Online Hashing

Long-Kai Huang, Qiang Yang, Wei-Shi Zheng*
School of Information Science and Technology, Sun Yat-sen University, China
Guangdong Province Key Laboratory of Computational Science
hlongkai @gmail.com, mmmygmmm @ gmail.com, *wszheng @ieee.org(corresponding author)

Abstract

Hash function learning has been recently received
more and more attentions in fast search for large s-
cale data. However, existing popular learning based
hashing methods are batch-based learning models
and thus incur large scale computational problem
for learning an optimal model on a large scale of
labelled data and cannot handle data which comes
sequentially. In this paper, we address the problem
by developing an online hashing learning algorith-
m to get hashing model accommodate to each new
pair of data. At the same time the new updated hash
model is penalized by the last learned model in or-
der to retain important information learned in pre-
vious rounds. We also derive a tight bound for the
cumulative loss of our proposed online learning al-
gorithm. The experimental results demonstrate su-
periority of the proposed online hashing model on
searching both metric distance neighbors and se-
mantical similar neighbors in the experiments.

1 Introduction

Finding nearest neighbors using machine learning algorithms
has achieved a widespread success in many applications, e.g.
computer vision and text retrieval problems. However, due
to the dramatic increase in the scale and dimension of data in
the real world, those frequently using nearest neighbor search
algorithms that exhaustively scan the dataset have become
impractical for processing large-scale data in the real-world
applications. To solve this problem, hashing-based search-
ing methods have been developed to allow searching into a
collection of millions of samples in a constant time.

Early works construct hash functions based on random
projection, among which Locality-Sensitive Hashing (LSH)
[Charikar, 2002] and its variants including /,,-stable hashing
[Datar et al., 2004] and min-hash [Chum e al., 2008] are the
most representative methods. Though these methods obtains
high accuracy, they are data-independent and need long codes
to guarantee the performance.

In contrast to data-independent hashing methods, recent-
ly a great number of researches pay much attention to data-
dependent hashing learning algorithms, which can utilise la-
bel information of data, their distribution information and

similarity between data as well. The objective of these meth-
ods is to obtain compact codes fitting data distribution in the
feature space. Data-dependent hashing methods are usual-
ly grouped into three categories: unsupervised (for exam-
ple [Weiss er al., 2008; Salakhutdinov et al., 2007]), semi-
supervised (such as [Wang et al., 2010]), and supervised
methods (for instance [Liu ef al., 2012]). The last two cat-
egories take advantage of label information [Wang er al.,
2010] or pair-wise information [Mu er al., 2010] of points.
These methods aim to minimise a cost function on the hash
function set, formulated by combining an error term (to fit
training data) and a regularisation term (to avoid over-fitting).
Although data-dependent hashing methods require fewer
hash codes to obtain good performance than data-independent
methods, they are all batch mode learning methods and have
to involve a gigantic training labelled data set to obtain a good
model. Also, existing learning based hashing methods as-
sume all training data are available in advance for training
and learn hash functions once for all. However, training on
large scale data would result in a great deal of computation-
al time and memory, which the real-world application cannot
stand. Furthermore, in the real world application, it could be
necessary to make hashing model adapted to new data.

In this paper, we overcome the limitation of batch mode
methods by developing an online hashing learning method.
For learning hash functions in an online manner, we develop
a kernel mapping based passive-aggressive learning strategy
for accommodating a new pair of data. The hashing model
aims to construct hash functions to map the data points to fi-
nite number of hash codes, meanwhile appropriately preserv-
ing the distances or semantic relationship between data. By
utilising passive-aggressive strategy [Crammer er al., 2006],
the newly learned hashing model is able to retain important
information learned in the previous rounds and optimise for
data of current round as well. We can further derive bound-
s on the cumulative loss of the proposed online algorithm,
guaranteeing better performance of online learning.

As far as we know, the proposed online learning special-
ly designed for hash function learning in this work might be
the first attempt. Although the minimal loss hashing(MLH)
[Norouzi and Fleet, 2011] is an iterative algorithm and might
be extended for learning new data, MLH is designed to min-
imise the max loss function for all pairs of samples over the
whole training set rather than to update hash functions on

each pair of data received step by step. Besides, it is not spe-
cially designed to learn hash function online, and thus the
performance of MLH is not theoretically guaranteed for on-
line learning.

