 1: Quantify LGO in k bins {by,- - -, b} to increase the
OyR1(x,y) fault-tolerant capability;

6\1"6%\13(789ch (I’y)) = arCtan(azRQ(I,y) 2: Divide LGM and LGO into small blocks evenly, and
i denoteM? and O? as theith block in LGM and LGO
o B separately;
LGO:(w,y) = LGOx(z,y) 18) 5 For each M, calculate the weighted nor-
Also, we have malized gradient magnitude asM‘(p,q) =
M (p,) W (p,q) Ti _
VOB (2, )2 + (0,1 (7, 9))2 S0 e MW W) OF else Mi(p,q) =
LGM(z,y) = M*(p, q), whereW denotes the gaussian weight matrix.
Ri(z,y) 4: After that, we can generate the histogram for each block
2 2 . X ! . . !
:\/(kamRQ(xay)) + (kOy Ra(z, y)) H'(t) = sum{M°(j)|0°(j) == b}, fort = 1,- - .k,
kRy(x,y) (19) and then concatenate them into a long vedioe [H?]
~ V(0:Ra(2,))? + (9, Ra (2, y))? to represent a face image.
RQ(xay)
=LGM;(x,y)

Hence, it is guaranteed to draw the conclusion that Finally, we obtain the quantified gradient orientation and

LGO(z,y) and LGM(z,y) are both insensitive to the normalized gradient magnitude for each pixel in a face
iIIumina{tion variation cau’sed by spectral wavelength d&an images. The histogram generating procedure is implemented
under the local proportional assumption in a block-wise form, that is, the post-processed gradient

magnitudes of all pixels in the block will accumulate ac-
D. The Logarithm Gradient Histogram cording to the orientation bins they belong. At last, we

Until now, we have proposed a pair of illumination invari-concatenate histograms of all blocks into a long vector and

ant components by full use of the gradient information in th&"m our histogram based feature representation. The whole
logarithm domain, i.e., LGO and LGM, which are provedProcedure is illustrated in Algorithm 1.
to be insensitive to the change of illumination direction,
magnitude and even spectral wavelength within the specific
regions. However, it is not reliable to directly conductglix ~ In this section, we conducted a series of experiments
wise matchings on these two components among differefft evaluate the proposed illumination invariant descripto
face images. Hence, in the following part, we are goingwo scenarios will be considered in our experiment: 1) the
to integrate LGO and LGM into a unified histogram basegase when images were approximately captured under the
feature representation. homogeneous lighting, i.e., with different lighting ditens

To obtain a robust descriptor, postprocessing should t#d magnitudes but the same spectral wavelength; 2) the case
taken on the two components before generating the highenimage were captured under heterogeneous lighting, i.e
togram representation. Consider that the gradient orent#ith varying lighting direction, magnitude and wavelength
tion is somehow sensitive to the quality of image, a locdin literature, different methods have developed to solve
smoothing operation is suggested to be taken on LGO gifferent case. Hence, for the first case, we compare our
alleviate the impulse responses caused by discrete noiggsthod with HE [3], SQI [8], LTV [9], Weber Face [12]
and ensure the gradient direction changes smoothly. Takiggd Gradient Face [11], on both CMU-PIE and Extended
interpolation or using a suitable for gaussian kernel as YaleB databases; for the second case, we particular conside
[11] are both feasible alternatives in this situation. Aftethe heterogeneous face recognition and compare our method
that, we quantify the values in LGO into several bins tovith DoG+LBP [15] and SIFT descriptor used in [16] on
achieve fault-toleration and prepare to generate gradieifie heterogeneous face biometric (HFB) database [24]. In
histogram. Meanwhile, it is worth mentioning that there ar@ur experiment, we mainly evaluate the performances of
cast shadows in face images since the Lambertian assumptlifierent image descriptors and thus simply adopted the
does not strictly hold everywhere. As a result, the pixethwi generic Euclidean distance as the similarity measurenmeht a
dominating values in LGM may belong to the boundaries ofised nearest neighborhood classifier for classification.
shadows, and meanwhile the edges of facial objects (e.
eyes, mouths) may become less significant especially wh
the lighting condition becomes severe. Thus, in this case, 1) Databases and Settingn this experiment, we eval-
partial facial information part of information in LGM is not uated the performance of various methods on the CMU-
related to the and regarded as outlier. Thus taking the locRIE and the Extended YaleB databases. To form the set
normalizing operation here is able to restrain this effect. of frontal face images, 1428 frontal face images from 68

IV. EXPERIMENTS

%1' Face Recognition: Homogeneous Lighting



‘ —&—HE —¥—SQl LTV ——WF GF —=—LGH
100 < &

Recognition Rate (%)

Gallery Image

Fig. 3. Recognition rates with different galleries on CMUEP

TABLE |
RESULTS OFEXTENDED YALEB FOLLOWING PROTOCOLI (IN
ACCURACY (%))

individuals under 21 different illumination conditions ree

selected from the CMU-PIE database. For Extended YaleB,
face images from 38 individuals were captured under 64
different lighting conditions on 9 poses, and we only used

