
Neural Networks 63 (2015) 117–132
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Approximate kernel competitive learning
Jian-Sheng Wu a,b, Wei-Shi Zheng a,c,∗, Jian-Huang Lai a,d
a School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China
b SYSU-CMU Shunde International Joint Research Institute, Shunde, China
c Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
d Guangdong Province Key Laboratory of Information Security, China

h i g h l i g h t s

• Kernel competitive learning (KCL) cannot be applied in large scale data problem.
• Propose a projection based approximate KCL method for large scale data problem.
• Provide theoretical analysis on why the approximation modelling would work for KCL.
• A pseudo-parallelled approximate computation framework for large scale KCL is developed.
• Experimentally show the effectiveness and efficiency of the proposals.

a r t i c l e i n f o

Article history:
Received 18 April 2014
Received in revised form 23 September
2014
Accepted 14 November 2014
Available online 27 November 2014

Keywords:
Kernel clustering
Kernel competitive learning
Large scale computation

a b s t r a c t

Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel
competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate
and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it
cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive
learning for processing large scale dataset. The proposed framework consists of two parts. First, it
derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning
in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation
modellingwouldwork for kernel competitive learning, and furthermore, we show that the computational
complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel
competitive learning (PAKCL) based on a set-based kernel competitive learning strategy,which overcomes
the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the
approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly
available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a
large reduction on computational cost. Also, the proposed methods achieve more effective clustering
performance in terms of clustering precision against related approximate clustering approaches.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering, as an important kind of unsupervised learning ap-
proach, plays an important role in discovering the structure of
data and exploratory in nature (Jain, 2010). Up to now, there are
lots of clustering methods developed for various problems in a
wide range of applications, e.g., engineering, computer science, life
and medical science, earth science, social science and economics

∗ Corresponding author at: School of Information Science and Technology, Sun
Yat-sen University, Guangzhou 510006, China. Tel.: +86 020 84110175.

E-mail addresses: jiansheng4211@gmail.com (J.-S. Wu), wszheng@ieee.org
(W.-S. Zheng), stsljh@mail.sysu.edu.cn (J.-H. Lai).

http://dx.doi.org/10.1016/j.neunet.2014.11.003
0893-6080/© 2014 Elsevier Ltd. All rights reserved.
(Xu & Wunsch, 2005). Typical clustering methods are such as
k-means (MacQueen, 1967), hierarchical clustering, kernel
k-means (Schölkopf, Smola, & Müller, 1998), and spectral cluster-
ing (Ng, Jordan, & Weiss, 2001).

Due to the effectiveness on grouping data, in the past decades,
competitive learning has received a lot of attention and has been
widely applied in data clustering (Banerjee &Ghosh, 2004; Cottrell,
Hammer, Hasenfuß, & Villmann, 2006; Fort, Letremy, & Cottrell,
2002; Inokuchi & Miyamoto, 2006; MacDonald & Fyfe, 2000; Mar-
tinetz, Berkovich, & Schulten, 1993; Mizutani & Miyamoto, 2005;
Qin & Suganthan, 2004; Schleif, Zhu, & Hammer, 2013; Vesanto &
Alhoniemi, 2000;Wang, Lai, & Zhu, 2010, 2012; Xu, Krzyzak, & Oja,
1993). Compared to the traditional iterative clustering algorithms,

http://dx.doi.org/10.1016/j.neunet.2014.11.003
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.11.003&domain=pdf
mailto:jiansheng4211@gmail.com
mailto:wszheng@ieee.org
mailto:stsljh@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.neunet.2014.11.003

118 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
such as k-means and kernel k-means, competitive learning has the
advantages to avoid being trapped in a local minimum resulted by
non-optimal initialisations (Inokuchi &Miyamoto, 2006; MacDon-
ald & Fyfe, 2000; Mizutani & Miyamoto, 2005; Qin & Suganthan,
2004; Schleif et al., 2013; Wang et al., 2010) and has the ability
to avoid learning extremely small clusters or even empty clusters
(Banerjee & Ghosh, 2004) due to the adoption of the online update
rule and winner update rule.

Most of the developed competitive learning approaches (Ahalt,
Krishnamurthy, Chen, & Melton, 1990; Cottrell et al., 2006; De-
sieno, 1988; Fort et al., 2002; Kohonen, 1990; Martinetz et al.,
1993; Vesanto & Alhoniemi, 2000; Xu et al., 1993) are based on
the assumption that the clusters can be linearly separated in the
data space. To overcome this shortage, recently, kernel compet-
itive learning (KCL) (Inokuchi & Miyamoto, 2006; MacDonald &
Fyfe, 2000; Mizutani & Miyamoto, 2005; Qin & Suganthan, 2004;
Wang et al., 2010) and graph based multi-prototype competitive
learning (Wang, Lai et al., 2012) have been developed to handle
with the nonlinearly separable datasets. By mapping data points
from the data space into a much higher or even infinite dimen-
sional space, called the Reproduced Kernel Hilbert Space (RKHS),
induced by a kernel function that is usually implicitly defined, as
kernel k-means, kernel competitive learningwould be likely to find
linearly separated hyperplane in the RKHS space, which can yield
arbitrary clustering shapes in the original data space (Xu & Wun-
sch, 2005). After initialising using a graph-based method, Wang,
Lai et al. (2012) performs a multi-prototype competitive learning
to refine the clustering and identify clusters of an arbitrary shape.

However, the large scale computational complexity and space
complexity challenge the kernel competitive learning and the
graph basedmulti-prototype competitive learning on dealing with
large scale datasets. It is because nowadays, there are huge of data
(e.g. world wide webpages, digital images and video surveillance
data) created every day due to the development of computer
science and information techniques. For example, the amount of
digital data created and replicated from now to the year 2020 will
reach at least 35 trillion gigabytes (Digital Universe Study, 2010).

To address the high computational complexity and space com-
plexity problems, works in Schleif et al. (2013); Schleif, Zhu, Gis-
brecht, and Hammer (2012) approximated the kernel competitive
learning by avoiding using the full kernel matrix. By directly ap-
plying the Nystrom̈ method (Williams & Seeger, 2001) to approx-
imate the kernel matrix when calculating the distances between
data points and cluster prototypes, Schleif et al. (2012) reduce the
computational complexity and space complexity fromO(τ cn2) and
O(n2) to O(nm2

+m3
+ 2τ cnm) and O(mn), respectively, where τ

is the number of iterations and m is the number of sampled data
points. By using the core set points of each cluster, rather than us-
ing thewhole data points of each cluster, to update the cluster pro-
totypes after the reassignment of cluster labels, Schleif et al. (2013)
can avoid calculating the whole kernel matrix and the quadratic
computation when calculating the distances between data points
and the cluster prototypes. However, it has to calculate the sub ker-
nelmatrixwhen computing the distances between data points and
prototypes and costs O(nd/ϵ2) (Bădoiu & Indvk, 2002) (or O(1/ϵ8)
when applying the probabilistic speedup method Tsang, Kwok, &
Cheung, 2005), where ϵ is appropriately set to be 10−6 (Tsang
et al., 2005), to calculate a core set for each cluster in each it-
erative step, which prevents its application to high dimensional
clustering problem and clustering problem with a large number
of clusters. For example, it almost costs 3 days to cluster the Cal-
tech 101 data points if ϵ is set to 0.1 and much more time is used
if ϵ is set smaller. Moreover, as stated in Fort et al. (2002), due to
the batch update of the cluster prototypes after the reassignment
of cluster labels for data points, both of them are depending on
the initialisation and will generate imbalanced clusters. Note that
imbalanced clustering will likely yield extremely small clusters or
empty clusters (Bradley, Bennett, & Demiriz, 2000; Kashima, Ide,
Kato, & Sugiyama, 2009). This can be a considerable concern for
clustering problems with a large number of clusters and a high di-
mensionality (Bradley et al., 2000). Although the sizes of clusters
may differ differently, more balanced clustering (or say less im-
balanced clustering) is preferred in several real-life applications,
such as large retail chains, and marketing campaign (Banerjee &
Ghosh, 2004). In addition, balanced clustering is helpful to alleviate
the sensitivity to clustering initialisation and avoid outlier clusters
(Banerjee & Ghosh, 2004) as well.