2 Online Modelling

2.1 Preliminary

Hashing algorithms map a given data point z € R? in-
to an r-bit binary code h € {—1,1}". To deal with lin-
early inseparable data, kernel trick is used to tackle the da-
ta to improve the performance. Such a process has been
theoretically and empirically shown to be an effectual ap-
proach for hash function learning [Kulis and Grauman, 2009;
Liu et al., 2012]. In this paper, our online learning is built in
this line. We first introduce the kernel mapping ¢. For mod-
eling this mapping, we follow [Liu ef al., 2012] to preprocess
original input data by mapping a d-dim vector z to a m-dim
kernel vector ¢(z) with the kernel function & as

d(z) = [k(z,2(1)), 6(2,2(2)) oes 5(Z, Z ()] "

where z(1),z(2), .., Z(m) are m samples uniformly selected
at random from data available. Since samples available at the
preprocessing stage may be less than m because our algorith-
m is for online learning, we would use the first m samples
received to construct ¢, and our algorithm will start after m
samples have been received.

For convenience of notation, we define x = ¢(z). For r-bit
linear projection hashing, the k' hash function is defined as

hi(x) = sgn(wi ! x 4+ bp)(1 < k <)

where wy, € R"™ is a projection vector, by, is a threshold, and
hy € {—1,1}. For r bit hash codes, we can redefine wy to be
[wi T, bi]T and redefine x to be [x”', 1]7, and therefore our
hash function becomes

h(x) = sgn(W'x) (1)

where W = [wq,Wa, ..., W] € Rm+1*7 is the hash pro-
jection matrix and h = [h(x), h2(X), ..., h.(x)]T. The hash
projection matrix W is learned by some criterion.

More specifically, the sign function in Eq. (1) is non-
differentiable, making it hard to model the optimization prob-
lem. Inspired by the structured prediction in structured
SVMs [Finley and Joachims, 2008] and Minimal loss hash-
ing [Norouzi and Fleet, 2011], we re-express the hash func-
tion equivalently as a form of structured prediction:

h = argmax ffwTx 2)
fe{—1,1}"

2.2 Online Learning Algorithm

Our proposed online hashing learning algorithm, which we
call the Online kernel-based Hashing(OKH), is to process
hashing model update for each new available pair of data
point x{ and x{ in tth (t = 1,2,...) round. We denote such
a pair by x* = [x},x}]. In addition, we assume that it is
able to know whether these two points are similar or not by a
similarity label. The similarity label s is given as follows:
_ { 1, if x; and x; are similar
§= —1, 4f x; and x; are not similar

Given the hash projection matrix W? learned in the last
round, we can derive the hash codes for x} and x} denot-
ed by h{, hy, respectively. We let h* = [h{, h}] denote the
pair of hash codes. However, the generated hash codes using
W could not be discriminant, as they may differ too much
for two similar points or in contrast keep too similar for two
dissimilar points. Hence, an optimal W**! has to be learned.

In order to learn the new hash projection matrix, our idea is
to use the labelled information which tells the pair is similar
or not to derive an optimal hash codes g' = [g},g}]. And
then, we utilise this new hash codes g’ to guide the learning
of new hash projection matrix W1, which can be viewed
as a regression like process.

First, we introduce the loss of hash codes w.r.t. the similar-
ity score s as follows

max{0,Dy(fi,f;) — (1 —a)r}, ifs=1

U, s) = { mam}(}, ar(—Di)(fi,g'j)}, " z}c s=-1 &
where f; and fj are hash codes of date pair x obtained by W,
t = [f;, £5], D (f;, f;) is the Hamming distance between f; and
fj, and o is a Hamming similarity threshold ranging from 0
to 1. The loss function above is to tell that the Hamming dis-
tance between similar points should be smaller than (1 — a)r,
while the distance between non-similar points should be larg-
er than ar. If not, we should penalise hash function learning
to approach minimizing ¢(f, s).