64 x 38 = 2432 frontal face images here. All images are Setl Set2 Set3 Set4 Set5 All
simply aligned according to the eyes coordinates and resize HE [3] 97.81 92.76 36.18 10.90 13.43 41.25
to 128 x 128. SQI [8] 88.60100.0085.75 87.97 81.02 87.82

we compared our LGH to several classical and state-of- \';J;’ [£92]] %:gg gg-;g gg:gg ‘;%3 ‘;i-gg gg-gg
the-art methods, including HE [3], SQI [8], LTV [9], Weber GF [11] 94.74100.0083.33 75.94 74.65 83.51
Face [12] and Gradient Face [11] on both CMU-PIE and LGH  94.74100.00 92.54 96.43 86.70 93.30
Extended YaleB databases. All methods were implemented
with parameters set as suggested in the references. For our TABLE |I
LGH, the parameters of homomorphic filtering are empiri- RESULTS OFEXTENDED YALEB FOLLOWING PROTOCOLII (IN
cally fixed asyy = 2.0, v, = 0.5 ando = ¢ x L, whereL ACCURACY (%))

is width of the image¢ is a constant to control the radius of
high-pass filter and fixed a&1 in all experiments. Unless
otherwise stated, the block size is set4s 4, unsigned Setl Set2 Sets Setd Setd

gradient orientation is adopted and 5 bins are used for tH¢E [3] 66.61:31.37 60.26:-21.49 53.34:10.98 45.32-12.72 54.29-14.78
SQI [8] 81.05£19.49 80.14:19.81 85.86:12.17 88.5%5.52 94.511.82

quantization procedure. LTV [9] 79.85+22.92 78.4%422.89 70.3%16.43 56.5%8.62 73.34:8.16
2) Results on CMU-PIE:The subset used here consistswF [12] 90.38:8.17 86.68-13.13 90.0%8.65 88.583.82 93.6%3.21

of 21 images for each person, which are captured under F [11] 94.32:7.73 91.46-10.78 91.247.68 89.86-4.34 96.13:5.82

. I " - 98.884+1.25 97.96-2.55 99.49-0.78 97.5%-1.67 96.3%-2.22
different illumination conditions as shown in Fig. (3). ®nl
one image per individual was chosen as gallery and the other
formed the probes. We varied the gallery from the 1st image
to the 21st one for each person in order to ensure that aYerage results for HE, SQI, LTV, WF and GF are59%,
illumination conditions were covered. The final results ar89.77%, 80.78%, 89.52% and 96.93% respectively.
illustrated in Fig. 3. Note that, we have resorted the images 3) Results on Extended YaleBifferent from CMU-PIE,
to make the light source change from Ihs to rhs gradually. Age face images in Extended YaleB database were captured
we can see, the general performances of different algosithrin more complex environments. To better explore the perfor-
degenerated as the lighting orientation diverges from tH®&ance of our proposed illumination invariant descriptoe, w
frontal direction. All six methods except HE achieve theconducted experiments following two protocols and reqbrte
best performances when using the frontal lighting images &§cognition accuracies on set 1 to 5 separately.
galleries, and the corresponding results for various nitho Protocol I the frontal lighting image per subject was
are as follows:98.82% for SQI, 95.81% for LTV, 99.71%  chosen as gallery set and the rest for probe set;
for WF, 99.93% for GF and100% for LGH. What's more, Protocol II: three images under arbitrary lighting condi-
some approaches such as SQI, LTV and WF turn out legions were randomly chosen to form the gallery set and the
effectively when the illumination condition become severerest formed the probe set.
while both GF and LGH perform well even under the most It is worth mentioning that, the angles between frontal
extremely situations. Also, our proposed LGH outperformface directions and lighting orientations increase froinlse
all other methods almost in each lighting condition ando set 5. That is, generally, it is more challenging to handle
achieves the best average recognition rat®8at9%. The the face recognition task as the set index increases, which




-@W M‘*’:ﬁﬁ"*”:ﬁ*’ eyes coordinates and resized1te8 x 128. For comparison,
o o7 ] results of DoG+LBP [15] and SIFT descriptor used in [16]
| accompanied with methods mentioned in Section IV-A are
also reported.
2) Results on HFBIn this part, the gallery set consists of
all four VIS face images per individual while the probe one

Verification Rate (%)

-O- HE
s || contains all other NIR face images. It is worth pointing out
-0 LTV . . .
we ] that no learning method is further used here. Two desceptor
ig(fmw- which are applied in VIS-NIR face matching were tested here
o el for complemental comparison, denoting as DoG+LBP [15]
- Proposed . .
ol 02 03 02 o5 o8 07 o8 oo 1 and SIFT [16]. We report the final results in terms of

Rank cumulative match curve (CMC) as shown in Fig. (4).

