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Matching NIR Face to VIS Face Using Transduction

Jun-Yong Zhu, Student Member, IEEE, Wei-Shi Zheng, Member, IEEE,
Jian-Huang Lai, Member, IEEE, and Stan Z. Li, Fellow, IEEE

Abstract— Visual versus near infrared (VIS-NIR) face image
matching uses an NIR face image as the probe and conventional
VIS face images as enrollment. It takes advantage of the NIR face
technology in tackling illumination changes and low-light condi-
tion and can cater for more applications where the enrollment
is done using VIS face images such as ID card photos. Existing
VIS-NIR techniques assume that during classifier learning, the
VIS images of each target people have their NIR counterparts.
However, since corresponding VIS-NIR image pairs of the same
people are not always available, which is often the case, so those
methods cannot be applied. To address this problem, we propose
a transductive method named transductive heterogeneous face
matching (THFM) to adapt the VIS-NIR matching learned from
training with available image pairs to all people in the target
set. In addition, we propose a simple feature representation for
effective VIS-NIR matching, which can be computed in three
steps, namely Log-DoG filtering, local encoding, and uniform
feature normalization, to reduce heterogeneities between VIS and
NIR images. The transduction approach can reduce the domain
difference due to heterogeneous data and learn the discriminative
model for target people simultaneously. To the best of our knowl-
edge, it is the first attempt to formulate the VIS-NIR matching
using transduction to address the generalization problem for
matching. Experimental results validate the effectiveness of our
proposed method on the heterogeneous face biometric databases.
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I. INTRODUCTION

ACE Recognition has been active for the last two decades

due to its wide range of applications in law enforcement
and verification systems. However, previous works primarily
focus on visible (VIS) images, whose imaging is within
the wavelength range from 0.4um to 0.7um. Despite great
success achieved in controlled environment, face recognition
is still a challenging problem under uncontrolled illumination
condition. Recently, developing face recognition system based
on active near infrared (NIR) images, whose imaging is from
0.7um to 1.1um, is proved to be less sensitive to visible
light illumination changes [17]. As a result, identification
of individuals via NIR imaging technique can significantly
enhance the performance of recognition system in low light
conditions. Such characteristic can be critical and demanded
for some applications, especially for security surveillance in
low light conditions [7]. For instance, the entry verification at
arrival hall, identity verification at a ATM machine, E-passport,
machine readable traveling document (MRTD) and etc [13],
[14], [18], [30], [31].

However, there is an obstacle for comparing the captured
NIR images with existing face images in our security sectors,
as many largely deployed face recognition systems almost
exclusively require individuals to get enrolled using their VIS
face images. Hence, it is important to develop technologies for
addressing the matching problem between NIR and VIS face
images, and this is called the VIS-NIR face matching problem
[17]. The latest multi-biometric grand challenge (MBGC 2008)
has also set up a new test to investigate the matching between
VIS images and the partially occluded faces in the NIR videos.
By matching NIR probe images to the gallery VIS images,
we can extend the VIS-VIS face recognition system to a
heterogeneous NIR-VIS faces matching system in order to
take advantages of NIR images to help face recognition in
poor illumination conditions.

How to alleviate the gap between VIS and NIR domains
is the main challenge of VIS-NIR face matching. Most exist-
ing methods try to achieve this goal via subspace learning
methods [14], [19], [31] or by designing invariant descriptors
via local feature approaches [13], [18]. These works assume
that target people are included in the training set and for each
individual there are labeled VIS-NIR pairs for learning the
matching, which is an inductive learning procedure. However,
since most target people have got enrolled only using VIS
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images in existing security systems, i.e. the target VIS images
do not have the corresponding NIR mates labeled and regis-
tered in the system, the matching learned for training may not
be optimal for the target people, and this domain gap has not
been considered in the existing inductive VIS-NIR matching
approaches. In order to solve this problem, we reformulate
the heterogeneous face matching problem using transduction
in order to transfer the matching model learned from training
to the target people.

To be detailed, we mainly address the VIS-NIR match-
ing problem by introducing a transductive model, namely,
Transductive Heterogeneous Face Matching (THFM), which
is shown in Fig. 1. We adapt the VIS-NIR matching learned
from training to target, so that the VIS-NIR matching for target
people can be considered to alleviate the domain variation. In
other words, we assume a set of VIS-NIR pairs of training
people are available and guide the learned VIS-NIR matching
upon training to facilitate the matching for target ones. Our
domain adaptation differs from existing ones [3], [22] mainly
in two-fold: 1) our domain adaptation is related to two
modalities rather than one, and we aim to adapt the probe
NIR faces to the gallery VIS faces for the target people only;
and 2) there are heterogeneous difference between VIS and
NIR images, leading to the multi-modality distribution for each
individual. In order to tackle the heterogeneous difference, we
further contribute to proposing a novel descriptor by involving
Log-DoG filtering and local encoding (e.g. LBP, HOG), which
is insensitive to light source in order to assist our matching
adaptation. More importantly, we provide theoretical analysis
based on the illumination reflectance model.

As far as we know, it is the first attempt to develop a
transductive VIS-NIR matching model. Although there is an
existing work on transductive face recognition [15], the moti-
vations are different, and more importantly they cannot address
the heterogeneous face matching problem. In summary, the
novelties of this paper are in four-folds.

1) We formulate the VIS-NIR face matching problem in a
transductive framework, which is useful to reduce the
modality gap for the target data.

2) We provide a comprehensive analysis on the feature
representation and prove that LBP and HOG codings
on both original images and Log-DoG filtered images
are somehow invariant (insensitive) to the source light
change under certain assumption, i.e. relatively consis-
tent across VIS and NIR domains.

3) By simultaneously extracting domain invariant and
target-related discriminative features, we propose the
THFM approach using transduction. We also validate
that our transductive method can work under the out-of-
sample setting.

4) Impressive results (VR 98.42% at FAR 0.1%) are
grained on VIS-NIR face database using our pro-
posed feature representation and the learning framework
THFM.

II. RELATED WORK

Matching VIS-NIR images is challenging mainly due to the
matching across different image modalities. We review related
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Fig. 1.  Transductive VIS-NIR Face Matching Framework. We consider
generalization of VIS face recognition system to a VIS-NIR matching system
using a handful of training data. Target people in the Gallery are denoted
as Set A and training people are denoted as Set B. The (VIS) faces in top
left belong to the original VIS system, and probe NIR faces in top right are
captured by online multi-cameras. Our goal is to search for latent space in
which the heterogeneous face matching problem can be casted to the classical
homogeneous face recognition.

works in three aspects: (i) face synthesis analysis; (ii) subspace
methods; (iii) local feature based approaches.