In the clustering literature, there are also related works on
large scale clustering. These works include: (1) k-means algorithm
(Huang, 1998; Nistér & Stewénius, 2006; Ordonez & Omiecinski,
2004; Philbin, Chum, Isard, Sivic, & Zisserman, 2007; Wang, Wang,
Ke, Zeng, & Li, 2012), (2) data sampling and summarisation
techniques (Guha, Rastogi, & Shim, 1998; Kaufman & Rousseeuw,
2005; Ng & Han, 2002; Zhang, Ramakrishnan, & Livny, 1996),
(3) distributed models (Chen, Song, Bai, Lin, & Chang, 2011;
Cordeiro et al., 2011; Ene, Im, & Moseley, 2011) and incremental
clusterings (Lühr & Lazarescu, 2009; Zhang, Liu, & Wang, 2007),
(4) random sampling for approximating some specific non-linear
kernels (Chitta, Jin, & Jain, 2012; Kar & Karnick, 2012; Pham &
Pagh, 2013; Rahimi&Recht, 2007), and (5) data sampling for kernel
k-means (Chitta, Jin, Havens, & Jain, 2011) and spectral clustering
(Fowlkes, Belongie, Chung, & Malik, 2004; Williams & Seeger,
2001). However, these works have their weaknesses in one of
the following points: (1) relying on the assumption about linearly
separable model (Cordeiro et al., 2011; Ene et al., 2011; Guha et al.,
1998; Huang, 1998; Kaufman & Rousseeuw, 2005; Ng &Han, 2002;
Nistér & Stewénius, 2006; Ordonez & Omiecinski, 2004; Philbin
et al., 2007; Wang, Wang et al., 2012; Zhang et al., 1996), (2) not
scalable for nonlinear extension (Nistér & Stewénius, 2006; Philbin
et al., 2007; Wang, Wang et al., 2012), and (3) incurring several
limitations, such as sensitive to prototype initialisation, trapped
in local minimum and yielding imbalanced partition (Chitta et al.,
2011, 2012; Kar & Karnick, 2012; Pham & Pagh, 2013; Rahimi
& Recht, 2007). Although kernel competitive learning can help
alleviate the above limitations (1) and (3), it is indeed necessary
to develop a scalable approach for kernel competitive learning for
processing large scale data.

In this work, in order to make kernel competitive learning
tractable for large scale data, we propose an approximate kernel
competitive learning in this paper for pursuing robust approximate
kernel competitive learning for clustering large scale data in a non-
linear way. In order to accelerate the large scale learning, we fur-
ther propose a pseudo-parallelled approximate kernel competitive
learning framework based on a set-based kernel competitive learn-
ing strategy.

1.1. Contributions

Motivated by the approximation idea used in approximate
kernel k-means that endows low time and space complexity for
clustering, in this paper, we wish to combine kernel competitive
learning and the approximation idea together so as to develop
a large scale clustering method. However, it does not mean it is
straightforward to apply the approximation idea used in approx-
imate kernel k-means to kernel competitive learning, because we
will analyse that a direct use would contradict the constraint used
in the approximation idea that the prototypes must be bounded
in a sampled subspace, which is necessary to avoid the calcula-
tion and storing of the full kernel matrix. In order to solve this
problem, we introduce the projection strategy into the approxi-
mation framework and combine it with kernel competitive learn-
ing so as to develop a novel large scale kernel competitive learning

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 119
method. We prove that the introduced projection step makes the
approximation strategy work correctly along with kernel compet-
itive learning.

Our second contribution is to accelerate the proposed ap-
proximate kernel competitive learning. We develop a pseudo-
parallelled approximate computation framework based on a
set-based update strategy. Different from the batch-based update
kernel competitive learning (Cottrell et al., 2006; Fort et al., 2002;
Schleif et al., 2013, 2012), which parallelises the competitive learn-
ing by updating the cluster prototypes after assigning all data
points to their closest clusters, the set-based update strategy is to
update the prototypes based on a subset of data points, so that par-
allelled computing can be derived in each subset to speed up the
clustering, meanwhile retaining the co-interaction between up-
date of prototypes over the subsets.

Although it is also an intuitive approach to directly apply the
Nystrom̈ method to approximate the kernel matrix in the kernel
competitive learning approaches (Inokuchi & Miyamoto, 2006;
MacDonald & Fyfe, 2000; Mizutani & Miyamoto, 2005; Qin &
Suganthan, 2004; Wang et al., 2010) as in Schleif et al. (2012).
However, it cannot solve the large scale computational complexity
because the update for thewinner cluster prototype involvingO(n)
computations for each coming data point in each iteration, so that
the total complexity for updating the prototypes still be O(τn2).
While it is possible to apply other kernel approximation methods
in Chitta et al. (2012), Kar and Karnick (2012), Pham and Pagh
(2013) and Rahimi and Recht (2007), these approximation works
are kernel dependent and cannot be generalised to other kernels.

In summary, the contributions of the proposals are

(1) An approximate kernel competitive learning method is pro-
posed for making kernel competitive learning applicable to
large scale data;

(2) A pseudo-parallelled approximate computation framework for
large scale kernel competitive learning method based on a set-
based learning strategy is developed.

The experimental results on five real-world datasets from
medium scale to large scale demonstrate the effectiveness of
the proposed methods as compared to related approaches. We
show that our approximate kernel competitive learning would not
sacrifice the performance of kernel competitive learning (KCL),
while the computational complexity is significantly reduced.

2. Preliminary

To make our paper self-contained, we first introduce a recently
developed kernel competitive learning algorithm (Wang et al.,
2010) and the approximate kernel k-means for large scale problem.

2.1. Kernel competitive learning

Kernel competitive learning (Inokuchi & Miyamoto, 2006;
MacDonald & Fyfe, 2000; Mizutani & Miyamoto, 2005; Qin &
Suganthan, 2004; Wang et al., 2010) is a generalisation of the
linear competitive learning algorithm (Ahalt et al., 1990; Kohonen,
1990; Martinetz et al., 1993). Through mapping data points via
a nonlinear mapping induced by a given kernel function into
the feature space, kernel competitive learning performs linear
competitive learning in the feature space. It is able to group data
into arbitrary geometrical shapes in the data space.

To be detailed, let X = {x1, x2, . . . , xn} be a dataset consist-
ing of n data points, where xi ∈ ℜd. Given the dataset X, kernel
competitive learning maps these data points into a feature space
induced by a given kernel function φ(·) and spans the correspond-
ing feature space H using the image set {φ(x1), . . . , φ(xn)}. In
general, the kernel function φ(·) is implicitly defined by a mercer
kernelκ (Schölkopf et al., 1998) such thatκ(xi, xj) = ⟨φ(xi), φ(xj)⟩,
where ⟨·, ·⟩ denotes the inner product between two vectors. Then
kernel competitive learning assigns these data points into one of
the c clusters {π1, π2, . . . , πc}where

πi ≠ ∅, i = 1, . . . , c,
πi ∩ πj = ∅, i, j = 1, . . . , c, i ≠ j,
i=1,...,c

πi = X. (1)

We briefly describe the kernel competitive learning (Wang
et al., 2010) as follows. Let nk and fk denote the cumulativewinning
times and winning frequency of the cluster πk, respectively. For
performing kernel competitive learning, the algorithm randomly
picks a data point xi in the t-th iteration and then performs the
following three steps,

1. STEP 1: Select the closest prototypemk as thewinner prototype
by

ki = arg min
k=1,...,c

fk∥φ(xi)−mk∥
2, (2)

where ∥ · ∥ represents the L2 norm of the vector.
2. STEP 2: Update the winner prototypemki by

mki ← mki + ηt(φ(xi)−mki), (3)

where ηt is the learning rate and should decrease monotoni-
cally.

3. STEP 3: Update the winning frequency by

nki ← nki + 1,

fk = nk/

c
l=1

nl, k = 1, . . . , c. (4)

The procedure repeats the above steps until the number of iter-
ations reaches a pre-specified number tmax or all the prototypes
converge, which can be characterised by the convergence criterion

e =
c

k=1

∥m(t)
k −m(t−1)

k ∥
2
≤ ϵ, (5)

where m(t)
k is the k-th prototype in the iteration t .

Like kernel k-means (Schölkopf et al., 1998), kernel competitive
learning also suffers from large scale computational complexity
and space complexity problems. Its computational complexity and
space complexity are O(τ cn2) and O(n2), respectively.

2.2. Approximate kernel k-means

Recently, an approximate kernel k-means was proposed (Chitta
et al., 2011) to overcome the large scale computational complexity
and space complexity problems in kernel k-means. It constrains the
cluster prototypes in a sampled subspace such that the number of
vectors used to represent the cluster prototypes decreases greatly.
It first randomly samples a subset of m (m ≪ n) data points from
X. Let such a subset be denoted as X̂ = {x̂1, . . . , x̂m}. Then the
subspace Hb is constructed as Hb = span{φ(x̂1), . . . , φ(x̂m)}.
Given such a subspace Hb, approximate kernel k-means (Chitta
et al., 2011) groups the dataset X into c clusters by bounding the
cluster prototypes in Hb as

min
{mk∈Hb}

c
k=1

c
k=1

n
i=1

Ui,k∥φ(xi)−mk∥
2, (6)

120 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
where Ui,k is the (i, k)-entry of the cluster membership indicator
matrix U defined by

Ui,k =


1 : if xi ∈ πk,
0 : otherwise. (7)

When the cluster membership matrix U is given, the optimal
cluster prototypes learned by Eq. (6) are given by

mk =

m
i=1

αi,kφ(x̂i), k = 1, . . . , c, (8)

where αi,k is the (i, k)-entry of the coefficient matrix α, defined as

α = K̂−1K T
B Ū . (9)

Here, Ū denotes the L1 normalised membership matrix whose
entry Ūi,k is defined as Ūi,k = Ui,k/|πk|, KB is the similarity matrix
whose (i, j)-entry is defined as (KB)i,j = κ(xi, x̂j), and K̂ is a block
of KB with the entry K̂i,j = κ(x̂i, x̂j). As a result, the distance
from the image φ(xi) to the cluster prototypemk can be computed
efficiently by

Ki,i − 2
m
j=1

αj,k(KB)i,j +

m
j=1

m
l=1

αj,kαl,kK̂j,l. (10)

Hence, the time and the space complexities are O(nm2
+ m3

+

τ cnm) and O(nm), respectively. Therefore, by constraining the
cluster prototypes in a sampled subspace, the approximate kernel
k-means algorithm extends the kernel k-means to solve the large
scale clustering problem with much lower computational and
space complexity.