We claim that we can compute an optimal hash code g'
for x! such that £(g’, s') = 0. We leave it to detail in Sec.
3. Now, we focus on computing an updated W**! upon the
optimal g'. Let us define

H' (W) = h" Wxt + ht" W7xt,

Gt (W) = gitTWTxf + gjtTWTxJ?
Given hash function Eq.(2) with W, since h} and h} are
the solution for x¥ and x}, respectively, we have HY(W?) >

GY(W?). Define gt is the hash codes of x! computed using
updated W*! by Eq. (2). Now we aim to get an Wi*! to
ensure g! approximate to g’. Therefore, Wi*! should meet
the condition that GY (W) > H!(W'*tl). To achieve
this objective, we derive the following prediction-based loss
function £pp(W;ht, gt s') for our algorithm following the
prediction-loss function in [Crammer et al., 2006],

tpp(W;h', g’ s") = H'(W) — G'(W) + y/{(ht,s) (4
Here we utilise the square root of loss function ¢, because
it can provide us a tighter bound on cumulative loss (Sec.2.4)
Note that if /pp(W!T ht gt s!) = 0, we can have
GH(WHL) = HY (W) /i(ht, st) > HY (W), Even
though this cannot guarantee that gt is exactly g?, it is prob-

able that gt is very close to g’ rather than h?. It therefore
makes sense to force ¢ pg to be zero or close to zero.

Besides, in order to preserve the information learned in the
last round, we constrain that the new learned W should stay
as close to W* as possible. Hence our objective function for
updating hash projection matrix becomes

WtH:argminEHW—WtHQ—l—Cf
w2 ®)
sit. Lpp(W;h' g's') <& and £€>0

where £ is a non-negative auxiliary variable in order to min-
imise prediction-based loss function {pg(W;ht, gt st), C
is a positive parameter named aggressiveness parameter. It
controls the effect of slack term and therefore controls the
margin of update. Besides, h is considered as a constant
rather than dependent variable of W.

The proposed online hashing model above is in sense of
a passive-aggressive strategy [Crammer et al., 2006]. The
passive in our online hashing learning means Wt! = W
whenever the loss is zero, and it is aggressive when the loss
is positive and then the model will learn Wit to satisfy the
constraint £(g?, s*) = 0 as much as possible and meanwhile
make Wit! not differ from W' too much.

2.3 Optimization

The optimization is summarised in Algorithm 1. We now give
the details. For convenience, we denote £pg(W*; ht, gt st)
by (% 5. We focus on the solution when ¢/ > 0. We first
formulate the Lagrangian of the optimization problem Eq. (5)
as follows

_ Wt[2
L(W:Tt7£>)‘) :M

where 7t > 0 and A > 0 are Lagrange multipliers.

We know that the optimal solution is the one satisfying
OL/OW =0,0L/0¢ = 0,and IL/dTt = 0.

Based on the above conditions, we can deduce the follow-
ing formulations:

0=0L/OW = W = W' 4 7x'(g! —)T (7)

0=0L/0¢=T'=C—-A<C 8)
By putting Egs. (7) and (8) back into Eq. (6), we get

e+ (s =€) = AE (©)

1 .2
£(r') = 5 77t — BT | + 7l

Taking the derivative of £ with respect to 7% and setting it to
zero leads to:

oL ¢ pp

= — e T 9
o T T W@ - e ®
Since 7t < C, we obtain
t
= min{C, —PB___y (10)

IIx=*(g* —h*)T]|?

Thus, the solution of the optimisation problem in Eq. (5) is
Wt+l — Wt + Ttxt(gt _]ht)T7

g an

n .
7 = min{C, t—]ht)T||2}

II<*(g

2.4 Loss Bound

Following the analysis in [Crammer et al., 2006], we state
similar relative bounds for our online hashing learning algo-
rithm. For convenience, at the step ¢ we define
ty = lpp(Ush',g',s")
where U is an arbitrary matrix in R("+1)*7,
Based on the Lemma 1 and Theorem 2 in [Crammer et al.,
2006], we can obtain the following lemma and theorem.

