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Abstract 
 

In this paper, we address the pre-image problem in 

kernel principal component analysis (KPCA). The pre-

image problem finds a pattern as the pre-image of a 

feature vector defined in the nonlinear principal 

component space produced by KPCA. Since the pre-

image typically seldom exists in general, an 

approximate solution is appreciated. By posing a novel 

perspective, we find the pre-image with regularized 

locality preserving learning. Our approach achieves a 

unique solution, avoiding iteration and numerical 

instability. Significant superiority of the proposed 

novel algorithm is demonstrated by driving two 

applications, namely face denoising and occluded face 

reconstruction, as comparing with some existing well-

known methods on pre-image learning. 

 

 

1. State of The Art of Pre-Image Learning 
 

Principal Component Analysis (PCA) [1] is a well-

known technique which has been widely applied to 

unsupervised learning, dimension reduction, and image 

analysis etc. However linear PCA cannot handle data 

with nonlinear structure well while explicitly finding a 

nonlinear transform is always hard. One popular 

technique tackles this problem is called Kernel 

Principal Component Analysis (KPCA) [2]. 

Let Χ  be the input space and kH  be the 

Reproducing Kernel Hilbert Space (RKHS) associated 

with the kernel )()(),( yxyx φφ Tk = , where Χyx ∈,  and 

)(⋅φ  is an implicit mapping induced by kernel ),( ⋅⋅k  

such that kHΧx →:)(φ . Take denoising utilizing 

KPCA for example. For any noisy pattern Χx ∈ , to 

perform denoising, )(xφ  is projected onto the 

subspace produced by linear PCA in the feature space 

kH . Let )(xφkP  be the projection of )(xφ  onto such 

kernel principal component subspace. However, )(xφkP  

is still defined in kH  and we would want to have its 

pre-image (the denoised pattern) in the input space Χ . 

The pre-image problem in KPCA therefore attempts 

to find a pattern Χx ∈~  such that )()~( xx φφ kP= [3]. 

Unfortunately, it is ideal. It is possible that kH  holds 

higher or infinite dimensionality in general while Χ  is 

a finite dimensional input space. Hence, they are not 

isomorphic and an exact pre-image x~  always seldom 

exists. To tackle this problem, as a special case of [8], 

S. Mika et al. found approximate pre-image with least 

square minimization: 2||)()ˆ(||minarg~
ˆ

xxx
Xx

φφ
k

P−=
∈

 [3]. 

However, it is iterative. J. T. Kwok et al. proposed to 

find the pre-image via distance constraint [4]. It would 

be a nice idea and is non-iterative. However, when it is 

applied to more challenging data, such as faces, we 

surprisingly find if the number of neighbors used in 

their algorithm is small, it would fail. A simple 

example to explain such scenario is illustrated in Fig. 

1. In three-dimensional space, if there exists a point z  

that has the distance constraint with neighbors 21, xx  

and 3x  such that A|| 1 =zx , B|| 2 =zx  and C|| 3 =zx , then 

it is possible to find only two symmetric solutions for 

z , i.e. 1Y  and 2Y . But if one more neighbor 4x  and 

constraint D|| 4 =zx  are provided, then only 1Y  is 

 
Figure 1. Illustration of the problem in the 

distance constraint scheme (see text for details) 
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required. Though it is just a simple counterexample, 

however, it potentially shows the solution of the pre-

image problem is always not unique under the distance 

constraint if few neighbors are used in contrast to high 

dimension of data. Recently, G. H. Bakιr et al. learnt 

pre-image with regression [5]. As shown in their 

experiment [5], their method achieved better visual 

result but the Mean Square Error was lower than PCA. 

All former work [3-5] have suggested that for 

image processing and pattern recognition, finding an 

appropriate pre-image that achieves smaller MSE, 

better visual result and sometime better classification 

may be more important and appreciated rather than 

only finding the purely approximate pre-image. 

In this paper, we would give a novel perspective to 

the pre-image and propose a novel approach to learn a 

pre-image with regularized locality preserving. Our 

motivation is inspired by the manifold learning, like 

LLE [6]. The solution of pre-image is unique. Iteration 

and numerical instability are avoided. Our approach is 

not complex but achieves significant improvement 

against some well-known methods. Our algorithm is 

implemented for KPCA. However, it is feasible to be 

extended to other kernel methods. 

 

2. Brief Review of KPCA 
 

Suppose Χxx ∈N,,1 L  are N  training samples. Let 

))(,),(( 1 NxxΦ φφ L= , then Φexµ
Ni

N
iN

1
1

1 )( =∑= = φφ  

is the mean of all samples, where NT R∈= )1,,1( Le . 