3. Proposed kernel competitive learning for large scale learn-
ing

In this section, we propose our modelling for approximate ker-
nel competitive learning based on the typical competitive learning
framework, in which the winner cluster prototype is updated by
the on-line update rule, i.e., the winner cluster prototype is up-
dated immediately after the coming data point is assigned to its
closest cluster. Section 3.1 explains why directly applying compet-
itive learning to approximate kernel k-means does not work. Sec-
tions 3.2 and 3.3 present the framework and theoretical analysis
first, Section 3.4 presents a detailed computation procedure for the
theoretical analysis in Section 3.3 and the computational complex-
ity is also provided in Section 3.5 finally.

3.1. Can competitive learning be applied to approximate kernel k-
means?

An intuitive approach to extend kernel competitive learning for
large scale learning may be to apply competitive learning to ap-
proximate kernel k-means. However, it can be verified that the pro-
totype will be out of the subspace Hb when φ(xi) is not in Hb, due
to its update for the winner prototype using Eq. (3) (Inokuchi &
Miyamoto, 2006; MacDonald & Fyfe, 2000; Mizutani & Miyamoto,
2005; Qin & Suganthan, 2004; Wang et al., 2010). So it will con-
tradict to the constraint in approximate kernel k-means that the
prototypes must be bounded in the spanned subspace Hb. To illus-
trate, suppose xi is the current data point and φ(xi) is not in Hb. As
shown in Fig. 1, if we apply Eq. (3) to update the winner prototype
mki and z′ is the updated winner prototype, then z′ will be out of
Hb, so z′ cannot be represented by the sampled data points. As a
result, it has to calculate and keep the full kernel matrix to com-
pute the similarities between images and clusters. Consequently,
Fig. 1. Illustration of the direction onwhich thewinner prototypemoves. The dash
dot arrow line is the winner prototype update direction using the update strategy
in KCL and the solid arrow line is the update direction using our projection strategy.

its computational complexity will increase as the same with ker-
nel k-means, which is O(τ cn2). Thus, using Eq. (3) to update the
winner prototype will not work in approximate kernel k-means. In
the following sections, we will propose two scalable approximate
kernel competitive learning methods.

3.2. The model

We aim to introduce the approximation idea into kernel
competitive learning for tackling large scale data clustering in a
robust way. Let Φ̂ = [φ(x̂1), . . . , φ(x̂m)] be the matrix consisting
of {φ(x̂i)}mi=1 as the columns and (KB)i,: be the ith row of the
matrix KB. Then the approximate kernel competitive learning
model consists of the following four steps:

1. STEP 0: Compute the projection vector of φ(xi) in Hb:

pi = Φ̂K̂−1((KB)i,:)
T . (11)

2. STEP 1: Select the closest prototype as the winner prototype by

ki = arg min
k=1,...,c

fk∥φ(xi)−mk∥
2. (12)

3. STEP 2: Update the winner prototypemki by

mki ← mki + ηt(pi −mki), (13)

4. STEP 3: Update the winning frequency by

nki ← nki + 1,

fk = nk/

c
l=1

nl, k = 1, . . . , c. (14)

Steps 1–3 will repeat until the stopping criterion is reached.
Although compared to the computational framework of kernel

competitive learning (KCL)weonly add the STEP0 andmodify STEP
2 in order to introduce the projection strategy step into KCL, such a
change is significantly important to make the approximation idea
used in KCL andmake it applied to much larger scale dataset as we
show in the experiment. Although the changes are not too much,
the theoretical guarantee behind is not trivial. In the following, we
will theoretically analyse the correctness of this extension.

3.3. Theoretical analysis

A main characteristic of the developed approximate kernel
competitive learning (Section 3.2) is to compute the projection of
φ(xi) at Step 0 anduse it to update thewinner prototypemki at Step
2. Albeit not a big change of kernel competitive learning, we prove
that such amodification is significantly necessary and important to
make the approximation idea work along with kernel competitive
learning by the following theorems.

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 121
Theorem 1. The optimal cluster prototypes in Eq. (6) are actually
in the projection subspace. That is, the k-th cluster prototype can be
represented using themean of the projections of φ(xi), where xi ∈ πk,
i.e.

mk =

n
i=1

Ui,kpi

|πk|
, k = 1, . . . , c, (15)

where pi is the projection of φ(xi) in Hb and it is defined by Eq. (11).

To prove this theorem, we introduce the following lemma first.

Lemma 1. The ith column of the matrix P = Φ̂K̂−1K T
B equals the

projection vector of φ(xi) in Hb.

Proof. Denote φ(xi) by bi and suppose b̄i is the orthogonal pro-
jection vector of bi in Hb. Then bi − b̄i is perpendicular to Hb, so
that in the orthogonal complement ofHb and the system of matrix
equation

Φ̂y = b̄i (16)

is consistent, and has at least one solution. Suppose ȳ is one of the
solutions to this system. Then we have

Φ̂T (bi − b̄i) = Φ̂T (bi − Φ̂ȳ) = 0 (17)

according to the theorem in Lay (2002). Hence,

Φ̂T Φ̂ȳ = Φ̂Tφ(xi). (18)

Then, the projection vector of φ(xi) in Hb is given by

b̄i = Φ̂ȳ = Φ̂K̂−1Φ̂Tφ(xi) = Φ̂K̂−1((KB)i,:)
T , (19)

according to Eq. (16) and Φ̂T Φ̂ = K̂ . It is easy to verify that b̄i is
the ith column of the matrix Φ̂K̂−1K T

B . �

Based on the above Lemma, we can now prove Theorem 1 as
follows:

Proof. Given the cluster membership matrix U , the optimal
prototypes in Eq. (6) are given by Eq. (8). We can rewrite the k-th
prototype in the matrix–vector product form as

mk = Φ̂α:,k, (20)

where α:,k is the k-th column of the matrix α. Since α = K̂−1K T
B Ū ,

hence, α:,k = K̂−1K T
B ūk, where ūk is the k-th column vector of Ū .

Therefore, we have

mk = Φ̂K̂−1K T
B ūk = Pūk =

n
i=1

Ui,kpi

|πk|
. (21)

Thus,we can express the cluster prototypes by using the projection
vectors. �

Theorem 2. Suppose mki is the winner cluster prototype and mki ∈

Hb, then the winner prototype z updated using Eq. (13) is the
projection of z′ updated using Eq. (3) onto Hb, i.e.,

z = Πz′, (22)

where Π = Φ̂K̂−1Φ̂T is the projection matrix.

Proof. Suppose xi is the picked data point and mki is the winner
cluster prototype. Denote z̄ as the projection of z′ onto Hb. Then,
by projecting z′ onto Hb we will have

z̄ = Φ̂K̂−1Φ̂T z′. (23)
Substitute Eq. (3) for z′ as z′ = mki+ηt(φ(xi)−mki), thenwe have

z̄ = Φ̂K̂−1Φ̂T ((1− ηt)mki + ηtφ(xi)). (24)

Asmki is inHb, then it can be represented as the linear combination
of φ(x̂1), . . . , φ(x̂m). Suppose a is the corresponding coefficient
vector, i.e.,mki = Φ̂a, then

z̄ = (1− ηt)Φ̂K̂−1Φ̂T Φ̂a+ ηtΦ̂K̂−1Φ̂Tφ(xi)
= mki + ηt(pi −mki). (25)

The second equation is derived because Φ̂ = Φ̂K̂−1Φ̂T Φ̂ and pi =

Φ̂K̂−1Φ̂Tφ(xi). Therefore, z is the projection of z′ onto Hb. �

Therefore, according to Theorems 1 and 2, it is feasible to update
mki by moving it towards pi along pi −mki in the way of

mki ← z = mki + ηt(pi −mki), (26)

instead of moving the winner prototype mki towards φ(xi) along
φ(xi)−mki in Eq. (3). As shown in Fig. 1,mki will be still in Hb.

3.4. Model computation

We now detail the computation procedure of the model
described in 3.3. For description, we need some notations defined
in the following.

Definition 1. A prototype coefficient matrix is denoted as γ ∈
ℜ

m×c such that

mk = Φ̂γ:,k, k = 1, . . . , c, (27)

where γ:,k is the k-th column of γ .

Definition 2. Let θ ∈ ℜm×n be a matrix with its ith column θ:,i

equal to K̂−1(KB)
T
i,:, ρ ∈ ℜn be a column vector with its ith entry

ρi = (KB)i,:θ:,i and ν ∈ ℜc be a column vector with its k-th entry
νk being mT

kmk.

Based on these definitions, we detail the computations of the
model below.