Algorithm 1 Online Kernel-based Hashing

INITIALIZE W'
fort=12,...do
Receive pairwise instances: 7"
Map z into kernel vector x’
Compute hash code h?* for x* by Eq. (1) or Eq. (2)
Receive similarity label s
Compute loss by Eq. (3)
if £ # 0 then
Get g’ for solution to £(g?, s*) = 0
Compute prediction-based loss £% 5 by Eq. (4)
Zt

Set Tt = mZn{C, W}
Update W' = W' + rixf(g? — h")T
else
Wt+1 — Wt
end if
end for

Lemma 1 Let (x!,st), -+, (xt, s*) be a sequence of pair-
wise examples with similarity label st € {—1,1} for all t.
The data pair xt € RU"tV*2 qre mapped to a r-bit hash

pairwise code ht € R"™*2 . Let U be an arbitrary matrix in
RMAVXT [t is defined as in Eq. (11), then

T
DT 20p — (8" —h")"|]* — 260) < [[U - WJ?

t=1
where W1 is initialised to be nonzero matrix.

Theorem 2 Let (x!,s'), -, (x!, s) be a sequence of pair-
wise examples with similarity label s* € {—1,1} for all t.
The data pair <t € R"tV*2 gre mapped to a r-bit hash
pairwise code ht € R™? and ||x!(g! — h*)T||? is bounded
by F2. Then for any matrix U € RU"DX" the cumulative
loss suffered on the sequence is bounded, i.e.

T T
Dbt s < FA[U-WP+20) 4)
t=1 t=1

where C' is the aggressiveness parameter.

Note that it is possible that there exists a matrix U sat-
isfying ¢, = 0 for all ¢. Therefore, the cumulative loss is
bounded by F?||U — W!||2. Due to limit of the length of the
paper, we omit the proof of the above lemma and theorem.
As ¢(ht, s') is bounded, it guarantees the performance of the
hash model for unseen data.

3 Optimal Hash Code Inference

In Sec.2.2, our online hashing algorithm relies on g’ =
[gi’, g;'] which satisfies £(g’, s') = 0. Now, we detail how
to acquire this kind of g'. Due to the length of paper, we on-
ly discuss the case of dissimilar pairs and the processing for
similar pairs can be similarly developed.

As mentioned in Sec.2.1, to achieve zero loss, the Ham-
ming distance between the hash codes of non-neighbors
should be larger than ar. Therefore, we only need to
seek g' such that Dy, (g;?,g;’) > ar. Denote the k' bit

of h;® as hi’fk], and similarly for h;’, g;’,g;’. Therefore,
Dy, (hi',by") = 375, D (hifyy, hyp,,), where

. t 1t
) = 0, Zf hi][tk] = hJLk]
Loif gy # hyp,

Let Ki = {k|Dp(hijy, hyp) = 1} and Ko =
{k[Dn (i, hjfk]) = 0}. To obtain g, we set gi[;; = h;fy)
and gjfk] = h; fk] for k € K. This is to retain the Hamming
distance which tells non-similarity using the hash functions
in previous round. For k € Ky, where hifk} = h-jfk]’ we only

t t
Dh(hi[k]7 hj [k]

need to set either gifk,] = fhifk,] or gjfk] = fhj’[fk], so that
we can have Dh(gifk] . 8j fk]) = 1. Thus we can pick up p bits
whose indexes are in set K such that

Di(gi',g;") = Dn(hi',hy") +p (12)

We next show it is not necessary to update all the rest hash
bits w.r.t. K. Note that W consists of r projection vectors
wk(k =1,2,...,7). From Eq.(7), we can deduce that

Wit = wie+ 7 (6" (@i — i) + %57 (857 — hify)) (13)

t+1

It can be found that w; ' = w§, when gifk] = hifk] and

8ify = hjfk]. Otherwise wi will be updated. Note that if we

update most wy, in W, then we subsequently have to update
all the corresponding hash bits of all data points.This does
take severely much time and cannot be ignored for online ap-
plications. Hence, we aim at changing hash bits as few as
possible; in other words, we aim to update wy as few as pos-
sible (i.e. p is as small as possible) and meanwhile ensure
finding g such that £(g?, s*) = 0.