Face synthesis analysis. Wang et al. in [26] transformed
face image from one type to another using face analogy and
subsequently matched synthetic query images to gallery set.
Following the idea that a patch of image has nearly the
same similarity as its neighboring patches in VIS and the
corresponding NIR domains, Zhang et al. [33] developed a
face synthesis approach via sparse representation, where a pair
of over-complete dictionary are learned and the corresponding
sparse coefficients of VIS and NIR images are assumed to
be similar. However, synthetic methods require lots of well
registered pairwise VIS-NIR face images for learning the
mapping, which is hard to meet when only limited labeled
VIS-NIR images are available.

Subspace Methods. Different from peer to peer trans-
formation, subspace methods focus on searching a common
subspace where VIS and NIR images from the same individual
have similar representations. Yi et al. introduced canonical
correlation analysis (CCA) to learn the correlation between
NIR and VIS faces from NIR-VIS face pairs [31]. In order
to tackle the inter-modality problem, Lin and Tang [19]
considered the empirical discriminative power and the local
smoothness of feature transformation and proposed a com-
mon discriminant feature extraction (CDFE), in which both
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inter-modality discriminant information and intra-modality
local smoothness were involved. Recently, Lei and Li [14]
suggested solving the problem via coupled spectral regres-
sion (CSR). In their model, a low dimensional representation
for each face was first computed using discriminative graph
embedding method and then two associated projections were
learned respectively to project heterogeneous data into the
discriminative common subspace for final classification. Our
work also mines a subspace, but our objective is for modeling
domain adaptation for VIS-NIR matching in a transductive
way, while these related works are non-transductive.

Invariant Feature Extraction. The local feature based
methods aim at exploring invariant features to lighting con-
ditions. Inspired by Tan and Triggs [24], Goswami et al.
introduced an effective preprocessing chain to reduce the
difference between VIS ans NIR facial images based on
Gamma correction, Difference-of-Gaussian (DoG) filtering
and contrast equalization [11]. Liao et al. suggested encoding
both VIS and NIR face images using Multi-block LBP (MB-
LBP) followed by DoG filtering [18]. Gentle AdaBoost and
R-LDA were conducted for further feature selection. Fol-
lowing this work, Klare et al. incorporated histograms of
oriented gradients (HOG) feature descriptor combined with
LBP descriptor to describe each face and obtained significant
improvement [13]. Binary Laplacian of Gaussian (LoG) was
also investigated in [30]. Recently, Liu et al. proposed Light
Source Invariant Features (LSIFs) to fill the gap between VIS
and NIR face images [20]. In this work, multi-scale DoG is
first performed to generate over-complete face representation,
and then three local descriptors namely HOG, GLOH and
SIFT are applied to construct the candidate feature pool, and
finally Gentle AdaBoost is used to select the best features.
However, AdaBoost is time consuming and needs abundant
samples for obtaining robust performance, and it limits its use
in our case. Alternatively, in order to assist the learning model
in this work, we are more willing to exploit the domain invari-
ant feature in a more efficient way using learning procedure
like [13]. More importantly, existing feature descriptors are
designed empirically and lacking of theoretical support. In this
work, we explore the fundamental of the rationale of some
popular existing descriptors for VIS-NIR matching and further
introduce our proposed descriptor along with illumination
invariant property analysis.

III. PRELIMINARIES
A. Problem Formulation

We consider generalization of VIS face system to a
VIS-NIR matching system, which can make existing VIS face
recognition systems be able to cope with the newly input
NIR images. As aforementioned, to realize the generalization,
we attempt to adapt the matching learned from training (with
pairwise VIS and NIR images) to target people (with labeled
VIS gallery images and unlabeled NIR images to be matched).

More specifically, we have a set of training data con-
sisting of pairwise VIS-NIR face images denoted as

{xj—iw S|q € Cs} and {xj—jN ! R|q € Cgs} respectively, where
x5-Y1IS g the i VIS image of class ¢ in the training set,

q,l
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Fig. 2. Flowchart of the proposed transductive heterogeneous face matching
framework.

and Cg represents the set containing all training classes. For
target people, there are a gallery set of labeled VIS images
and a probe set of unlabeled NIR image. The gallery set is

denoted by {xGaHery |p € Cr} enrolled in an existing face

Pyl
. Gallery . .
recognition system, where x 7 “Y is the i"* sample of class

p in the gallery set, Cr denotes the set of target people
(denoted as Set A in Fig. 1). Our task is to match any

NIR image x ;’ ’j‘ﬂ’e in the probe set to its corresponding gallery
image xGallery in VIS domain, where xPr_obe and xGallery

P . Ps L opi
belong to the same person. We realize this generalization by

learning a transductive framework. The whole VIS-NIR face
matching framework is illustrated in Fig. 1. Note that the labels
of gallery samples are available but those of probe set are
unknown.

B. Face Recognition Using Transduction

Different from induction which learns an approximate prob-
ability generating function first and then uses it to evaluate
a function at the points of interest, transductive inference
estimates the values of a function at the points of interest in
one step [15]. Hence this advantage of transductive learning
helps adapt learning model to target data in a direct way.

In the context of VIS-NIR matching, we aim to perform
VIS-NIR matching on the target people (Set A in Fig. 1) rather
than the training set (Set B in Fig. 1), where target people
do not have the labeled NIR mates in the training set, thus
transduction can guide the matching learning adapted to them.

The difficulty of transductive VIS-NIR learning is that the
distributions of gallery and probe sets are always not consistent
in the original image space since images captured in VIS and
NIR lighting conditions differ much from each other. As a
result, the traditional transductive methods like KNN [9] and
TSVM [12] could not be directly applied.

In this work, we overcome the above difficulty by
developing 1) an illumination invariant feature representation
(Sec. IV) and 2) an cross-domain transductive face matching
model (Sec. V). The whole approach is illustrated in Fig. 2.

IV. FACE REPRESENTATION
A. Hllumination Modeling
According to the Lambertian reflectance model, the intensity
of a spectral face surface I can be represented as:
1(x,y) = p(x, »)n(x, y)'sx, y))
= [s(x, y)|po (x, y)cos(O(x, y)), e

where R and L denote reflectance component and illumination
component respectively, p(x, y) is the albedo of the facial
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surface material at point (x, y), n(x,y) = (nx,ny,nz)r is
the surface normal (a unit vector) at surface point z(x, y),
s(x,y) = (5x, Sy, s;)T is the point lighting direction and 6 is
the corresponding angle between n and s.

We assume that the facial surface is Lambertian as in [6],
[25], [28], and [32]. Then face imaging under VIS spot light
and NIR near spot light can be modeled respectively by

Iy (x,y) = pp(x, y)Sy(x, y), (2)

and

Li(x,y) = pn(x, ¥)Sn(x, y), 3)

where S, (x, y) and S, (x, y) are illumination patterns mainly
caused by large scale objects and we denote them as large
scale component [28], [29]. They are determined by the
strength of light source and the angle between the light source
direction and the surface normal. As shown in [6], [25], and
[28], the large scale component is assumed to vary smoothly.
Thus, within a small region around pixel (xg, yp), we assume
Sy(x,y) = c and S,(x,y) = ¢/, for (x,y) € N(xy,y,), Where
N(xy,y0) denotes the Neighborhood of pixel (xo, yo). That is,
for each point (x, y) € N(x,y) the Lambertians become

I, (x,y) = c(x0, yo) po (x, ), “4)

and

Li(x, y) = ' (x0, y0) pn (x, y), (5)

where c(xo, yo) and ¢’(xo, yo) are constants related to N(x,, y)-

B. When and Why LBP and HOG Work?

Before introducing our proposed new descriptor, we would
like to have a deep investigation of existing popular descriptors
for VIS-NIR matching. Although LBP and HOG have been
used in VIS-NIR face matching successfully [13], [18], it still
lacks theoretical analysis on the illumination invariant property
that tells why and when they can be used.