3.4.1. Winner selection

Theorem 3. The winner selection rule (Eq. (12)) can be realised by

ki = arg min
k=1,...,c

fk(Ki,i − 2(KB)i,:γ:,k + νk). (28)

Proof. First of all, φ(xi)Tmk can be written in the equivalent form

φ(xi)Tmk = φ(xi)T Φ̂γ:,k = (KB)i,:γ:,k, (29)

according to Eq. (27).
Then we expand the squared Euclidean distance ∥φ(xi)−mk∥

2

as follows:

∥φ(xi)−mk∥
2
= φ(xi)Tφ(xi)− 2φ(xi)Tmk +mT

kmk. (30)

By substituting Ki,i, νk and Eq. (29) for φ(xi)Tφ(xi), mT
kmk and

φ(xi)Tmk, respectively, we can get the required winner selection
rule. �

3.4.2. Winner update

Theorem 4. The winner update rule (Eq. (13)) can be realised by

νki ← (1− ηt)
2νki + η2

t ρi + 2ηt(1− ηt)(KB)i,:γ:,ki , (31)

γ:,ki ← (1− ηt)γ:,ki + ηtθ:,i. (32)

122 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
Algorithm 1 Approximate Kernel Competitive Learning

1: Input: Matrices KB and K̂ , the number of clusters c , the
convergence threshold ϵ and the maximum number of
iterations tmax.

2: Output: The cluster sets πk, k = 1, 2, . . . , c .
3: Initialisation:

Randomly assign labels to all data points, initialise Ū and set
t = 0.
Compute θ = [K̂−1K T

B]m×n, γ = [θ Ū]m×c , ρ = [diag(KBθ)]n×1

and ν = [diag(γ T K̂γ)]c×1.
4: repeat
5: Randomly generate an index sequence S = {si|i =

1, . . . , n ∧ si ∈ [1, n] ∧ (si ≠ sj,∀i ≠ j)}
6: t = t + 1;
7: for j = 1, 2, . . . , n do

1) Select the winnermki for data point xi (i = sj) via Eq. (28).
2) Updatemki using Eq. (31) and Eq. (32).
3) Update the frequency using Eq. (14).

end
8: Compute the convergence criterion e using Eq. (36).
9: until e < ϵ||t > tmax

Proof. For the winner cluster prototype mki , denote m̂ki as the
updated ki-th prototype along with the updated coefficient vector
γ̂:,ki . It is not hard to verify that pT

i mki = (KB)i,:γ:,ki and pT
i pi = ρi.

So, we can update νki = m̂T
ki
m̂ki by substituting Eq. (13) for m̂ki ,

i.e.

νki ←

(1− ηt)mki + ηtpi

T 
(1− ηt)mki + ηtpi


= (1− ηt)

2νki + η2
t ρi + 2ηt(1− ηt)(KB)i,:γ:,ki . (33)

Then, one can update the ki-th cluster prototypemki by Eq. (13) as

mki ← m̂ki = Φ̂

(1− ηt)γ:,ki + ηtθ:,i


, (34)

and therefore, the coefficient vector γ:,ki can be set as

γ:,ki ← γ̂:,ki = (1− ηt)γ:,ki + ηtθ:,i. � (35)

3.4.3. Convergence criterion

Theorem 5. The convergence criterion e (Eq. (5)) can be computed by
means of

e =
c

k=1


ν

(t)
k + ν

(t−1)
k − 2(γ (t)

:,k)T K̂γ
(t−1)
:,k


, (36)

where ν
(t)
k and γ

(t)
:,k are the values of νk and γ:,k, respectively, in the

t-th iteration.

Proof. The theorem can be proved by expanding ∥m(t)
k −m(t−1)

k ∥
2

in Eq. (5) as

∥m(t)
k −m(t−1)

k ∥
2
= (m(t)

k)Tm(t)
k + (m(t−1)

k)Tm(t−1)
k

− 2(m(t)
k)Tm(t−1)

k

= ν
(t)
k + ν

(t−1)
k − 2(γ (t)

:,k)T K̂γ
(t−1)
:,k . � (37)

Finally, the algorithm is shown in Algorithm 1.

3.5. Computational complexity

In our algorithm, since m ≪ n and c ≪ n, the space
complexity of the matrix KB is O(nm). When m≪ n, it is less than
O(n2) remarkably, so that it can be used for processing large scale
dataset.

The computation of the proposedmethod consists of two parts:
the matrix initialisation and the iterations used to update the
winners. For matrix initialisation, computing the matrix θ , which
is the dominant term in the initialisation, takes O(nm2

+m3) time,
as computing the inverse K̂−1 costs O(m3) computations and the
matrix multiplication K̂−1KB costs O(nm2). In the update steps,
for each data point, it takes O(m) time to calculate the distance
from each prototype, involving the computation (KB)i,:γ:,k, in one
iteration. Hence, selecting thewinner prototype for each data point
costs O(cm) time. To update the L2 norm ν of the winner prototype
and the prototype coefficient matrix γ , it spends O(1) and O(m)
time, respectively. So the total time used to update the prototypes
is O(τ cnm). The time used to compute the convergence criterion
is O(τ cm2). Therefore, if excluding the initialisation complexity,
the overall optimisation complexity of the proposed algorithm is
O(τ cnm).

4. Pseudo-parallelled approximate kernel competitive learning

Multi-cores programming or parallelised computing has been
a powerful means to accelerate the computation of machine
learning models. However, due to the competition update rule
adopted by competitive learning, the proposed approximate kernel
competitive learning in the last section cannot be executed in
parallel. In this section, we further modify our proposed model
and propose a set-based update strategy to develop a pseudo-
parallelled approximate kernel competitive learning.

4.1. Model and computation

As shown in Inokuchi and Miyamoto (2006), MacDonald and
Fyfe (2000), Mizutani and Miyamoto (2005), Qin and Suganthan
(2004) andWang et al. (2010), kernel competitive learning updates
the winner of the competition for each data φ(xi); that is for
each input data point φ(xi), a prototype must be selected for
update before processing the next input data point φ(xj). This
actually prevents parallelled processing of all the data points by
making use of multiple CPU cores. In contrast, in the original
kernel k-means, the selection of the nearest prototype for each
input data is independent and therefore parallelled processing
can be used. However, the independent selection of prototypes in
kernel k-means ignores the co-interaction between the update of
prototypes and therefore may lead to the limitations/weaknesses
as mentioned in the introduction.

In this section, we would like to make a compromise between
kernel competitive learning and kernel k-means. The main idea
is to divide the dataset into subsets, perform the independent
selection of prototypes during the processing of each subset and
update the prototypes subset by subset. So, we can retain the co-
interaction between the update of prototypes at the subset level
and perform parallelled processing in each subset. We derive the
newmodel based on the approximate kernel competitive learning
proposed in the last section and we call it the pseudo-parallelled
approximate kernel competitive learning.

To be detailed, suppose the data points are reordered in the
random sequence {s1, s2, . . . , sn}. We partition the dataset into
R subsets in each iteration, where the subsets are denoted as
B1, . . . , BR and br is the size of Br , r = 1, . . . , R. For convenience
of model description, without loss of generality, we assume that
the dataset can be divided into R subsets of the same size and bs
is the subset size. Let the r-th subset Br contain the data points
{xs(r−1)∗bs+i}

bs
i=1.

For subset Br , we update the prototypes in the batch model as
follows. Firstly, we compute the frequency of each cluster (i.e. fk)

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 123
(a) Caltech 101.

(b) Caltech 256.

(c) Imagenet.

Fig. 2. Examples of images from Caltech 101 (a), Caltech 256 (b) and Imagenet (c). See text for details.
that has been selected as awinner historically by Eq. (39). Secondly,
we assign labels to the data points in this subset by a weighted
minimisation criterion based on the frequencies fk as follows:

min
U(r)
i,k

c
k=1

bs
i=1

U (r)
i,k fk∥φ(xs(r−1)∗bs+i)−mk∥

2, (38)

where U (r)
i,k is the (i, k)-entry of the cluster membership indicator

matrix U (r)
= [u(r)

1 , . . . ,u(r)
c] for data points in Br . It can be

minimised by assigning labels to data points in this subset by using
Eq. (28). This step can be completed using multiple CPU cores in
parallel. Then, the model updates the frequency for each cluster
that is selected as the winner by

nk ← nk + |π
(r)
k |

fk = nk

 c
l=1

nl, k = 1, . . . , c, (39)

where π
(r)
k is the k-th cluster set and |π (r)

k | is the number of points
assigned to the k-th cluster in Br .We then update the prototypes by
moving the prototypes towards the mean of the projection vectors
in the corresponding clusters as follows:

mk ← mk + ηt(P(r)ū(r)
k −mk), (40)

where P(r)
= [p(r)

1 , . . . , p(r)
bs] is the projection matrix consisting

of the projections of the selected images in this subset, ū(r)
k is the

k-th column of the corresponding normalised cluster membership
indicator matrix. p(r)

i and ū(r)
k are defined as

p(r)
i = ps(r−1)∗bs+i , i = 1, . . . , bs, (41)

ū(r)
k = u(r)

k /|π
(r)
k |, k = 1, . . . , c. (42)

Here ps(r−1)∗bs+i is the s(r−1)∗bs+i-th column of P. Different from the
prototype update in approximate kernel k-means using Eq. (8),
the proposed method uses a greedy update strategy by moving
the prototype towards the mean of the projection vectors in the
corresponding cluster gradually. This allows more room for co-
interaction between update of prototypes during the processing
over subsets, which inherits the idea of competitive learning that
the prototype of each cluster is actually updated gradually after
each competition.