Following the above discussion, the minimum of p is py =
ar — Dy (hi*, h;*) by setting Dy,(gi?, g;*) = ar, because
p = Di(gi',g;') — Du(hi',h;") and Dy (git, g;t) > ar.
This can be done by selecting the pg hash bits whose indexes
are in Ko. Since H'(W") predicts the error hash codes in
Eq. (2), the bits contributing most for this mistaken H!(W?)
should be selected to update. We define the contribution of
every bit w.r.t H? by

r keKo (14

6k = max(hifk]wf(Xit, hjfk]wf(Tth)
We only select the largest one between hifk]wf(Txit and
hffk]wf{ijt because we will never set g’ simultaneously by
gifk] + hifk] and gj’fk] + hj?[tk] for any k € Ko. Then the pg
largest d;, are picked up and their corresponding hash bits are
selected for update.

Now we summarise the procedure of obtaining g? in Algo-
rithm 2 Finally, a serious matter is that the rule for selecting
the top po hash bits above won’t work if w is a zero vec-

tor, because §;, = 0 no matter what values hi’fk], hj]fk’]’ x;t

and th are. To avoid this situation, we initialise W1 to be
an unfolded identity matrix W g which has 1’s on the diag-
onal and zeros elsewhere. To accelerate the update progress,
we initialise W' using LSH denoted as W5, i.e. W' are
sampled from a zero-mean multivariate Gaussian A/ (0, T).

Algorithm 2 Inference of g for Dissimilar Pair

1. Calculate the Hamming distance between h;‘ and h;’

2. Calculate po = ar — Dy (h;*, h;")

3. Compute d, for k € Ko by Eq. (14)

4. Sort Oy,

5. Set the corresponding hash bits of the po largest Jy to be dif-
ferent from h* and the others to be the same as h’

4 Experiments

To evaluate algorithms’ performance in semantically similar
neighbors searching and metric distance neighbors search-
ing, we run large-scale image retrieval experiments on two
datasets: Photo Tourism [Snavely et al., 2006] and 22K La-
belMe [Torralba et al., 2008].

4.1 Dataset

Photo Tourism consists of photo collections in 3D with 3
subsets, and each contains about 100K patches of resolution
64 x 64 grayscale. Each set contains the match information in-
dicates where it comes. We selected one of the subsets which
consists of 104K patches taken from Photo Tourism recon-
structions from Half Dome in Yosemite. In the experiment,
we use 512-D Gist Features to describe each patch and parti-
tion the dataset into two parts: a training set consists of 98K
pathes and a testing set consists of 6K patches. The pairwise
labels s are obtained from the match information.

22K LabelMe contains 22,019 images. In our experiment,
each image is represented by a 512-D Gist descriptor as well.
Additionally, we just randomly selected 2K images from the
dataset as test set, and set the remaining images as training
set. Since label information is unavailable, neighbors are de-
fined by the threshold in the Euclidean Gist space. The rule
is: the label of a query and another point is set to s = 1 (i.e.
they are similar) if the their Euclidean distance is within top
5% of the whole 22K distance and otherwise s = —1 (i.e.
they are not similar). In our experiments, every data samples
has 1, 100 neighbors.

4.2 Comparison

We compare the proposed algorithm with related method-
s in the following 2 aspects: 1) Mean Average Precision
(MAP) [Turpin and Scholer, 2006; Wu et al., 2012] using
Hamming ranking; 2) training time.

Since, as far as we know, it could be the first attempt
to develop online kernel hashing learning model for learn-
ing sequential pair of data points, we selected two re-
lated batch mode hashing methods for comparison: 1)
KLSH [Kulis and Grauman, 2009] and 2) minimal loss hash-
ing(MLH) [Norouzi and Fleet, 2011]. KLSH is a variant of
LSH [Charikar, 2002] using kernellised projection vectors in
place of random projection vectors. MLH deals with similar
hash function (Eq. (2)) as in our algorithm and aims at min-
imising the cumulative loss for all the pairwise samples in the
whole training set. Although both MLH and OKH are super-
vised hashing methods, MLH is batch mode hashing learning
over the whole training set, while our method is online based
method which does not assume all training data are available
in advance and learns just based on the data of current round.