Note that the albedo components p, for VIS and p, for
NIR are different. Nevertheless, since the surface of face is
changing smoothly, the information within a small region
will not vary too much. Hence, similar to [26], we draw the
following assumption:

Assumption: within a small region of face image, p, is
approximately locally proportional to p,, that is, p,(x',y') =
d(x, y)pn(x’,y") for some constant d that is determined by
the neighborhood N ,).

In this paper, we additionally provide some statistical evi-
dence to show the feasibility of this assumption as shown
in Fig. 3. We have collected the block-wise cosine distances
between pair-wise VIS-NIR images from all individuals and
plotted the histogram in Fig. 3(d). The smaller the cosine
distance is, the more linear proportional the relation between
pp and p, is. As shown, most values are very small, indicating
the approximately locally proportional relationship between
I, and I, which is also the relationship between p, and p,
according to Eq. 4 and Eq. 5.

Now, we hold this assumption for the following analysis.
The LBP encodes local pattern via thresholding the differences
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Fig. 3. Local cosine distance (dcos(x,y) = %acosl(l)j—lyyl)) between
corresponding VIS and NIR images. (a) VIS image; (b) NIR image;
(c) block-wise local cosine distance between (a) and (b). We first divide the
face into small blocks (with size of 4 x4) and then calculate the cosine distance
block-wisely between (a) and (b) and thus generate image (c). A small value
in (c) indicates that the local vectors of (a) and (b) in the corresponding block
are approximately collinear, i.e., being proportional. (d) Histogram of block-
wise cosine distances for all pair-wiese VIS-NIR samples. Note that most

values are small enough, where the dcos(x, y) is around 0.1 with variance
less than 0.05.

between neighborhood pixels and the centered one, so that it
is not sensitive to the local monotonous transformation. Since
I, and I, are also approximately locally proportional, the
local monotonous requirement is met. As a result, the LBP
codings of a face image captured under VIS and NIR lighting
conditions, i.e. LBP(l,) and LBP(I,), would probably be
consistent under the assumption.

Similar observation holds for HOG, although the derivation
is somehow different. HOG aims to encode an image by using
gradient information, i.e., phase angle and local normalized
gradient magnitude. According to [32], the phase angle has
been proved to be invariant to homogeneous illumination
change. It can be extended straightforwardly to our hetero-
geneous illumination situation as:

oyl _ Oy Py
Ox Iy Ox Po

Oyln _ Oypn

and = s
Ox Iy Ox Pn

(6)

where 0, (-) and 0, () are derivative operators along the x axis
and y axis, respectively. Since p, and p, are approximately
locally proportional, this leads to

Oy Po "
Ox Pu

0
yPn . %
Ox Pn

Thus we have

oyl oyl
atan ( 22 ) ~ atan ( 22 ). (8)
Ox Iy OxIn

Besides, the local normalized gradient magnitude is computed
by

oL, (x, )2 _ 10pu(x, Y) 2 )
> oL, y)ll, > lepe (', y)n”
',y ',y
EN@,y) EN@,y)
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and
101 (x, )2 _ 10pn (x, Y) 2 (10)
> oL, y)llp > Nopax’, y)lp
',y ',y
EN(x,y) EN(x,y)

where 0I(x,y) = (6:I(x,y),0,1(x,y)) and Op(x,y) =
(axp(x’ y)» ayp(x’ y))

Since p, is proportional to p, in Ny y), it is easy to find that
dpy is proportional to dp, in N(y, y) too. That is, dp, (x’, y') =
d(x,y)0p,(x',y") for some constant d which is determined
by N(y,y). We have

0L, (x, Y)la " 05, (x, ), an
> oL, (x', y)ll, > lenx, y)ll,
',y ',y")
EN@,y) EN@.y)

Hence, according to Eq. (8) and Eq. (11), we find that the
gradient histograms of VIS and NIR images from the same
individual turn out to be the same, which makes LBP and
HOG suitable for the VIS-NIR face matching.

C. Uniform Log-DoG Pattern Histogram

1) Log-DoG Pattern Histogram: Since shadow and noise
are frequently presented in both VIS and NIR face images,
directly applying LBP or HOG would probably lead to inac-
curate description. Therefore, preprocessing is always taken
before feature extraction. Liao et al. adopted Difference of
Gaussian (DoG) to eliminate the difference between VIS and
NIR images [18]; Yi et al. applied Laplacian of Gaussian
(LoG) to encode the shared high frequent components in
both VIS and NIR faces [30]. However, these methods are
empirically designed and lack of theoretical analysis.

Based on the illumination model, we would like to derive a
more robust representation by 1) taking the logarithm transfor-
mation to separate the identity related component p and large
scale component S, 2) and then performing DoG filtering to
alleviate the illumination effect and noise. For convenience,
we denote this procedure as Log-DoG filtering. After that we
encode the face pattern using the normalized local uniform
pattern histogram.

As mentioned before, face image I can be represented as
multiplication of the albedo p and the large scale component
S in spatial domain. To better separate the albedo p and
the large scale component S for further processing, we take
the logarithm transform and make them combined additively.
Note that, as indicated in [6], the large scale component §
contains 1) background hues which always vary slowly and
2) important boundaries which are sharp edges, so S can be
regarded as lying in the low or very high frequency domain.
Consequently, as a kind of bandpass filtering methods, DoG
suppresses both the lowest and highest spatial frequencies
and thus is able to alleviate the effect caused by S, making
modeling insensitive to noise in this scenario. As a result, the
Log-DoG filtering procedure on I can be approximated by

(G(-xa yao-()) - G(.X, yao-l)) *lOg(I)

~ (G(x,y,00) — G(x,y,01)) *log(p). (12)
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After that, only partial information corresponding to mid-
frequency part is kept. As indicated in [28], mid-frequency
component in the logarithm domain is more likely related to
facial structure rather than illumination effect. In the following,
we will prove that the responses of LBP and HOG applied to
such a component are also invariant to illumination change
under the locally proportional assumption. As we know, the
DoG image filtering is indeed a local linear operation, which
is commutative to the derivation or division operation subject
to the local patch. Therefore, without loss of generality, we
only have to investigate the relationship of LBP/HOG codings
between log(p,) and log(py).