Note that, variations including those caused by expression
Fig. 4. Cumulative Match Curves (CMC) of the compared methmithe  gnd occultation (by glasses) also exist in this database,
HFB VIS-NIR dataset. . . . .
leading to a more challenging task beyond the illumina-
tion problem. As a result, the overall performances of all

will be reflected by results in Table | and Table II. Note thatmethods degenerate dramatically. The previously merdione
results ofAll in Table | are calculated by taking all other 63approaches as well as DoG+LBP and SIFT obtain low
images per subject except the gallery one as probe. As shoank-1 recognition rates at less thab% while the result
in Table 1, it is interesting to find that HE obtains the highesof our proposed method is up t5.75% with a large
accuracy97.81% in Set 1 where single frontal illuminated improvement. Different from the case in existing approache
images was used as gallery, while GF and LGH achieve tfiee assumption of the same lighting wavelength no longer
same recognition rate at.74% only. It makes sense becauseholds here, making the aforementioned descriptors (such as
the illumination effect is limited and the lighting is unifaly ~ SQI, LTV, WF, etc) invalid. However, our proposed LGH,
distributed all over the face in Set 1, so that the HE perfornf@utperforms other methods and shows great tolerability to
well in this scenario. For our proposed LGH, as shown ithe general illumination change, which again confirms our
Table 1, it outperforms the other methods in all sets exceffevious analysis in Section IIl. In addition, as illusedt
the case in Set 1 following protocol I. in Fig. (4), our LGH also achieves significant improvements
However, the frontal lighting condition is sometimes rel-€ven compared to the two empirically designed descriptors,
ative strict for realistic applications. As a result, thdlgiy ~ i.€., DOG+LBP and SIFT.
sef[ may con_taln images under different I|ght|ng_conc_i|tlo_nsc. Contribution of Each Component in LGH
It is interesting to evaluate the robustness of illumimatio
invariant descriptors in this scenario. Hence, we condlicte Since LGH consists of three parts including homomorphic
another experiment using three randomly chosen imagélering (denoted as Homo), logarithm gradient magnitude
instead of the one with frontal illumination to consist the(LGM) and logarithm gradient orientation (LGO), we would
gallery set in protocol Il. Both average recognition rated a like to explore the contribution of each part. In this secfio
corresponding standard deviations of 20 random trials af¥e conducted experiments on CMU-PIE, Extended YaleB
reported in this part, and all results are shown in Table #. wand HFB VIS-NIR databases and reported the recognition
observe that our proposed LGH achieves consistent highédtes of each part separately in Fig. (5). Note that, only
performance in this case where the average accuracies of @8¢ frontal illuminated face image was used as gallery
1 to set 5 aré®8.88%, 97.96%, 99.49%, 97.59% and96.39% in CMU-PIE and Extended YaleB, and all VIS images
respectively, obtainingt.83%, 7.18%, 9.08%, 8.60% and in HFB were chosen as gallery. The final results validate
0.27% improvement compared to the second best approa@hl previous analysis that (i) the homomorphic filtering is

(i.e. CG). able to restrain the illumination effect in some respegj; (i
N o gradient magnitude and gradient orientation in logarithien a
B. Face Recognition: Heterogeneous Lighting somehow insensitive to the illumination change; (iii) our

1) Databases and Settindo further investigate the effec- proposed LGH integrates the above two components in an
tiveness of our proposed LGH in handling the more generalffective way and achieves great success in toleratingjtigh
case in illumination problem, we used the VIS-NIR subsethanges, especially when the change is severe.
of HFB database, which contains 100 people and each is
with 4 VIS and 4 NIR face images. Note that, the spectral V. CONCLUSIONS
wavelength of NIR light used here is around 850nm while In this paper, we have proposed a novel illumination in-
that of VIS light is smaller than 700nm. It is more challengvariant descriptor LGH to address the illumination problem
ing since they are captured under two distinct heterogeneobifferent from the existing methods, we consider variagion
light sources with no overlapping wavelength. Meanwhilecaused by the lighting direction, magnitude and even the
there are still some variations caused by the facial exfmess spectral wavelength. On the basis of illumination invatrian
and occultation. All images are aligned according to theroperty analysis, we develop two illumination invariant
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Fig. 5. Contribution of each part in LGH. Only one frontauithinated face image was used as gallery in (a) and (b), alirdéges in HFB were chosen as
gallery in (c). Notations used in x-axis from left to righforesented original image (None), image after homomorphérifig (Homo), logarithm gradient
magnitude followed by homomorphic filtering (Homo+LGM),agient orientation followed by homomorphic filtering (HomdsO) and the whole LGH

(LGH).

components in the logarithm domain after homomorphic fil-[9]
tering, i.e., LGO and LGM. After that, we integrate them into

a histogram based feature representation followed by post-
processing to enhance the fault-tolerant ability. Experital  [10]
results verify the effectiveness of our proposed method in
tackling with illumination problems under the setting from
the homogeneous lighting so to heterogeneous lighting. [11]
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