Let ),)(,,)(( 1
1 φφφ φφ µxµxO −−= N
N

t L  then 

)()/1())(/1( / NNN TT
t eeIΦeµΦO −=−= φφ  (1) 

and the total scatter matrix is defined as 

TT
T

ttt NN ΦeeIΦOOS )/()/(1 −== φφφ  

where )())(( /// NNN TTTT eeIeeIeeI −=−− . In essence, 

KPCA performs linear PCA in the feature space and 

also solves the eigenvalue problem below: 
φφφφ
ΛUUS =t  (2) 

where ),,( 1
φφφ
quuU L= , ),,( 1

φφφ λλ qdiag L=Λ , 

≥≥L
φλ1

0>φλq . From (2), for each φ
iu , we could 

have some Ti
N

i
i ),...,( 1 αα=α  [2] such  that 

iitj
N

i
j

N
ji ΦpαOµxu ==−∑= =

φφφ φα ))((1
1

 (3) 

It is also valid because of the representer theorem of 

Reproducing Kernel Hilbert Space [2]. So ΦPU =φ , 

),,( 1 qppP L= , i
T

i NN αeeIp )/)(/1( −= . Then, for a 

given pattern x , the projection )(xφkP  of )(xφ  onto 

the subspace spanned by the first 0q  largest kernel 

principal components 
00

qq
ΦPU =φ , ),,(

00 1 qq ppP L= , is: 

xΦγ

ΦeΦexΦPΦP

µµxUUx

=

+−=

+−=

 

 ))(( 

))(()(
11

00

00

NN
TT

qq

T

qqkP

φ

φφ φφφφ

 (4) 

where ΦΦK T=  is the kernel matrix of training data and 

eKePPxΦPPγ xxx
N

T
qqN

TT
qq

T
N

11
1 0000

)(),,( +−== φγγ L   (5) 

Our pre-image learning task is to find the 

appropriate solution x~  as the pre-image of )(xφkP . 

 

3. Regularized Locality Preserving 

Learning of Pre-image Problem 
 

Motivation. We observe that, the dimension of the 

feature space kH  is always higher than the input space 

Χ . To address the pre-image problem in KPCA, 

inspired by the spirit of manifold learning, our idea is 

to pose kH  as a high dimensional space and Χ  as its 

low dimensional space. Then we could treat the 

approximate pre-image x~  of )(xφkP  as an embedding 

point found for )(xφkP  in Χ . Based on this idea we 

learn such embedding point for )(xφkP  as the pre-

image by preserving the local relationship, i.e. the 

local linear reconstruction relationship of )(xφkP  with 

)( 1xφ ,…, )( Nxφ . Since the exact pre-image seldom 

exists, as a novel approach, our learning model is also 

just an approximation scheme with locality preserving 

relationship. We therefore perform regularization for 

the reconstruction weights in order to prevent 

overfitting. Details are as follows. 

Modeling. For given )(xφkP , let )ˆ(,),ˆ( 1 sxx φφ L  be its 

s  distinct nearest neighbors from the training set 

)}(,),({ 1 Nxx φφ L  in kH . Then we learn the local 

linear reconstruction weights T
sww ),,( 1min
xxxW L=  by 

2
1

),..,(
min |||| )()ˆ(minarg

1

xxW x

W

x

xxx

φφ kii
s
i

ww

Pw
T

s

−∑= =
=

 
(6) 

To avoid overfitting, we do regularization and have:  
22

1
),..,(

min ||)()ˆ(minarg ||||||
1

xx

W

x WxxW
xxx

λφφ +−∑= =
=

kii
s
i

ww

Pw
T

s

(7)  

where 0>λ  is a regularized parameter. We solve (7) by 

)(ˆ)ˆˆ( 1
min

xΦIΦΦW x φλ k
TT P−×+=  (8) 

where ))ˆ(,),ˆ((ˆ
1 sxxΦ φφ L= . Integrating equality (4) 

that xΦγx =)(φkP , we then obtain:  

xx ΦγΦIΦΦW TT ˆ)ˆˆ( 1
min

−×+= λ  (9) 

Note that  )ˆ(,),ˆ( 1 sxx φφ L  have their exact pre-images 

sxx ˆ,,ˆ1 L  in Χ  respectively. We aim to find the pre-

image of )(xφkP  as an embedding point by preserving 

the regularized local linear reconstruction relationship 

with sxx ˆ,,ˆ1 L  as )(xφkP  does in the feature space kH  
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developed by equalities (7) and (9).  Based on this 

idea, we find the pre-image of )(xφkP by 

xWxxx min1 )ˆ,,ˆ(~
sL=  (10) 

Our learning absorbs the spirit of manifold learning by 

treating kH  as a high dimensional space and Χ  as its 

low dimensional space, and finds the approximate pre-

image by learning an embedding point with 

regularized locality preserving. 

Considering that when s=N, then the embedding 

pre-image x~  could be reconstructed with all samples 

Nxx ,,1 L , where the reconstruction coefficients are 

determined by the KPCA with regularization in (9). 

When s=1, our approach would likely almost degrade 

as a simple nearest neighbor classifier (NN) regardless 

of scaling in the feature space. However, we do not 

recommend setting s=N or s=1. Because x~  would 

intuitively become smoother as s  is larger and when 

s=1 such simple NN classifier could not handle the 

problem well. Also the parameter λ  is important, and 

we would show the performances with different values 

of it in our experiments. The experiment results would 

support the feasibility and superiority of our approach. 