Remind that LBP is not sensitive to the local monotonous
transformation and the logarithm operation is indeed exactly
a kind of monotonous transformations. As a result, we get
the following approximation based on the locally proportional
assumption:

LBP(log(py)) ~ LBP(py) ~ LBP(pn) ~ LBP(log(py))-
(13)

For the case of using HOG, the conclusion comes indirectly.
Let us investigate the partial derivatives

0 Oy
oy log(py) = *Po , Oylog(py) = yPo , (14)
Po Po
and
0 Oy
oy log(pn) = ;pn , Oylog(pn) = }p". (15)
n n

Note that, Eq. (7) still holds in this situation, and gets similar
conclusion as Eq. (8), since the factor L can be eliminated
during the division operation. By further substituting 6/ by
dlog(p), where 0log(p) = (0x log(p), 0y log(p)), we can get
the same right hand sides as those in Eq. (9) and Eq. (10)
via Eq. (14) and Eq. (15). Thus, as indicated in Eq. (11) in
subsection IV-B, the locally normalized gradient magnitude is
also not sensitive to the illumination source. In summary, we
can draw the conclusion that the gradient histograms of VIS
and NIR images of the same instance after Log-DoG filtering
are consistent under the locally proportional assumption.

Until now we have proved that it is feasible to extract
domain invariant facial information by encoding the local
patterns using LBP and HOG after Log-DoG filtering. In the
rest of the paper, we denote these feature as LD-LBP and
LD-HOG respectively, where LD is the abbreviation of
“Log-DoG filtering”. Some examples can be found in Fig. 4.
Note that the LD-LBP images contain binary codings of
the Log-DoG filtered images, and LD-HOG consists of two
components, i.e., the local normalized gradient magnitude and
gradient orientation. In addition, as shown in Fig. 5, we find
that the Log-DoG filtering is able to alleviate the histograms
difference between VIS and NIR domains.

2) Uniform Normalization: As discovered in our analysis,
patterns/bins in feature coding are unevenly distributed as
shown in Fig. 8(a)—(e). Some bins may rarely appear while
some dominate in the same local patch, making the pattern
histogram less informative and less compact, which may
degrade the discriminant ability of the descriptor. Inspired by
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(b)

Fig. 4. Feature representation: from left to right are original image, results
of proposed Log-DoG filtering (denoted as LD image), results of LD-LBP,
gradient magnitude of LD image, orientation of LD image; the upper row are
results of VIS image and the bottom row list results of NIR image.

related work on taking some normalization step for feature
representation, e.g. merging the non 0—1 skipping bins taken
by Ojala et al. [21] and uniformly distributed code histogram
advised by Cao and Tang [5], we find that taking a feature
normalization step during our transductive learning by using
all available samples is of great help for the latter feature
quantification. The normalized strategy we used here is:
) f(@) — mean(fh)
fnorm(l) = Std(fi) 5

where f,orm 1s the normalized feature of f, and fi denotes
the array constituted by the i’ bin of features from all faces.

Note that, as illustrated later in Fig. 8(c) and (f), the
main characteristics of the uniform normalization can be
summarized as follow.

(16)

1) There are both labeled and unlabeled entries in the trans-
ductive framework, providing more accurate description
on the feature distributions when taking the normaliza-
tion step;

2) All bins are evenly distributed after normalization,
providing unprejudiced opportunity for each bin in the
next feature extraction step;

3) It takes samples from both VIS and NIR domains into
account, good for filing the domain gap.

V. TRANSDUCTIVE VIS-NIR FACE MATCHING

Though the aforementioned LD-LBP and LD-HOG feature
representations are designed to minimize the gap between VIS
and NIR domains, it is not enough to tackle the cross-domain
matching problem well, because the Lambertian assumption
or the locally proportional assumption may not strictly hold.
Hence, we wish to further quantify our derived features using
a proposed transductive subspace model called Transductive
Heterogeneous Face Matching (THFM) so as to further pursue
extraction of invariant features for VIS-NIR matching. We
elaborate our proposed model in four steps: domain invariant
feature extraction, target related discriminant model learning,
cross domain penalization and locality preserving. Through
our modeling, we formulate a transductive framework to match
probe NIR images to the gallery VIS images (Set A in Fig. 1)
assisted by the training (Set B in Fig. 1), which only holds
labeled VIS-NIR pairs during learning.

@ (b)
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Fig. 5. Local encoding with and without Log-DoG filtering. (a) VIS face;
(b) NIR face; (c) local patch LBP coding; (d) local patch LD-LBP coding;
(e) local patch HOG coding; (f) local patch LD-HOG coding.

A. Domain Invariant Feature Extraction

In order to seek the domain invariant feature or shared
features in VIS and NIR domains, we further extract domain
invariant components based on the proposed representation in
a latent subspace. Since there are available labeled training
VIS-NIR images (Set B in Fig. 1) for us to investigate the
relationship between two domains, we hope that the expected
feature mapping ¢ (x) : X — H could draw points of the same
class together no matter which domain they belong to. We
achieve it by minimizing the intra-class variation of samples
of training people in the feature space.

Suppose we have labeled VIS-NIR images X5 = [x(f o)
xSlg € Cs)y = (x)7""%1lq € Cs) U ;" Rlg € Cs),
where xg is the k' sample of the ¢ training people. The
intra-class variation in the latent feature space H can be

quantified by the trace of average intra-class scatter matrix

Sintra:
S =S T
Sintra = —— Z (¢ ) (¢(xq,k) - mq) , (17)
k ,qeCs
where m?3 is the mean vector of the ¢ training people in the

q
latent space H, and Ns denotes the total amount of samples

from the training.

Let X = [XS X Gallery Xpmbe] kernel matrix K =
O (X)T d(X), where X Gallery and XP7oP¢ denote the gallery
VIS set and probe NIR set defined in Section III-A respec-
tively, and @ (X) = [¢(x)]rex. Our objective is to address the
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minimization problem below:

rrgn tr(Sintra) = z ( S) (¢(x‘§>k)_ﬁ1§)T

k qECS
= tr(SintraK)a (18)
In ZA](A
. S N k 0 0
where Sintrq = 0 00 |
0 00

1 . s
—— , if label(x?) =k
A = [akjlixnNg> akj=[«/N—q (j) .