—8—-0KH
—+—MLH

96 12 24

—8-OKH
0.2 —#—MLH 0.1]
l}{ KLSH

12 24 96

48
code length
(b) Results on 22K LabelMe

48
code length
(a) Results on Photo Tourism

Figure 1: MAP comparison with different number of hash bits

In our experiment, we feed OKH and KLSH the Gaussian
RBF kernel k(z,y) = exp(—||z — y||*/20?%) and m = 300
support samples on each dataset. The kernel parameter o is
fixed to be data variance, namely 1.1 for Photo Tourism and
0.9 for LabelMe. As MLH is not a kernel based method, it
thus performs directly on input data.

Regarding the use of training data, only MLH and our
OKH are learning based methods. MLH is batch-based and
hence all the training data will be used for learning the mod-
el. Since OKH processes the learning upon on a pair of da-
ta points in each round, we uniformly selected two samples
from the training set at random without replacement. For ex-
periments on Photo Tourism, OKH has 49K pairs input and
MLH utilises the same 98K samples for training; on 22K La-
belMe, OKH has 10K pairs of samples and MLH utilises the
same 20K data points. Because OKH learns a new model
at every step. Hence its performance is set to be the aver-
age value of the MAP of the models learned at the step from
t > 1000 to the end.

Fig. 1 shows the results of MAP comparison. Clearly, we
can see that our algorithm outperforms the other two meth-
ods with clear margin when the hash code length increases.
On Photo Tourism, the largest gain in MAP of OKH is nearly
30% more over MLH and 40% more over KLSH at 96 bits;
on 22K LabelMe, the OKH gains 60% higher accuracy than
MLH at 72 bits, and more than 30% higher than KLSH at 96
bits. This suggests: 1) OKH learns the hashing model from
nothing and gains a clear better model than KLSH which is
random model; 2) although only learn/update hashing model
based on a pair of data in each round, OKH is able to get an
more excellent performance than some batch mode hashing
models; 3) benefited from online learning, OKH can process
kernelised feature vectors efficiently, while it could be chal-
lenging for MLH, although kernel version of MLH can be
derived beyond [Norouzi and Fleet, 2011].

Regarding training time comparison, Fig. 2 and Fig. 3
shows the comparison results for different methods. It is clear
that our algorithm takes much less time. This validates that
our algorithm is a real-time algorithm and can be applied to
the real-world large scale problem.

Moreover, from Fig. 2(b) and Fig. 3(b), we can clearly see
that the time OKH takes to train hashing model increases very
little with the hash code length growing. On the other hand, in
Fig. 2(b), when it comes to 48 bits, the time does not increase
when the further increasing hash bit length. Perhaps, this is
because with more hash bits, our algorithm can learn better
hash functions which will not cause any loss at most steps,

100,00 10"

—&- OKH
10° | =—MLH

10~ 8- & £

time(in seconds)
.
s 8
}
==
I
time(in seconds)
e
5

8 12 2

4 6
number of samples .
x10* code length

(a) (b)

72 96

Figure 2: Training time comparison on Photo Tourism. (a) with
different number of training samples when the code length is 48; (b)
with different code length on 98 K samples.

10° ,| |[~B-OKH
L |[-=-oKkH 10°} | == MLH

10 _._/M,;H/(/_,_"*

10 .

10 /”“’_ké'

time(in seconds)
time(in seconds)
"
g

0 B/E/B_,E,__B_e——e——e—ﬁ—ﬂ W g g8
10°
0 1000 2000 3000 4000 5000 12 24 48 72 9
number of samples code length
(a) (b)

Figure 3: Training time comparison on 22K LabelMe. (a) with
different number of training samples when the code length is 48; (b)
with different code length on 10K samples.

resulting that the overall training time does not increase.

4.3 Parameter affect

We now evaluate effect of the parameters of OKH.

Code Length r. First, we report the performance of our
method as a function of the hash code length r, where we
fix @ = 0.3 and C' = 0.01 on Photo Tourism and o = 0.2
and C = 0.1 on 22K LabelMe . In addition, we initialise W'
as W sy, which is the hashing model used by KLSH.