Similar to Theorem 4, we can have the following theorem.
Theorem 6. Let K (r)
B be a sub-matrix from KB consisting of the

selected columns defined as

(K (r)
B)i,: = (KB)s(r−i)∗bs+i,: (43)

Then, the subset update rule (Eq. (40)) can be realised by

ν = (1− ηt)
2ν + 2ηt(1− ηt)diag(γ T (K (r)

B)T Ū (r))

+ η2
t diag((Ū

(r))TK (r)
B K̂−1(K (r)

B)T Ū (r)) (44)

γ = (1− ηt)γ + ηt K̂−1(K
(r)
B)T Ū (r), (45)

where Ū (r)
= [ū(r)

1 , . . . , ū(r)
c] and diag(·) is the column vector

consisting of the diagonal entries of a matrix.

Finally, the algorithm proposed in this section is shown in
Algorithm 2.

4.2. Computational complexity

Similar to the algorithm proposed in 3.2, the initialisation costs
O(nm2

+ m3). In our algorithm, since data of each subset are
clustered into groups (Eq. (38)), the update for the norm vector ν
of the prototypes and the prototype coefficients γ costs O(2c +
2c2m + cmbs + cm), so the time took to update prototypes is
O(cmn) in one iteration, because bs ismuch larger than c in general.
Therefore, if excluding the initialisation complexity, the overall
optimisation complexity of the proposed algorithm is O(τ cmn),
which is the same as approximate kernel k-means (Chitta et al.,
2011). Finally, regarding the space complexity, it is O(nm) for the
algorithm presented in this section.

5. Experiments

5.1. Datasets

In this section, we evaluate the proposed algorithms and the
compared methods on five popular datasets: Newsgroup 20,1
MNIST,2 Caltech 101 (Fei-Fei, Fergus, & Perona, 2006), Caltech 256
(Griffin, Holub, & Perona, 2007) and Imagenet (Deng et al., 2009).
Table 1 summarises the properties of these datasets and the details
are described below.

1 http://qwone.com/~jason/20Newsgroups/.
2 http://yann.lecun.com/exdb/mnist.

http://qwone.com/~jason/20Newsgroups/
http://yann.lecun.com/exdb/mnist

124 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132

Algorithm 2 Pseudo-Parallelled Approximate Kernel Competitive Learning

1: Input:MatrixKB and K̂ , the number of clusters c , the subset size bs, the convergence threshold ϵ and themaximumnumber of iterations
tmax.

2: Output: The cluster sets πk, k = 1, 2, . . . , c.
3: Initialisation:

Randomly assign labels for all data points, initialise Ū and set t = 0.
Compute θ = [K̂−1K T

B]m×n, γ = [θ Ū]m×c , ρ = [diag(KBθ)]n×1 and ν = [diag(γ T K̂γ)]c×1.
4: repeat
5: Randomly generate an index sequence S = {si|i = 1, . . . , n ∧ si ∈ [1, n] ∧ (si ≠ sj,∀i ≠ j)}
6: t = t + 1;
7: R = ceil(n/bs);
8: for r = 1, 2, . . . , R do

1) Assign labels to data points in parallel in the r-th subset by optimising Eq (38) with U (r) and fk fixed.
2) Update the prototypes selected as winners in this subset using Eq. (44) and Eq. (45).
3) Update the frequency for each prototype using Eq. (39).

end
9: Compute the convergence criterion e using Eq. (36).

10: until e < ϵ||t > tmax
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 3. Performance of the compared approaches on Newsgroup 20.
• Newsgroup 20: Newsgroup 20 is a collection of about 20,000
newsgroup documents partitioned into 20 different news-
groups. There are about 4.5% of the documents are presented
in more than one group. In this paper, we use its sub-collection
of 18,828 documents by removing the duplicates. After remov-
ing the stop words, ignoring file headers, lowering the up-
per case characters, stemming the words and selecting the top
2000 words by mutual information as the keywords as done
in Dhillon, Mallela, and Modha (2003), we remove the empty
documents and form our dataset, which consists of 18,780 doc-
uments. Then we represent each document by using the tf-idf
weighting scheme.
• MNIST: MNIST is a medium size dataset. It is a subset of the

handwritten digits selected fromNIST. It consists of 70,000 784-
dimensional binary images from 10 classes.
• Caltech 101: This dataset consists of 8677 images of objects cov-

ering 101 categories, whose sizes vary from 40 to 800. Most
categories contain more than 50 images and the images in this

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 125
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 4. Performance of the compared approaches on MNIST using the Gaussian kernel.
Table 1
Basic information of datasets.

Dataset Size Dimension #Class

Newsgroup 20 18,780 2,000 20
MNIST 70,000 784 10
Caltech 101 8,677 10,752 101
Caltech 256 29,780 10,752 256
Imagenet 1,261,402 1,000 1000

dataset are left-aligned. Some example images are shown in
Fig. 2(a).
• Caltech 256: Caltech 256 is much larger and consists of 30,607

images of objects belonging to 256 categories and 1 clutter. In
this paper, we only use all the non-background images from the
256 categories to form our dataset, which consists of 29,780 im-
ages. Different from images in Caltech 101, images in this collec-
tion are harder to classify, as they are not left-aligned (as shown
in Fig. 2(a) and (b)) and distribute in more clusters.
• Imagenet: Imagenet is the most challenging dataset due to the

large number of images and large number of classes. It consists
of 1,261,402 images. These images are organised into 1000 leaf
synsets in the synset tree, inwhich each leaf synset represents a
class of images (Deng et al., 2009). We directly use the SIFT fea-
tures,3 and each image is represented by a 1000-dimensional
histogram vector. Some example images are shown in Fig. 2(c).

3 www.image-net.org.
5.2. Settings

5.2.1. Compared methods
In this section, we evaluate the proposed algorithms AKCL

(Approximate Kernel Competitive Learning) and PAKCL (Pseudo-
Parallelled Approximate Kernel Competitive Learning.)4 We
compare AKCL and PAKCL with two representative kernel cluster-
ing methods, namely the kernel k-means (K-Kmeans)5 (Schölkopf
et al., 1998), kernel competitive learning (KCL) (Inokuchi &
Miyamoto, 2006; MacDonald & Fyfe, 2000; Mizutani & Miyamoto,
2005; Qin & Suganthan, 2004; Wang et al., 2010), where we im-
plement KCL using a recent development6 (Wang et al., 2010).
We also compare recently developed clustering methods for
large scale problem, namely Nyström based normalised cut (Ny-
Ncut)7 (Fowlkes et al., 2004), approximate kernel k-means (AppK-
Kmeans)8 (Chitta et al., 2011), random Fourier feature clustering
(RFF and its k-dimensional approximation SV, where k is set to
the number of clusters.)9 (Chitta et al., 2012), random polynomial
kernel10 (Pham & Pagh, 2013) based kernel k-means (RandPoly)

4 http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar.
5 http://www.mathworks.com/matlabcentral/fileexchange/26182-kernel-k-

means.
6 https://sites.google.com/site/sunnycdwhl/.
7 http://homes.cs.washington.edu/~sagarwal/code.html.
8 https://sites.google.com/site/radhacr/academics/projects/software.
9 https://sites.google.com/site/radhacr/academics/projects/software.

10 http://www.itu.dk/people/ndap/TensorSketch.m.

http://www.image-net.org
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://www.mathworks.com/matlabcentral/fileexchange/26182-kernel-k-means
http://www.mathworks.com/matlabcentral/fileexchange/26182-kernel-k-means
https://sites.google.com/site/sunnycdwhl/
http://homes.cs.washington.edu/~sagarwal/code.html
https://sites.google.com/site/radhacr/academics/projects/software
https://sites.google.com/site/radhacr/academics/projects/software
http://www.itu.dk/people/ndap/TensorSketch.m

126 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 5. Performance of the compared approaches on MNIST using the Polynomial kernel.
and fast kernel soft competitive learning (FastKSCL) (Schleif et al.,
2012), and a priori competitive learning algorithm Rival Penalised
Competitive Learning (RPCL) (Xu et al., 1993). Note that the same
subset of data is used to span the subspace for learning AKCL,
PAKCL, Ny-Ncut, AppK-Kmeans and FastKSCL in order to achieve
a fair comparison.

As RFF and SV (Chitta et al., 2012) are approximate kernel
methods that are dependent on the shift-invariant kernels (e.g.
Gaussian kernel), we only evaluate them on Newsgroup 20,
MNIST (using Gaussian kernel) and Imagenet (Chitta et al., 2011,
2012); as RandPoly (Pham & Pagh, 2013) approximates the dot
product kernels, such as thenormalised Polynomial kernel,weonly
evaluate it on MNIST (using the normalised Polynomial kernel).

We form the Gaussian kernel as κ(xi, xj) = e−
∥xi−xj∥

2

2σ2 , where the

kernel width is set as


l
n

i=1
n

j=1 ∥xi−xj∥
2

n(n−1) and l is tuned in the range

[0.001, 0.005, 0.01, . . . , 10, 50, 100]. The normalised Polynomial
kernel is formed asκ(xi, xj) = (xTi xj+1)

d and the kernel parameter
d is set to 5 for all the comparedmethods by following (Chitta et al.,
2011; Zhang & Rudnicky, 2002).