0, otherwise

B. Target Related Discriminant Feature Mining

Matching probe images to the gallery images (Set A in
Fig. 1) can be seen as applying a classifier trained on the
gallery set to those probe images. However, it works only if the
samples in the gallery and probe set are coming from the same
domain. Fortunately, as we consider domain invariant feature
extraction and classification on target people simultaneously
under the transductive framework, we are able to cope with
the heterogeneous matching problem in a homogeneous way.
That is, the discriminant model trained by gallery set would
be as good as possible to fit the probe images in the latent
space. Thus, we hope that the discriminant information of
gallery individuals could be preserved in the desired space.
There are various works addressing the discriminant feature
mining problem, such as FDA [1], MMC [16], SVM [8] etc.
In this work, we adopt the between-class variation to measure
the separability of individuals in gallery set, which is suitable
for subspace analysis and can be well described by the inter-
class scatter matrix and proved to be effective in FDA. Using
the notation in Section III, our objective is to maximize the
trace of the average between-class variation in gallery set as
follow:

_ _ T
max 17 (Sinrer) = Z NG(m G)(miG_mG)
¢ lECT
= tr(ginter ), (19)

where Nl.G is the number of samples in class i, Ng = > Nl.G,
i

nilG denotes the mean of class i and m% is the mean of

0 0 0
all galleries. Sinrer = | 0 ZNNfB 0 |, Bi = [bijlixne,
0 0 0
1 1 Galler)
oy _ |3 if label (x| )_z.
—NL, otherwise
G

C. Cross Domain Penalization

In Section V-A, we have considered the relation between
VIS and NIR domains for training people (Set B in Fig. 1).
However, since our goal is to match target people (Set A in
Fig. 1), we also have to guarantee that the VIS and NIR
images of the same target people have the same or similar
representation in the feature space. However, albeit conducting
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transductive learning, the label information of probe images is
unknown, which makes it impossible to align the VIS and NIR
face images via label information.

We attempt to minimize the Maximum Mean Discrepancy
(MMD) [3] for penalizing the cross domain difference between
gallery and probe sets for target people. Consequently, given
samples X¢ = {x Gallml e Cr} and XP = {xp"’be|p €
Ct} drawn from two different domains and the kernel induced
feature map ¢, the estimate of MMD between X© and X7 i
the feature space is as follows:

MMD(®(X%), d(xy)

2
— Ga”e") Probe
= g 2" ) - 5y o s1)) o
H
The MM D(®(X%), ®(XT)) can be written as:
MMD(®(Xx%), d(X")) = tr(MK) 1)
0 0 0
1y.17 1y.17
where M = | 0 N;GévG — IA\I,(;N];P , Iy, € RM6 and
Ivply.  Inply,
~ "NgNp NpNp

1y, € RM? denotes the column vector with all 1’s, Ng and Np
are the total amount of samples in X¢ and X7, respectively.

D. Locality Preserving

In order to preserve the structure of data as much as possible
during domain adaptation, we share the intrinsic locality
property of the manifold regularizer [2] via constructing a
graph with the affinity v;; = 1 if x; is the k nearest neighbors
of x;j, or vice versa; otherwise v;; = 0. Let V = [v;;], and
the graph Laplacian matrix becomes £ = D — V, where D
is the diagonal matrix with entries d;; = Z;=1 v;j. Note that,
the embedding coordinate of x; in H is ¢ (x;). To maintain the
neighborhood structure, we absorb the manifold learning idea
[2] and formulate the following objective for minimization

> oy ligGn — G| P =irCk) @2
(i,))eN

E. Transductive Heterogeneous Face Matching (THFM)
Framework

Putting all together, we attempt to learn a latent feature
space ‘H in which the four aforementioned objectives from
Sec. V-A to Sec. V-D can be optimized simultaneously.
However, directly addressing kernel matrix K is expensive and
cannot handle unseen patterns as well. In order to tackle this
problem, we adopt the unified kernel learning method used
in [22] to learn a low dimensional feature space.

Note that, according to the empirical kernel map [23],
the kernel matrix K can be decomposed as K =
(K K~1Y/2)(K~1/2K). Consider the use of a matrix W € RN*"
that transforms the empirical kernel map to an m-dimensional
space (where m « N). We then obtain the following kernel
matrix

K =(KK "Wy (WK~'?K)y=KWWTK (23)
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where W = K~ 1/2Ww, Intuitively, the kernel evaluation
between any two patterns x; and x; is k(x;, x;) = kKEWWTky,,
where ky = [k(x1, x), ..., k(xN,x)]T. That is, this kernel & is
able to facilitate the out-of-sample kernel evaluations.

By substituting the kernel matrix K into Eq. (18, 19, 21, 22),
we develop our objective function in the form of Rayleigh
quotient as follows:

tr(WT K Sinter KW)
max = )
WeRNxd tr(WT (K (Sintra + BM + 7y LYK + al)W)
where f > 0 and y > 0 are the hyper-parameters for the
MMD term and manifold regularized term respectively, and
o is the weight for Tikhonov regularization which is used
to avoid degeneration in the generalized eigen-decomposition
problem. Finally, the solution to Eq. (24) is equal to the leading
eigenvectors computed by the following general eigenvalue
problem

K Sinter Kw = A(K (Sintra + BM + y L)K + aDw, (25)

(24)

where w is the eigenvector and 4 denotes the corresponding
eigenvalue. Note that, only eigenvectors with non-zero eigen-
value are used in our final result.

VI. EXPERIMENTS
A. Dataset

We conduct evaluations on the following two public
datasets:

Surrey’s VIS-NIR Database [27]: It consists of
1056 visible light face images and 1056 Near-IR faces from
22 individuals, each with 48 pairs of VIS and NIR images
captured at the same time. Note that, there are 4 different
lighting directions in the visible light images: top, left, bottom
and right. The Near-Infrared images are taken under frontal
Near-IR flash illumination. All images are manually aligned
according to the eye coordinates, cropped and resized to
128 x 128 pixels.

CASIA-HFB: 1t is a popular heterogeneous face database
widely used in [13], [14]. We only select the subset containing
VIS-NIR images. There are 2095 VIS images and 3002 NIR
images from 202 individuals. Note that, all faces are frontal
and there are some variations including expression, wearing
glasses, scaling, etc. They are manually aligned according to
the eye coordinates, cropped and resized to 128 x 128 pixels
as shown in Fig. 1.

B. Experimental Setting

In our experimental validations, we aim to evaluate
(1) whether the feature we used can alleviate the domain
difference and retain discriminative information for VIS-NIR
face matching; (ii) whether the proposed learning method is
effective in mining useful information for such a cross domain
face matching/recognition.

We evaluate various descriptors in our experiments,
including original LBP [21], HOG [10] and their combination
(denoted as LBP-HOG), our proposed descriptors, including
LD-LBP, LD-HOG, LD-LBP-HOG and the uniform normal-
ization based ones (denoted as NLBP, NHOG, NLBP-HOG,

TABLE I
DEFAULT PARAMETER SETTING FOR OUR METHODS

Method Parameter Value
DoG a0 1
o1 2
HOG block size 16x16
cell size 4x4
issigned 0
bins in cell 5
THFM kernel type linear
e 0.01
B 0.001
o1 0.1
k nearest neighbors in L 3

NLD-LBP, NLD-HOG, NLD-LBP-HOG) as shown
in Sec. IV-C.2. More specifically, for each face image
with 128 x 128 pixels, we firstly divide it into 8 x 8 blocks
with size of 16 x 16 and then encode the local pattern for
each block using the above descriptors respectively. Note
that, 59 bin histogram is used to form LBP coding and the
parameters of HOG are listed in Table I. Hence, the feature
dimensions for each image are 3776 for LBP based features
and 5120 for HOG based features.