In Fig. 4, OKH performs better as the number of bits
increase. Especially, when the hash bit length is less than
48, the performance is dramatically better and better as r be-
comes larger. However, when r is larger than 48, the improve-
ment becomes less as r increases. Whereas as we know, the
storage of hash codes increases linearly w.r.t. the growth of
r. Therefore, an appropriate code length (e.g. » = 48) should
be considered in order to balance the storage and accuracy.
Initialisation of W. In Sec.2.4, we state that the initialisa-
tion of W may have a great influence on our algorithm be-
cause the bound of the cumulative loss is related to it. To
address this concern, we evaluate the effect of different ini-
tiations of W here. Similar to the previous experiments, we
set the length of hash bits to 48 and fix the other parameter-
s the same as the setting in the last section on two dataset-
s. As mentioned in the preceding part, in our experiment,
we initialise W through two tricks: an unfolded identity ma-
trix W g with Is on the diagonal and Os elsewhere and a ma-
trix W sz sampled from a zero-mean multivariate Gaussian
N(0,1). Fig. 5 presents the results of different W!. It is
clear that our algorithm initialised with W g achieves bet-
ter performance than the one with W g, which means that the
initialisation plays an important role in our algorithm. In ad-
dition, using initialisation W g, our algorithm fluctuates more

0.8 0.4
— r=96| — r=0g

— =72 — =72
0.6 — r=48| 0.3 ——r=4g|
r=24| 1=24
=12 @ 1=12)

0.2 0.1

) 1 2 3 4 5

o
0 2000 4000 6000 8000 10000 12000
step

x10° step

(a) Photo Tourism (b) 22K LabelMe

Figure 4: Effect of code length r

0.4 — whw

LsH

00! i
__whw,

0 1 2 3 4 5 %
step

(a) Photo Tourism

2000 4000 6000 8000 10000 12000
x10° step

(b) 22K LabelMe

Figure 5: Effect of initialisation W,

fiercely than using W s as shown in Fig. 5. This is because
the initialisation using W gy enjoys a lower cumulative loss
bound by Theorem 2 and therefore it is easy to get to a stable
status while the W! = W g makes our method stay long in
the oscillating status. Moreover, it is convenient and easy to
get W spr. Hence, we set W gy as a default initialisation.
Similarity Threshold «. In order to observe the effect of
similarity threshold o on our algorithm, we vary « from 0.1
to 0.8. and fix the other parameters by W' = Wy gy, r = 48
and C is the same as the previous two experiments. As de-
scribed in Eq.(3), we can regard « as similarity threshold be-
cause it tells whether a pair of points is similar or dissimilar
in the Hamming space. Fig. 6 depicts how the parameter «
affects the performance of the algorithm. The results indi-
cate that « is an significant part in our algorithm. A small o
(e.g.a = 0.1 in this experiment) allows the model to update
smoothly. However, it also allows no update for much more
hash code pairs with neutral Hamming distance between ar
and (1 — «)r, regardless of its similarity s. This would lead
to ordinary performance of the hashing model. On the other
hand, a large « could make it hard for many data pairs to fit
the loss function, and therefore it may cause fluctuating per-
formance. This can be experimentally verified by Fig. 6(a)
when o > 0.3. As a result, we would like to suggest an ap-
propriate « ranging from 0.2 to 0.3.

Aggressiveness Parameter C'. We evaluate the performance
of OKH on the first 2000 rounds with different C' ranging
from 0.0001 to 1. In this experiment, « is set to be 0.3 for
Photo Tourism and 0.2 for 22K LabelMe. For the other pa-
rameters, they are set the same as the ones used in the pre-
vious experiments. Fig. 7 shows that the aggressiveness pa-
rameter C affects the convergence speed of our algorithm and
the vibration as well. A small C causes slow improvement,
e.g. C'=0.0001. In contrast, a much larger C results in fluc-
tuation. If between, e.g. C' = 0.001 in Fig.7(a), it achieves
a higher performance than any other. In Fig.7(b), its MAP is

step 0 2000 4000 6000 8000 10000 12000

(a) Photo Tourism (b) 22K LabelMe

Figure 6: Effect of similarity threshold a.