All the algorithms were implemented in Matlab and run on an
Intel Xeon 2.67GH with 128 GB RAM. All the results are averaged
over 10 runs. In all the experiments, if not otherwise mentioned,
the default parameters of our proposed models are: the stopping
criterion ϵ is set as ϵ = 10−4, tmax = 100 and bs = 1000 (for Ima-
genet, bs = 10, 000). We set different learning rates for samples in
the t-th iteration, i.e., for the ith sample in the t-iteration the learn-
ing rate is set as ηt,i = ai ∗ (af /ai)((t−1)∗n+i)/(tmax∗n) and ai = 1.0,
af = 10−5, which is called exponentially decaying learning rate.
It can give the system the ability to escape from poor local opti-
mum by introducing noise to the system that is gradually removed
(Fritzke, 1997).

5.2.2. Evaluation criterion
To evaluate the performance of different methods, we apply

normalised mutual information (NMI) (Dhillon, Guan, & Kulis,
2004) to measure the clustering quality, the standard deviation
in cluster sizes (SDCS) (Banerjee & Ghosh, 2004) and the ratio of
minimum to expect (RME) (Banerjee & Ghosh, 2004) to show how
balanced the clusters are. NMI is a commonly used measure of
clustering evaluation (Banerjee & Ghosh, 2004; Chen et al., 2011;
Chitta et al., 2011; Dhillon et al., 2004; Dhillon, Guan, & Kulis, 2007;
Jain, 2010; Wang et al., 2010; Wang, Wang et al., 2012). Its value
lies in [0, 1]. The larger the NMI value is, the better the matching
between the cluster labels and the true class distribution is. SDCS
is the measure that helps understanding the balanced behaviour
of a clustering algorithm. It tends to zero when the clusters are
well balanced. RME is a useful tool to check whether a clustering
algorithm yields extremely small clusters or empty clusters, where
1 indicates the clusters are balanced and 0 indicates there is at least
one empty cluster.

5.3. Comparison results

In the following, we report the experimental comparison from
medium scale datasets to large scale datasets.

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 127
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 6. Performance of the compared approaches on Caltech 101.
5.3.1. Newsgroup 20
Fig. 3 compares the performance of the proposed algorithms

with K-Kmeans, RPCL, KCL, Ny-Ncut, AppK-Kmeans, RFF, SV and
FastKSCL in terms ofNMI, SDCS, RME and the time spent on cluster-
ing on Newsgroup 20. As expected, KCL gets the best clustering ac-
curacy and themost balanced clustering due to the effectiveness of
competitive learning. However, it costs much more than the other
approaches. Compared to KCL, the proposed AKCL and PAKCL ap-
proximate itwellwhen the sampling size is larger than 500, i.e., the
NMIs they achieve are close to the ones of KCL, and spend much
less than KCL. Similar as KCL, the proposed AKCL and PAKCL sig-
nificantly outperform AppK-Kmeans, RFF, SV, FastKSCL and even
K-Kmeans in both aspects of clustering quality and clustering bal-
ance measure. For example, compared to Ny-NCut and AppK-
Kmeans, AKCL and PAKCL getmore than 9.6% and 14.2% higher NMI
on average; compared to RFF and SV, they get more than 59.3%
and 102.9% higher NMI on average; compared to FastKSCL, they
get more than 9.7% higher NMI on average. Although AKCL and
PAKCL need to sample more than 1000 data points to achieve bet-
ter clustering performance than RPCL, their running time spend-
ing on clustering is much less than RPCL’s. Moreover, as plotted in
Fig. 3(a), using a much smaller subset of sampled data points (i.e.
the sampling size in the figures), e.g. 500, the proposed methods
can significantly outperform or perform closely to the other com-
pared approaches (except KCL and RPCL) in terms of clustering ac-
curacy and clustering balance measure. Hence, by using a smaller
sampling size, our approaches can spendmuch less time to achieve
better or comparable performance.
5.3.2. MNIST
Figs. 4 and 5 illustrate the performance of the compared ap-

proaches on MNIST using the Gaussian kernel and the Polynomial
kernel, respectively. The results show that the proposals outper-
form the approximate methods with clear improvements on the
prediction using both kernels. Take the performance of the com-
pared approaches using Polynomial kernel as an example. PAKCL
gets improvement on the prediction accuracy, about 8.6% over Ny-
Ncut, 10.1% over AppK-Kmeans, 46.4% over RandPoly and 12.4%
over FastKSCL on average; AKCL achieves a much higher accuracy,
about 9.3% over Ny-Ncut, 10.8% over AppK-Kmeans, 46.9% over
RandPoly and 13.1% over FastKSCL on average.

Similar to the results on Newsgroup 20, our methods also
achieve comparable performance when using a much smaller
subset of sampled data points on this dataset when using both
of kernels. As shown in Figs. 4(a) and 5(a), the performance of
our methods using 100 sampled data points nearly outperforms
K-Kmeans, RPCL and the other approximate methods that are
conducted under the sampling size 10,000. As a result, ourmethods
can save a lot of time on obtaining comparable clustering quality,
although they cost a little more time than AppK-Kmeans, Ny-NCut,
RFF, SV and RandPoly and FastKSCL when they have the same
sampling size.

Moreover, the proposed methods not only obtain better clus-
tering quality, but also get more balanced clusterings, i.e., the SD-
CSs are much smaller and the RMEs are much larger as shown in
Figs. 4(c),(d), 5(c) and (d).

Finally, compared to KCL, Figs. 4(a) and 5(a) show that when
m ≥ 1000, AKCL and PAKCL perform similarly as KCL, but the cost
is much less as shown in Figs. 4(b) and 5(b).

128 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 7. Performance of the compared approaches on Caltech 256.
5.3.3. Caltech
We conduct experiment on two Caltech databases, namely

Caltech 101 andCaltech 256. SIFT features/discriptors (Lowe, 1999)
were extracted from each image and used to form the histogram
for computing the Spatial Pyramid Matching kernel (Lazebnik,
Schmid, & Ponce, 2006), which is suggested in computer vision
(Boureau, Bach, Lecun, & Ponce, 2010; Lazebnik et al., 2006; van
Gemert, Veenman, Smeulders, & Geusebroek, 2010) for object
categorisation. More specifically, to compute the Spatial Pyramid
Matching kernel, 128-dimensional SIFT descriptors were extracted
from each image. Then the bag-of-features modelling (Fei-Fei &
Perona, 2005) was applied to obtain 512 prototypes for the SIFT
features and the spatial pyramid modelling was applied to obtain
a three-level based pyramid histogram representation, based on
which the Spatial Pyramid Matching kernel was computed.

As Ny-Ncut has to do the eigenvalue decomposition of the
sampled affinity matrix, the number of sampled columns from the
affinity matrix has to be greater than or equal to the number of
clusters. Hence, the performance ofNy-Ncutwith the sampling size
greater than or equal to the number of clusters is reported here.
Caltech 101. For the experiment on Caltech 101, K-Kmeans, AppK-
Kmeans and FastKSCL tend to generate very imbalanced clustering
and extremely small or even empty clusters (Bradley et al., 2000;
Fort et al., 2002). Figs. 6(c) and (d) verify that the proposedmethods
yield more balanced cluster sets than the other methods (except
KCL and RPCL). Note that Fig. 6(c) shows that the SDCSs obtained
by the other methods are much higher and Fig. 6(d) shows that
K-Kmeans and FastKSCL generate extremely small cluster sets and
AppK-Kmeans generates empty cluster sets when m ≤ 1000 and
extremely small cluster sets whenm = 2000.
Similar to the case in Newsgoup 20, not only obtain more
balanced cluster sets, AKCL and PAKCL also obtain more superior
clustering performance than AppK-Kmeans and FastKSCL for
different sampling size as shown in Fig. 6(a), except the case when
the sampling size is set to 2000.
Caltech 256. For the experiment on Caltech 256, all the com-
pared algorithms do not work very well. However, our proposed
algorithms still achieve much better performance than K-Kmeans,
RPCL, Ny-NCut, and AppK-Kmeans, and obtain comparable perfor-
mance compared to FastKSCL on this dataset. For example, AKCL
and PAKCL gain more than 12.6%, 9.6%, 5.6% and 17.5% higher clus-
tering accuracy on average over K-Kmeans, RPCL, Ny-NCut and
AppK-Kmeans, respectively. Similar to the case in Newsgroup 20,
Fig. 7(a) indicates that AKCL and PAKCLusing a small subset of sam-
pled data points such as 200 data points can still outperformAppK-
Kmeans using 2000 sampling data points remarkably and perform
closely to FastKSCL using 2000 sampling data points. In addition,
Figs. 7(c) and (d) also show that K-Kmeans andAppK-Kmeansmore
likely tend to yield extremely small cluster sets or empty cluster
sets on this dataset due to the increasing number of clusters as
compared to the results on Caltech 101. In comparison, the pro-
posed models get almost the same balanced clusterings.

Finally, compared to RPCL, due to the much smaller sampling
size than data dimensionality, AKCL and PAKCL spend much
less time than RPCL and meanwhile get much better clustering
performance on the two Caltech datasets. Compared to KCL, AKCL
and PAKCL approximate the performance of KCL verywell and they
take much less time than KCL on both datasets as illustrated in
Figs. 6 and 7. On Caltech 101, AKCL is about 30 times faster and

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 129
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 8. Performance of the compared approaches on Imagenet.
PAKCL is about 57 times faster; on Caltech 256, AKCL is about 109
times faster and PAKCL is about 210 times faster. Compared to
FastKSCL, when the sampling sizes are set to be the same, PAKCL
consumes less time than FastKSCL, about tens of seconds. Although
AKCL consumes a little more time than FastKSCL, AKCL and PAKCL
achieve much better clustering quality in terms of NMI on Caltech
101 andmuchmore balanced clusterings on both Caltech datasets.