In addition, we take Tan and Triggs filter (denoted as TT)
based features as baselines for comparison, denoted as
TT-LBP, TT-HOG and TT-LBP-HOG, where for example
TT-LBP means TT filtering followed by LBP coding.

We compare the proposed THFM to classical VIS-NIR
matching approaches, such as PCA, Fisher Discriminant
Analysis (FDA) [1], Canonical Correlation Analysis (CCA)
based methods [31] and Coupled Spectral Regression
(CSR) [14]. Meanwhile, the results of state-of-the-art algo-
rithms, such as Local Structures of Normalized Appearance
(LSNA) [18], Random Subspace [13], Light Source Invariant
Features (LSIFs) [20] are also reported for comparison. How-
ever, neither of them can perform transductively. To be fair,
we compare THFM with related subspace methods such as
transductive PCA (tPCA), TCA [22], SDA! [4] for performing
VIS-NIR matching in a transductive way, although THFM
is a first transductive model for such a heterogeneous face
matching.

Unless otherwise specified, the parameters of our proposed
THFM are set as those in Table I. Note that, we have tried
linear, RBF and Polynomial kernels in our experiments and
found that the results of using linear kernel always turn out to
be the best, which was similarly reported in [22] for domain
adaptation. The reason might be that the dimensionality of the
feature is higher than the number of sample, so it’s possible
that the samples may be almost linearly separable. Note that
using linear kernel is equivalent to letting ¢ be the empirical
kernel in terms of linear projection. Further discussion about
the parameter selection could be found in Section VI-E. For
the compared methods, all parameters are tuned carefully to
obtain the best performance. For PCA related approaches, the
ratio of principal components is set to 95%. For CSR, 1 and

In some case, semi-supervised learning can be also regarded as transductive
learning [4].
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TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) OF VARIOUS METHODS ON SURREY’S VIS-NIR DATABASE
(THE NUMBER INSIDE PARENTHESES IS THE STANDARD DEVIATION)

NoLearing  PCA FDA PCA+CCA PCA+CCA CSR tPCA TCA SDA THFM
Raw 8.91(3.31) 14.28(3.90) 8.65(1.89) 6.84(2.81) 6.39(2.63) 8.74(2.07) 64.80(2.09) 68.31(2.29) 76.39(1.71) 72.70(5.87)
LBP 61.67(2.67) 50.75(5.85) 9.17(1.59) 7.58(2.45) 8.15(2.01) 6.40(2.00) 79.59(2.34) 71.84(2.62) 99.59(0.27) 98.58(1.38)
TT-LBP 84.06(1.70) 54.65(5.62) 7.77(2.34) 7.08(1.20) 7.91(2.42)  5.00(0) 87.08(1.38) 74.71(1.29) 95.54(0.68) 98.66(0.66)
LD-LBP 84.15(1.55) 61.21(4.34) 7.72(2.02) 7.59(1.38) 7.99(2.31)  5.00(0) 90.21(1.02) 78.63(1.12) 97.93(0.47) 95.84(1.22)
NLD-LBP 94.56(0.54) 24.12(1.36) 8.96(0.97) 7.49(0.83) 7.85(1.69) 8.47(1.02) 80.44(1.25) 84.40(0.99) 94.94(0.68) 99.14(0.12)
HOG 88.17(1.33) 52.10(8.40) 9.38(1.58) 10.78(3.13) 8.43(2.26) 8.75(1.70) 87.78(1.39) 87.97(1.36) 98.47(1.32) 99.93(0.10)
TT-HOG 94.20(1.54) 51.54(5.87) 8.50(1.86) 8.82(1.90) 8.64(1.87) 7.48(2.09) 91.86(0.76) 91.76(0.74) 98.84(0.18)  100(0)

LD-HOG 90.05(1.86) 61.33(4.25) 8.13(1.80) 6.08(1.54) 8.30(1.83) 6.69(2.28) 90.31(0.84) 90.33(0.92) 98.40(0.29) 99.78(0.08)
NLD-HOG 93.02(1.86) 61.34(3.59) 9.24(0.54) 7.67(1.23) 9.61(0.90) 9.20(0.71) 96.80(0.50) 97.15(0.42) 99.88(0.11)  100(0)

LBP-HOG 82.46(1.85) 51.08(7.71) 9.23(1.62) 10.74(2.73) 9.07(1.57) 8.88(1.85) 84.23(1.71) 86.42(1.41) 99.51(0.44) 99.97(0.05)
TT-LBP-HOG  91.60(0.67) 51.79(6.12) 8.55(1.87) 8.85(2.33) 8.57(1.92) 7.70(2.00) 91.87(0.77) 94.22(1.49) 98.94(0.21)  100(0)

LD-LBP-HOG  90.66(0.83) 60.60(4.39) 8.26(1.79) 6.54(1.59) 7.99(2.07) 6.65(2.31) 90.60(0.77) 90.43(1.86) 98.99(0.15) 99.83(0.07)
NLD-LBP-HOG 97.60(0.37) 46.22(2.93) 9.51(0.38) 7.54(1.45) 9.60(0.56) 9.27(1.11) 97.45(0.39) 94.77(1.80) 99.88(0.11)  100(0)

*Note: the results of THFM and those using our proposed features are marked with gray background. See text for detailed setting.

are set as 1 and 0.01 respectively. Besides, « = 0.1 and
dim = c¢—1 are used in TCA [22] where ¢ denoted the number
of classes in gallery set, and a and f in SDA [4] are set to
0.1 and 0.001. For all methods, cosine distance and nearest
neighbor classifier are used to compute final recognition
rate.

C. Surrey’s VIS-NIR Database

We would like to investigate the performances of different
methods when there are only a few training samples available.
Here, we selected the Surrey database for the evaluation.
Only 2 individuals were randomly selected for training, i.e.,
only VIS and NIR images of these 2 individuals had labels,
and the remaining 20 individuals were considered as probe
ones. To make the evaluation more challenging, we only
selected 4 images (one in each lighting condition) for each
individual to construct the gallery, and finally there were 4 VIS
images and 48 probe NIR images per individual in the testing
procedure. We tried Raw image, LBP, HOG and the proposed
local encoding features, i.e. LD-LBP, NLD-LBP, LD-HOG and
NLD-HOG. Considering that TT filtering is able to removal
sub-surface scattering, we conducted TT-LBP and TT-HOG as
baselines. Finally, we repeated the experiment 10 times and
report the mean accuracies and standard deviations.

As shown in the first column of Table II, without applying
any learning methods, our proposed NLD-LBP and NLD-HOG
almost outperform all other descriptors except TT-HOG. Note
that the TT based features are also powerful in alleviating
heterogeneous difference caused by VIS and NIR lighting,
achieving comparable results to some of our proposed methods
in Surreys dataset. However, we note that although TT and
Log-DoG (LD) are all for pre-processing, the rationale of our
proposed descriptor for VIS-NIR matching is supported by
theoretical analysis (see Sec. IV-C.1), while TT still lacks of
strong theoretical support for such a cross-domain matching.