[« % o
< o4 €=0.000 <
= — c=0.001 =

C€=0.0001
——C=0.001
——C=0.01

—c=0.01
02 -
c=01 0.0!
—ca1

C=0.1
—c=1

0 500 1000 1500 2000 0 500 1000 1500 2000
step step

(a) Photo Tourism (b) 22K LabelMe

Figure 7: Effect of aggressiveness parameter C.

generally a little lower than those of larger C, but its MAP
fluctuates within a narrow range. Consequently, the aggres-
siveness parameter should be neither too small nor too large.

5 Conclusion

We propose an online hashing learning method called online
kernel-based hashing, which updates a hashing model in each
round based on a pair of data. Our online learning guarantees
that the updated hashing model is optimal for current pair of
data and gains a tight bound for new arriving pair. Empirical
results on different datasets show that our approach gains sat-
isfactory results, although it does not assume all training data
are available in advance. It is promising that our proposed on-
line hashing model can be a useful tool to address real-world
problems with gigantic data set for online searching.

6 Acknowledgements

This research was supported by the National Natural
Science of Foundation of China (No.61102111), the
NSFC-GuangDong (U1135001), Foundation of China
and Royal Society of Edinburgh (NSFCRSE) join-
t project (No.61211130123), Specialized Research
Fund for the Doctoral Program of Higher Education
(No.20110171120051), Guangdong Natural Science
Foundation (No.S2012010009926), the Fundamental Re-
search Funds for the Central Universities (No.12Igpy28,
2012350003161455) and the Guangdong Provincial Govern-
ment of China through the Computational Science Innovative
Research Team program.

References

[Charikar, 2002] M. Charikar. Similarity estimation tech-
niques from rounding algorithms. ACM Symposium on
Theory of Computing, 2002.

[Chum ef al., 2008] O. Chum, J. Philbin, and A. Zisser-
man. Near duplicate image detection: min-hash and tf-idf
weighting. British Machine Vision Conference, 2008.

[Crammer et al., 2006] K. Crammer, O. Dekel, J. Keshet,
S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Re-
search, 7:511-585, 2006.

[Datar et al., 2004] M. Datar, N. Immorlica, P. Indyk, and
V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. Symposium on Computational
geometry, pages 253-262, 2004.

[Finley and Joachims, 2008] T. Finley and T. Joachims.
Training structural svms when exact inference is in-
tractable. ICML, 2008.

[Kulis and Grauman, 2009] B. Kulis and K. Grauman. K-
ernelized locality-sensitive hashing for scalable image
search. ICCV, 2009.

[Liu et al., 2012] W. Liu, J. Wang, R. Ji, Y. Jiang, and S-F
Chang. Supervised hashing with kernels. CVPR, 2012.

[Mu et al.,2010] Y. Mu, J. Shen, and S. Yan. Weakly-
supervised hashing in kernel space. CVPR, pages 3344
-3351, 2010.

[Norouzi and Fleet, 2011] M. Norouzi and D. Fleet. Mini-
mal loss hashing for compact binary codes. ICML, 2011.

[Salakhutdinov et al., 2007] R. Salakhutdinov, A. Mnih, and
G. Hinton. Restricted boltzmann machines for collabora-
tive filtering. ICML, pages 791-798, 2007.

[Snavely et al., 2006] N. Snavely, S. Seitz, and R. Szeliski.
Photo tourism: Exploring photo collections in 3d. ACM
Transactions on Graphics, 25(3):835-846, 2006.

[Torralba et al., 2008] A. Torralba, R. Fergu, and Y. Weis-
s. Small codes and large image databases for recognition.
CVPR, 2008.

[Turpin and Scholer, 2006] A. Turpin and F. Scholer. User
performance versus precision measures for simple search
tasks. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in
information retrieval, 2006.

[Wang et al., 2010] J. Wang, S. Kumar, and S.-F. Chang.
Semi-supervised hashing for scalable image retrieval.
CVPR, pages 3424 -3431, 2010.

[Weiss er al., 2008] Y. Weiss, A. Torralba, and R. Fergus.
Spectral hashing. NIPS, 21:1753 -1760, 2008.

[Wu et al.,2012] C. Wu, J. Zhu, D. Cai, C. Chen, , and
J. Bu. Semi-supervised nonlinear hashing using boot-
strap sequential projection learning. [EEE Transactions
on Knowledge and Data Engineering, 2012.