5.3.4. Imagenet
Since Imagenet is a large scale one, and K-Kmeans and KCL

are not applicable for large scale clustering problem, we cannot
implement K-Kmeans and KCL on it. We evaluate AKCL, PAKCL,
RPCL, Ny-Ncut, AppK-Kmeans, RFF and FastKSCL on this dataset.
As said in Chitta et al. (2012), when the sampling size m is much
larger than the number of clusters c , i.e., m ≫ c , SV will be an
efficient approximation of RFF. Hence, we will not evaluate SV on
this dataset because the number of clusters does not differ from
the number of sampling size too much in this experiment.

The prediction accuracies measured by NMI are all small for all
the compared methods, because Imagenet is large in both aspects
of the dataset size and the number of clusters. However, AKCL and
PAKCL can still outperform RPCL, Ny-Ncut, AppK-Kmeans, RFF and
FastKSCL with improvements on the prediction accuracy. Fig. 8(a)
shows that AKCL and PAKCL get 5.6% higher NMI against Ny-Ncut
on average, 5.4% higher NMI against AppK-Kmeans on average,
5.4% higher NMI against RFF on average, and 1.3% higher NMI
against FastKSCL on average, respectively. As there are a large
number of classes in this dataset, Ny-Ncut, AppK-Kmeans, RFF
and FastKSCL get very imbalanced cluster sets; in contrast, similar
to the cases of the other datasets, AKCL and PAKCL obtain more
balanced partitions on this dataset, since the SDCSs of Ny-NCut,
AppK-Kmeans, RFF and FastKSCL are much larger than the ones of
AKCL and PAKCL as shown in Fig. 8(c) and the RMEs of Ny-NCut,
AppK-Kmeans, RFF and FastKSCL equal to 0 or are very close to 0
as shown in Fig. 8(d). Similarly, the performance of Ny-Ncut in the
cases that the number of sampled data points is greater than or
equal to the number of clusters is reported here.

Finally, we compare the cost the compared approaches spend-
ing on clustering. Among all these compared methods, PAKCL
achieves the fastest clustering compared to other methods except
Ny-NCut. It costs about 4.5% of RPCL’s computational time, 66.2%
of AppK-Kmeans’, 60.7% of RFF’s, 27.6% of FastKSCL’s and 16.0% of
AKCL’s as shown in Fig. 8(b). Compared to FastKSCL, although AKCL
costs more time than FastKSCL, its clustering qualities in terms of
NMI, SDCS and RME are better than the ones of FastKSCL.

5.4. Evaluation of PAKCL: parameters

In this section, we evaluate PAKCL with different subset sizes
bs on the first four datasets: Newsgroup 20, MNIST, Caltech 101
and Caltech 256, because Imagenet is too large to evaluate PAKCL
with a wide range of subset sizes on it. The sampling size m is set
to 1000 for PAKCL, since all the approximate algorithms using this
sampling size work well on all the datasets. Fig. 9 shows that when
the subset size bs is smaller than about one tenth of the size of
the dataset, PAKCL performs robustly on these datasets, that is the
NMI value it achieves changes slightly. When bs becomes larger,
the performance of PAKCL on these datasets decays quickly. That is
because when bs is too large, the size of subset is large, so that the
whole performance of PAKCL becomes what approximate kernel

130 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
(a) NMI. (b) Cost.

(c) SDCS. (d) RME.

Fig. 9. The performance of PAKCL with different subset sizes on MNIST(Gaussian), MNIST(Polynomial), Newsgroup 20, Caltech 101 and Caltech 256.
k-means can achieve. In this case, the algorithm is more likely to
be trapped in a local minimal and converges earlier. Meanwhile,
Fig. 9(b) shows that the time spent on clustering decreases along
with the increasing subset size, because the larger the subset size
is, themore benefits obtained from thematrix manipulation is and
the less iterations used is as well.

5.5. Summary

Compared to the other methods, AKCL and PAKCL have the
following advantages:

1. AKCL and PAKCL spend much less time and need much less
memory space on clustering, and they obtain the similar clus-
tering results as KCL. For example, on Imagenet, AKCL and
PAKCL only need about 20 GB memory to keep the matrices for
computation (with double precision that needs 8 Bytes to store
a real number)when the sampling size is set to be 2000; in com-
parison, KCL must need about 12,000 GB memory to keep the
matrices, which is not applicable. So, AKCL and PAKCL can be
applied to large scale clustering problem.

2. AKCL and PAKCL can obtain better clustering under much
smaller sampling size than RPCL, AppK-Kmeans and FastKSCL
with much less consuming.

3. AKCL and PAKCL overcome the shortage existing in itera-
tive clustering techniques (e.g., K-Kmeans, AppK-Kmeans and
FastKSCL) that tend to yield extremely small clusters or even
empty clusters in the high dimensional space and in the cluster-
ing problemwith a large number of classes (Bradley et al., 2000).

4. PAKCL always performs comparably as AKCL, but reduces the
computational time a lot by using approximately parallelled
processing, as the average optimisation cost of PAKCL is about
from 8.5% to 24.8% of the cost of AKCL on these five datasets,
where the initialisation cost is excluded.

5. The approximation in AKCL, PAKCL as well as AppK-Kmeans are
not restricted to specific kernels, so they can be applied in a
wider range of applications. In contrast, the approximation in
RFF, SV and RandPoly is kernel dependent, such as RFF and SV
for Gaussian kernel and RandPoly for the Polynomial kernel.

6. It is experimentally verified that PAKCL is insensitive to the sub-
set size.

6. Conclusions

In this paper, we address the approximate modelling for ker-
nel competitive learning. Our strategy includes (1) a subspace-
approximation based kernel competitive learning model and
(2) a pseudo-parallelled approximate kernel competitive learning
model. Although the utilisation of the randomsampling techniques
may restrict the performance, this may be the price one has to pay
for dealing with large scale data, as similar random sampling tech-
niques have been also used for handling the large scale cluster-
ing recently, such as the approximate kernel k-means (Chitta et al.,
2011), Nyström methods (Fowlkes et al., 2004; Williams & Seeger,
2001), and so on. Sampling is effective to approximate the perfor-
mance of the exact approaches. The experimental results in this
work on several datasets including ImageNet also demonstrate its
effectiveness in accelerating kernel competitive learning algorithm
for large scale datasets and yielding better or comparable perfor-
mance comparedwith the related kernel k-means (Schölkopf et al.,
1998), rival penalised competitive learning (Xu et al., 1993), ker-
nel competitive learning (Wang et al., 2010), Nyström based nor-
malised cut (Fowlkes et al., 2004), approximate kernel k-means

J.-S. Wu et al. / Neural Networks 63 (2015) 117–132 131
(Chitta et al., 2011) and the fast kernel soft competitive learning
(Schleif et al., 2012). Nevertheless, we think optimising the ran-
dom sampling could be a future issue for improving quite a lot of
approximation techniques used for large scale clustering. Addi-
tionally, in this work, despite we develop approximate kernel
competitive learning for large scale clustering problems by ker-
nelising the frequency sensitive competitive learning algorithm
(Ahalt et al., 1990), the proposals can be extended to other com-
petitive learning methods, such as rival penalised competitive
learning.

Acknowledgements

This research was supported by the National Natural Science
of Foundation of China (Nos. 61102111, 61173084, 61472456,
U1135001), the 12th Five-year Plan China S&T Supporting
Programme (No. 2012BAK16B06), Guangzhou Pearl River Science
and Technology Rising Star Project under Grant 2013J2200068, and
in part by the Guangdong Natural Science Funds for Distinguished
Young Scholar under Grant S2013050014265. The code of the
proposedmethod is available at: http://sist.sysu.edu.cn/∼zhwshi/
code/PAKCL.rar.

References

Ahalt, S. C., Krishnamurthy, A. K., Chen, P., & Melton, D. E. (1990). Competitive
learning algorithms for vector quantization. Neural Networks, 3(3), 227–290.

Bădoiu, M., & Indvk, S. H. -P. P. (2002). Approximate clustering via core-sets. In Proc.
of the 34th annual ACM symposium on theory of computing (pp. 250–257).

Banerjee, A., & Ghosh, J. (2004). Frequency-sensitive competitive learning
for scalable balanced clustering on high-dimensional hyperspheres. IEEE
Transactions on Neural Networks, 15(3), 702–719.

Boureau, Y. -L., Bach, F., Lecun, Y., & Ponce, J. (2010). Learning mid-level features for
recognition. In Proc. of IEEE int. conf. on computer vision and pattern recognition
(pp. 2559–2566).

Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000). Constrained k-means clustering,
Tech. Rep. MSR-TR-2000-65. Microsoft Research.

Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., & Chang, E. Y. (2011). Parallel spectral
clustering in distributed systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(3), 568–586.

Chitta, R., Jin, R., Havens, T. C., & Jain, A. K. (2011). Approximate kernel k-means:
solution to large scale kernel clustering. In Proc. of the 17th ACM SIGKDD int.
conf. on knowledge discovery and data mining (pp. 895–903).