When learning is further incorporated, we find that the
transductive methods, especially SDA and our proposed
THFM, perform substantially better than the non-transductive
algorithms and achieve extremely high accuracies in this

challenging setting where only limited labeled VIS-NIR
pairwise training samples provided. On the other hand, the
non-transductive algorithms such as FDA, CCA based meth-
ods and CSR, suffer from severe degeneration, with average
accuracies less than 10%. The reason might be that those
discriminant methods focus on discriminative components
only for the limited training people, which may not be suitable
for probe ones, while the transductive ones are able to fill
the gap between training and target people much better. Note
that SDA is not optimal for VIS-NIR face matching problem,
although it performs as well as THFM in some cases. To see
the superiority of our proposed THFM, a more challenging
database will be used in the next section. Overall, our proposed
THFM almost achieves the best performances.

D. CASIA-HFB Dataset

In this section, we conducted a series of experiments to
perform the evaluation on a more large-scale and challenging
CASIA-HFB database. By following Klare and Jain’s set-
ting in [13] where extensive evaluations have been reported,
100 individuals were selected as training people and 100 indi-
vidual were selected as the target ones (including the gallery
images and probe images). The general results can be found
in Table III. Note that standard deviation is not available in
Table III due to the testing protocol in [13]. It is interesting to
find that, without incorporating any learning method, the TT
based features and our proposed descriptors achieve compara-
ble results, which are much better than those of original LBP
and HOG. But the difference becomes clear when learning
methods are involved. In most of the cases, our proposed
features, especially NLD-LBP-HOG, always outperform other
descriptors no matter using our proposed THFM or using other
learning methods.

1) Comparison With Classical Methods: As shown in
Fig. 6(a) and (c), we can see that, the Log-DoG filtering
procedure eliminates domain difference a lot since the perfor-
mances of PCA are substantially boosted after the processing.
What’s more, both FDA and THFM that take the data structure
information into account can maintain or improve their perfor-
mances by using Log-DoG based features. In comparison, the
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TABLE III
CLASSIFICATION ACCURACY (%) OF VARIOUS METHODS ON CISIA-HFB DATABASE

NoLearing PCA FDA PCA+CCA PCA+CCA CSR tPCA TCA SDA THFM
Raw 3.16 3.16 53.53 26.70 39.81 38.92 3.16 0.21 38.30 20.04
LBP 4.32 5.06 16.61 27.61 18.11 6.44 522 1239 40.83 32.94
TT-LBP 4242 40.63 11.46 15.79 11.26 0.69 43.58 44.89 66.23 46.26
LD-LBP 4537  46.44 18.44 20.11 16.89 0.78 49.83 52.22 56.78 44.83
NLD-LBP 41.94  31.11 19.50 17.72 16.67 23.17 41.22 46.67 29.89 71.28
HOG 6.59 5.39 53.50 49.67 48.83 10.17 7.33 21.61 51.94 62.00
TT-HOG 77.21 62.94 51.00 38.09 30.47 11.26 77.90 61.15 73.99 73.71
LD-HOG 77.69  64.50 55.44 44.94 33.22 27.22 80.11 68.50 61.72 70.50
NLD-HOG 81.67  66.83 66.67 44.44 37.94 47.89 81.39 70.72 83.06 98.72
LBP-HOG 4.53 5.28 61.22 54.67 54.17 13.67 6.00 22.67 49.78 58.89
TT-LBP-HOG 76.87  62.46 62.73 40.77 34.80 17.09 77.69 60.74 76.66 73.51
LD-LBP-HOG 77.63 64.61 62.00 47.06 36.61 21.61 80.33 68.56 65.00 70.39
NLD-LBP-HOG  77.21 53.33 76.33 48.56 46.89 54.89 76.28 70.06 85.00 99.28

*Note: the results of THFM and those using our proposed features
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Comparison of different methods using different features on the CASIA-HFB database. (a) and (c) compare THFM to non-transductive methods:

PCA, FDA, PCA+CCA, FDA+CCA, CSR; (b) and (d) compare THFM to transductive methods: tPCA, TCA, SDA, THFM. (a) and (b) are based on the
non-normalized features, while (¢) and (d) are based on the normalized features.

CCA based methods, which only consider the discriminative
information for training but ignore the difference of data
distributions between training and target, easily tend to be
overfitting and thus do not perform well.

When formulating the VIS-NIR face matching problem in
a transductive framework and extracting valuable information
according to the objective criterion, our proposed THFM
substantially outperforms those methods no matter which type
of feature is used. An impressive 99.28% rank-1 recogni-
tion rate is gained by combining NLD-LBP and NLD-HOG
features.

2) Comparison With Transductive Methods: As shown
in Fig. 6(b) and (d), The performances of THFM with

normalized features are of the best among those of all four
approaches, i.e. tPCA, TCA, SDA and THFM. On one hand,
our proposed THFM and SDA outperform TCA and tPCA in
most of the cases, suggesting that supervised information is
indeed useful for cross domain matching; on the other hand,
THFM is better than SDA by 10% on average. The reason
could be that SDA is only optimal when the probe set and
gallery set are coming from the same domain, which is differ-
ent from the VIS-NIR heterogeneous setting. In comparison,
THFM is able to handle the cross domain matching problem
more effectively, by minimizing the domain difference and
retaining the discriminative information for classification on
target people at the same time.
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TABLE IV
CLASSIFICATION ACCURACIES OF VARIOUS
STATE-OF-THE-ART METHODS

FAR=0.1% FAR=1% Rank-1
THFM 98.42%  99.66% 99.28%
Goswami’s [11]  50.64%  75.55% 83.28%
Liao’s* [18] 68.00%  87.50% -
NNSR [13] 79.05%  9137% 90.38%
FV [13] 85.62%  93.80% 97.60%
NNSR+FV [13]  93.45%  97.06% 97.63%
Yi's* [30] 92.00%  98.00% 91.67%
Liws* [20] 90.00%  98.00% 98.51%

* Results of these three approaches are reported
in [20], where 150 individuals are used for
learning and the other 50 individuals consist
the testing set.

It is worth mentioning that, though tPCA and TCA are
unsupervised methods, they also obtain surprising results by
using Log-DoG based features, especially those encoded by
HOG. In other words, it indicates that the Log-DoG based
features, especially LD-HOG, are good for the VIS-NIR face
matching problem on such a more challenging CASIA-HFB
database.

3) Comparison With State-of-the-Art Methods: We also
compare our method with the state-of-the-art methods in this
field, including Goswami’s LDA using TT [24] based feature
[11] combined with LBP+HOG, Liao’s LSNA [18], Klare’s
feature ensemble approach using both nearest neighbor and
sparse representation matching [13], the baseline commercial
face recognition system FaceVACS used in [13], Yi’s binary
LoG local matching strategy [30] and the multi-DoG filtering
followed by Adaboost feature selection proposed by Liu [20].
Note that, only 50 individuals are set as target in Liao’s and
Liu’s works.