 

4. Applications 
 

All experiments are based on YALEB [7] database. 

To produce noisy images and occluded images, we use 

the subset 1 in YALEB. It contains 10 persons with 9 

different poses. Each pose of each person contains 7 

faces with nice illumination. Totally 630 images are 

selected. All image are aligned with size 11292 × . 

Noisy Images. For each face image in the subset 1, we 

produce 2 noisy images, where the noise type is 

Gaussian with mean 0 and variance with 0.5. Therefore 

there are 1260 noisy face images produced. 

Occluded Images. Similarly, for each face image in 

subset 1, we produce 2 occluded faces. The occlusion 

is simulated by a rectangle black patch at a random 

coordinate, where the width and the height of the patch 

are randomly determined such that both width and 

height are 20 pixels at least and 50 pixels at most. 

It is noted that all images, including occluded and 

noisy images, are linearly stretched to full range of 

pixel values of [0, 1]. 

KPCA Subspace. The kernel principal component 

subspace is trained by all images in subset 1, totally 

630 images from 9 poses. The largest kernel principal 

components are selected to preserve 95% energy. 

Kernel Function. Due to limited length, we mainly 

use the RBF kernel )/||||exp(),( 2 ck jiji xxxx −−= , 510=c .  

Notations. “R-LPL(a,b)” means bsa == ,λ  in regularized 

locality preserving learning of pre-image. “D-C(n)” 

means n neighbors are used for distance constraint [4]. 

4.1. Face Denoising 
 

To denoise each noisy face image, we project it 

onto the KPCA subspace by utilizing the kernel trick 

in (4). Then we find the pre-image of that projection 

with different models. Fig. 2 shows some results of the 

denoised faces. Table 1 shows the mean square error 

(MSE) of the denoised faces. Our approach performs 

the best, especially when the number of neighbors used 

is appropriately small. And it is indicated why we do 

not recommend 1=s . We also see that the distance 

constraint scheme would fail if few neighbors are used. 

As more neighbors are used, it also plays superior to 

Table 1. Mean square error (MSE) between the 

original faces and the denoised faces 
Method MSE Method MSE 

R-LPL(0.00001, 1) 96.3359 D-C (3) 27136.795 

R-LPL(0.00001, 3) 80.2613 D-C (5) 15458.2593 

R-LPL(0.00001, 5) 80.2095 D-C (10) 9735.745 

R-LPL(0.00001, 10) 82.9539 D-C (15) 86.2367 

R-LPL(0.00001, 15) 85.1357 D-C (20) 88.0076 

R-LPL(0.00001, 20) 86.7654 D-C (30) 90.6767 

R-LPL(0.00001, 30) 89.2883   

Method MSE 

Linear PCA (Preserve 95% energy) 111.3391 

Least Square Minimization [3] 112.4266 

Table 2. MSE of denoising with Regularized 

Locality Preserving Learning (s=5) 
Value of λ  MSE Value of λ  MSE 

0.01 81.2285 0.0001 79.7861 

0.001 79.8802 0.000001 80.3279 

0.0005 79.6885 0.0000001 80.3422 

 
(a) Noisy Faces 

 
(b) Linear PCA (Preserve 95% energy) 

 
(c) Least Square Minimization 

 
(d) Distance Constraint, D-C (15) 

 
(e) Regularized Locality Preserving Learning, R-LPL(0.00001, 5) 

 
(f) Original Faces 

Figure 2. Illustration of denoised faces 
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the least square minimization scheme. However, our 

approach still achieves the notably smallest MSE. 

Interestingly, it seems Linear PCA performs a little 

better than Least Square Minimization scheme. 

However, Least Square Minimization scheme may 

achieve local optimization. And it was also declared 

sometime Linear PCA did better [3]. Finally, table 2 

shows the performances if λ  equals different values. 

We see setting λ  appropriately small is recommended. 

 

4.2. Reconstruction of Occluded Face 
 

Similarly, each occluded face is projected onto the 

KPCA subspace for reconstruction. Then the pre-

image is found respectively with different models. Fig. 

3 shows some results. Table 3 shows the MSE results, 

and Table 4 shows how different values of λ  have 

effect on MSE. We see that our approach still obtains 

the smallest MSE and achieves better visual result. 

 

5. Conclusion and Feature Work 
 

This paper poses a novel perspective to the pre-

image learning in KPCA and has demonstrated a novel 

approach, called regularized locality preserving 

learning that absorbs the spirit of manifold learning 

with regularization technique. The proposed approach 

requires no iteration and avoids numerical instability 

with unique solution. Experimental results show much 

improvement under the measurement of MSE. In 

future, we attempt to improve the technique when s is 

small since we experimentally find some reconstructed 

occluded faces are somewhat not (similar to) the real 

persons. It could be seen by the 7th person from the 

left side in fig. 3. It may be mainly because KPCA is 

unsupervised. Nonetheless, our approach has been 

indicated as a effective way for pre-image learning. 
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(f) Original Faces 

Figure 3. Illustration of reconstructed occluded faces 