Chitta, R., Jin, R., & Jain, A. K. (2012). Efficient kernel clustering using random fourier
features. In Proc. of the 12th IEEE int. conf. on data mining (pp. 161–170).

Cordeiro, R.L. F., Traina, C. Jr., Traina, A. J. M., López, J., Kang, U., & Faloutsos, C.
(2011). Clustering very large multi-dimensional datasets with mapreduce. In
Proc. of the 17th ACM SIGKDD int. conf. on knowledge discovery and data mining
(pp. 690–698).

Cottrell, M., Hammer, B., Hasenfuß, A., & Villmann, T. (2006). Batch and median
neural gas. Neural Networks, 19(6), 762–771.

Deng, J., Dong, W., Socher, R., Li, L. -J., Li, K., & Fei-Fei, L. (2009). Imagenet: a large-
scale hierarchical image database. In Proc. of IEEE int. conf. on computer vision
and pattern recognition (pp. 248–255).

Desieno, D. (1988). Adding a conscience to competitive learning. In Proc. of IEEE int.
conf. on neural networks (pp. 117–124).

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means, spectral clustering and
normalized cuts. In Proc. of the 10th ACMSIGKDD int. conf. on knowledge discovery
and data mining (pp. 551–556).

Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors
a multilevel approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11), 1944–1957.

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering.
In Proc. of the 9th ACM SIGKDD int. conf. on knowledge discovery and data mining
(pp. 89–98).

Digital Universe Study (2010).
Ene, A., Im, S., & Moseley, B. (2011). Fast clustering using mapreduce. In Proc.

of the 17th ACM SIGKDD int. conf. on knowledge discovery and data mining
(pp. 681–689).

Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611.

Fei-Fei, L., & Perona, P. (2005). A Bayesian hierarchical model for learning natural
scene categories. In Proc. of IEEE int. conf. on computer vision and pattern
recognition (pp. 524–531).

Fort, J. -C., Letremy, P., & Cottrell, M. (2002). Advantages and drawbacks of the batch
kohonen algorithm. In Proc. of the 10th European symposium on artificial neural
networks (pp. 223–230).
Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the
Nyströmmethod. IEEE Transactions on Pattern Analysis andMachine Intelligence,
26(2), 214–225.

Fritzke, B. (1997). Some competitive learning methods.
Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset, Tech.

Rep. 7694. California Institute of Technology.
Guha, S., Rastogi, R., & Shim, K. (1998). Cure: an efficient clustering algorithm for

large databases. In Proc. of 1998 ACM SIGMOD int. conf. on management of data
(pp. 73–84).

Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets
with categorical values. Data Mining and Knowledge Discovery, 2(3), 283–304.

Inokuchi, R., & Miyamoto, S. (2006). Kernel methods for clustering: competitive
learning and c-means. International Journal of Uncertainly, Fuzziness and
Knowledge-Based Systems, 14(4), 481–493.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8), 651–666.

Kar, P., & Karnick, H. (2012). Random feature maps for dot product kernels. In Proc.
of the 15th int. conf. on artificial intelligence and statistics (pp. 583–591).

Kashima, H., Ide, T., Kato, T., & Sugiyama, M. (2009). Recent advances and trends
in large-scale kernel methods. IEICE Transactions on Information and Systems,
E92-D(7), 1338–1353.

Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: an introduction to
cluster analysis. Wiley.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9),
1464–1480.

Lay, D. C. (2002). Linear algebra and its applications (3rd ed.). Addison Wesley.
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In Proc. of IEEE int. conf. on
computer vision and pattern recognition (pp. 2169–2178).

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proc. of
IEEE the 7th int. conf. on computer vision (pp. 1150–1157).

Lühr, S., & Lazarescu, M. (2009). Incremental clustering of dynamic data streams
using connectivity based representative points. Data & Knowledge Engineering ,
68(1), 1–27.

MacDonald, D., & Fyfe, C. (2000). The kernel self organisingmap. In Proc. of the 4th int.
conf. on knowledge-based intelligent engineering systems and allied technologies
(pp. 317–320).

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In Proc. of the 5th Berkely Symposium onMathematical Statistics and
Probability (pp. 281–297).

Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). ‘‘Neural-gas’’ network
for vector quantization and its application to time-series prediction. IEEE
Transactions on Neural Networks, 4(4), 558–569.

Mizutani, K., & Miyamoto, S. (2005). Kernel-based fuzzy competitive learning
clustering. In Proc. of the 14th IEEE int. conf. on fuzzy systems (pp. 636–639).

Ng, R. T., & Han, J. (2002). Clarans: a method for clustering objects for spatial
data mining. The IEEE Transactions on Knowledge and Data Engineering , 14(5),
1003–1016.

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and
an algorithm. In Proc. of advances in neural information processing systems
(pp. 849–856).

Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocabulary tree. In
Proc. of IEEE int. conf. on computer vision and pattern recognition (pp. 2161–2168).

Ordonez, C., & Omiecinski, E. (2004). Efficient disk-based k-means clustering for
relational databases. The IEEE Transactions on Knowledge and Data Engineering ,
16(8), 909–921.

Pham, N., & Pagh, R. (2013). Fast and scalable polynomial kernels via explicit feature
maps. In Proc. of the 19th ACM SIGKDD int. conf. on knowledge discovery and data
mining (pp. 239–247).

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007). Object retrieval with
large vocabularies and fast spatialmatching. In Proc. of IEEE int. conf. on computer
vision and pattern recognition (pp. 1–8).

Qin, A. K., & Suganthan, P. N. (2004). Kernel neural gas algorithmswith application to
cluster analysis. In Proc. of the 17th int. conf. on pattern recognition (pp. 617–620).

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In
Proc. of advances in neural information processing systems (pp. 1177–1184).

Schleif, F.-M., Zhu, X., & Hammer, B. (2013). Soft competitive learning for large data
sets. In Advances in intelligent systems and computing: Vol. 185. New trends in
databases and information systems (pp. 141–151).

Schleif, F. -M., Zhu, X., Gisbrecht, A., & Hammer, B. (2012). Fast approximated
relational and kernel clustering. In Proc. of the 21th int. conf. on pattern
recognition (pp. 1229–1232).

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

Tsang, I. W., Kwok, J. T., & Cheung, P.-M. (2005). Core vector machines: fast
SVM training on very large data sets. Journal of Machine Learning Research, 6,
363–392.

van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J.-M. (2010).
Visual word ambibuity. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(7), 1271–1283.

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE
Transactions on Neural Networks, 11(3), 586–600.

Wang, C. -D., Lai, J. -H., & Zhu, J. -Y. (2010). A conscience on-line learning approach
for kernel-based clustering. In Proc. of the 10th IEEE int. conf. on data mining
(pp. 531–540).

Wang, C.-D., Lai, J.-H., & Zhu, J.-Y. (2012). Graph-based multiprototype competitive
learning and its applications. IEEE Transactions on Systems,Man, and Cybernetics,
Part C: Applications and Reviews, 42(6), 934–946.

http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://sist.sysu.edu.cn/~zhwshi/code/PAKCL.rar
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref1
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref3
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref5
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref6
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref10
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref14
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref18
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref21
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref23
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref25
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref26
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref27
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref29
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref30
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref31
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref32
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref35
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref38
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref40
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref43
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref48
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref50
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref51
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref52
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref53
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref55

132 J.-S. Wu et al. / Neural Networks 63 (2015) 117–132
Wang, J., Wang, J., Ke, Q., Zeng, G., & Li, S. (2012). Fast approximate k-means
via cluster closures. In Proc. of IEEE int. conf. on computer vision and pattern
recognition (pp. 3037–3044).

Williams, C. K. I., & Seeger, M. (2001). Using the nyström method to speed up
kernel machines. In Proc. of advances in neural information processing systems
(pp. 682–688).

Xu, L., Krzyzak, A., & Oja, E. (1993). Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural
Networks, 4(4), 636–649.
Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3), 645–678.

Zhang, Q., Liu, J., &Wang, W. (2007). Incremental subspace clustering over multiple
data streams. In Proc. of the 7th IEEE int. conf. on data mining (pp. 727–732).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: an efficient data clustering
method for very large databases. In Proc. of 1996 ACM SIGMOD int. conf. on
management of data (pp. 103–114).

Zhang, R., & Rudnicky, A. I. (2002). A large scale clustering scheme for kernel
k-means. In Proc. of the 16th int. conf. on pattern recognition (pp. 289–292).

http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref58
http://refhub.elsevier.com/S0893-6080(14)00245-7/sbref59

	Approximate kernel competitive learning
	Introduction
	Contributions

	Preliminary
	Kernel competitive learning
	Approximate kernel k -means

	Proposed kernel competitive learning for large scale learning
	Can competitive learning be applied to approximate kernel k -means?
	The model
	Theoretical analysis
	Model computation
	Winner selection
	Winner update
	Convergence criterion

	Computational complexity

	Pseudo-parallelled approximate kernel competitive learning
	Model and computation
	Computational complexity

	Experiments
	Datasets
	Settings
	Compared methods
	Evaluation criterion

	Comparison results
	Newsgroup 20
	MNIST
	Caltech
	Imagenet

	Evaluation of PAKCL: parameters
	Summary

	Conclusions
	Acknowledgements
	References