In Table IV, three performance measures are reported for
comparison, including Verification Rate (VR) at False Accept
Rate (FAR) = 0.1%, VR at FAR = 1% and Rank-1 recognition
rate. It should be noted that most of the results are excerpted
from [13] and [20], and the Rank-1 recognition rates of Liao’s
LSNA is not available. For our approach, the normalized
LD-LBP-HOG is used as the feature representation.

As shown in Table IV, our proposed method outperforms all
other state-of-the-art methods in all the three different indexes,
achieving VR = 98.42% at FAR = 0.1%, VR = 99.66%
at FAR = 1% and 99.28% Rank-1 accuracy. Compared to
those local feature based methods, the advantages of our
proposed method are in two folds: (i) different from [18] and
[20], we do not implement adaboost to select discriminative
feature but perform feature normalization instead, which is
efficient enough and able to maintain data distribution structure
due to the unsupervised feature representation; (ii) Instead of
learning the inductive model for VIS-NIR face matching, we
consider the matching problem in a transductive framework.
More specifically, our proposed method learns the VIS-NIR
face matching assisted on a small set of VIS-NIR samples from
training and adapt it for target people through transductive
learning.
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E. Further Investigation

In this section, we would like to compare the effective-
ness of different features and investigate what properties are
more favourable for our VIS-NIR face matching model. The
CASIA-HFB database is used as the benchmark.

Normalized vs. Non-Normalized Features. Note that our
normalization processing is independent of the type of feature
and can be applied to all features. We tested FDA, SDA, tPCA,
and the proposed THFM by using LBP, HOG, LBP-HOG,
LD-LBP, LD-HOG, LD-LBP-HOG and their corresponding
normalized forms, i.e., NLBP, NHOG, NLBP-HOG, NLD-
LBP, NLD-HOG, NLD-LBP-HOG. The results of different
methods conducted based on the normalized feature are
denoted as FDA(N), SDA(N), tPCA(N) and THFM(N). To
better investigate the effectiveness of this normalization step
for cross domain face matching, we report the ROC curves of
each algorithm using features with and without normalization.
All results are illustrated in Fig. 7, where the results with
normalization processing are denoted by solid line while those
without normalization processing are denoted by dotted line.

As shown, there are always notable improvement when
using normalized features, i.e. NLD-LBP, NLD-HOG, NLD-
LBP-HOG. Note that tPCA does not get improved clearly.
The reason might be that it removes the second-order sta-
tistical relationship among different dimensions, which can
be considered as a kind of implicit feature normalization by
transforming the original feature distribution to a sphere form.

In order to further investigate the effect of normalization,
we compare the variance of feature for each dimension with
and without normalization. 20 bins of various features were
randomly chosen and their distributions in VIS and NIR
domains are plotted separately in Fig. 8. We find that the
feature distributions between VIS and NIR domains are similar
due to domain invariant property, supporting the analysis in
Sec IV. Also, as shown in Fig. 8(c) and (f), using NLD-LBP
and NLD-HOG would make the distributions of features more
invariant across domains and thus meet the requirement of
domain adaptation.

Sensitivity to Parameter Selection. We evaluate THFM for
different parameter settings using the CASIA-HFB database.
We use linear kernel and the dimensionality of final latent
space was fixed to be ¢ — 1, where c is the amount of classes
in gallery set. The other default parameters are listed in Table I.
For evaluation here, we always fix other parameters and vary
the one we are concerned about. Note that, all results are
based on the NLD-LBP-HOG feature which is proved to be
the most effective for our proposed THFM in the reported
experiments.

As shown in Fig. 9(a), a small « is more suitable since it is
used to avoid degeneration. Thus, we would like to set it as a
small constant, e.g., = 0.0l in our setting. Regarding £,
the performance drops dramatically when g is larger than
0.1. However, it performs well when f lies in the range
[0.001, 0.1]. Note that, the parameters y and k are used for
the Laplacian regularization. Fig. 9(c) illustrates the variations
of our method for different y, and one can find the peak of
the performance around y = 1. Finally, we find that THFM
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Fig. 8.

Distributions of different features in VIS and NIR domains: (a) LBP; (b) LD-LBP; (c) NLD-LBP; (d) HOG; (e) LD-HOG; (f) NLD-HOG. Box plot

is used here to describe the distributions, and results of VIS domain are shown in upper rows, while those of NIR domain are shown in lower rows.

is less sensitive to k and the performances of the method for
different k are ranging from 98.5% to 99.5%.

Kernels. We also evaluate the performance of our method
using different kernels. Besides linear kernel, RBF kernel
and polynomial kernel (d = 3) are also investigated in our
experiments. Note that, we have turned the parameters for
each kernel to ensure that the best performances are gained
and the results are shown in Table V. As shown, linear kernel
is good enough for our cross domain VIS-NIR face matching
and performs better than the other two kernels. This agrees
with the well-known observation that the linear kernel is often
adequate for high dimensional data [22].

Out of Sample. Although our proposed THFM is designed
in a transductive framework, it is also able to address the
out-of-sample problem in a single domain. In this part,
following the setting in VI-D, we conducted an out-of-sample
evaluation experiment by dividing the probe NIR images
into two parts, half for learning and half for evaluating.
More specifically, 920 probing NIR images from 100 testing
individuals together with training and gallery images were
used to learn the kernel evaluation function k,, and then we
tested on the rest 880 NIR images which were not involved
in the learning procedure. The final Rank-1 accuracy of using
NLD-LBP-HOG feature representation is 98.86%, almost the
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TABLE V
CLASSIFICATION ACCURACIES OF USING DIFFERENT KERNELS

FAR=0.1% FAR=1% Rank-1

Linear 98.42%  99.66% 99.28%
RBF 73.42% 87.42% 89.28%
Polynomial ~ 64.00%  91.56% 87.28%

same to the result (98.98%) when taking these 880 NIR images
into transductive learning procedure. Note that, the corre-
sponding results of second best approach SDA are 78.86%
(out-of-sample) and 79.32% (transductive) respectively. In a
word, our proposed THFM can also be generalized to out-of-
sample patterns and achieve comparable results to the original
transductive setting.

VII. CONCLUSION

This work has formulated the VIS-NIR face matching as
a transductive learning problem. The modeling and the com-
bination of good descriptor help improve the generalization
performance of VIS-NIR matching problem. We particularly
develop a novel transductive subspace learning method for
heterogeneous face matching for domain invariant feature
extraction. Our transductive model is discriminant and able
to alleviate the cross-domain difference at the same time.
To our best knowledge, it is the first attempt in this field
to formulate a transductive learning for VIS-NIR matching.
In addition, we give an in-depth analysis on the local feature
based descriptors for VIS-NIR matching and and propose
a Log-DoG based approach. We find that taking a fea-
ture normalization step would contribute a lot for extracting
domain invariant to the final classification. Experiment results
show that our proposed method has outperformed the related
VIS-NIR matching approaches.
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