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Abstract

Recovering arbitrarily corrupted low-rank matrices
arises in computer vision applications, including bioinfor-
matic data analysis and visual tracking. The methods used
involve minimizing a combination of nuclear norm and l1

norm. We show that by replacing the l1 norm on error items
with nonconvex M-estimators, exact recovery of densely
corrupted low-rank matrices is possible. The robustness
of the proposed method is guaranteed by the M-estimator
theory. The multiplicative form of half-quadratic optimiza-
tion is used to simplify the nonconvex optimization problem
so that it can be efficiently solved by iterative regulariza-
tion scheme. Simulation results corroborate our claims and
demonstrate the efficiency of our proposed method under
tough conditions.

1. Introduction
Principal Component Analysis (PCA) [31] is a linear

data transformation technique which plays an important

role in the studies of image processing and machine learn-

ing. It assumes that the high-dimensional data reside in a

low-dimensional linear subspace [9], and has been widely

used for the representation of high dimensional data such

as image data for appearance, shape, visual tracking, etc.

Moreover, it is commonly used as a preprocessing step to

project high-dimensional data into a low-dimensional sub-

space.

Consider a data set of samples D = [d1, · · · , dn] where

di is a variable in Euclidean space with dimensionality m,

U = [u1, · · · , ur] ∈ Rm×r be a projection matrix whose

columns constitute the bases of an r-dimensional subspace,

and V = [v1, · · · , vn] ∈ Rr×n be the principal components

that are projection coordinates under the projection matrix

U . From the viewpoint of Mean Square Error (MSE), PCA

assumes that the data matrix D is generated by perturbing

a matrix A = UV ∈ Rm×n whose columns reside in a

subspace of dimension r � min(m,n), i.e., D = A + E,

where A is a rank-r matrix and E is a matrix whose entries

are i.i.d. Gaussian random variables [22]. In this setting ,

PCA can be formulated as the following constrained opti-

mization problem [26]:

min
A,E

||E||F s.t. rank(A) ≤ r , D = A + E (1)

where ||.||F is the Frobenius norm.

However, PCA breaks down under outliers 1 because

large errors will dominate the mean square error (MSE)

[8, 18]. To solve this limitation, one strategy is to re-

place the MSE in PCA with a robust measure, i.e., Hu-

ber’s M-estimator. Those M-estimators based PCA meth-

ods [8, 18, 27, 16, 11] iteratively reweight features (or sam-

ples) and then utilize the uncorrupted features (or samples)

to compute a robust subspace.

Recently, Wright et al [37] shows that the robust PCA

problem can be exactly solved via convex optimization that

minimizes a combination of the nuclear norm and l1-norm.

By assuming that the error matrix E has a sparse represen-

tation, robust PCA can be formulated as the following prob-

lem [37]:

min
A,E

||A||∗ + λ||E||0 s.t. D = A + E (2)

where ||.||∗ denotes the nuclear norm of a matrix (i.e., the

sum of its singular values), ||.||0 is the counting norm (i.e.,

the number of non-zero entries in the matrix), and λ is a pos-

itive constant. Since the problem (2) is NP-hard and cannot

1In robust statistics, outliers are those data points that deviate signifi-

cantly from the rest of the data [8].
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be efficiently solved, one considers its convex relaxation in-

stead [26],

min
A,E

||A||∗ + λ||E||1 s.t. D = A + E (3)

where ||.||1 represents the matrix 1-norm (i.e., the sum of

absolute values of all entries of a matrix). Many methods

[37, 9, 21, 22, 10, 23] have been developed to optimize (3).

Recent advance in l0-l1 theory [4] shows that when the

l1-norm in a underdetermined system is substituted with a

concave semi-monotone increasing function, a sparse (with

nonzeros) feasible solution is a unique global optimum if

the solution is indeed sparse. In [5, 6, 7] , the non-convex

quasi lp-norm (i.e., ||.||pp) approaches for 0 ≤ p < 1 are de-

veloped for recovery of sparse signal. Iteratively reweighted

least squares (IRLS) approaches are used to solve the lp-

norm.

Considering that nonconvex M-estimators may deal with

large and non-Gaussian noise better in real world prob-

lems [25][11][13], this paper addresses robust PCA prob-

lem from the view point of M-estimators, i.e.,

min
A,E

||A||∗ + λΦ(E) s.t. D = A + E (4)

where Φ(E) =
∑n

i=1

∑m
j=1 φ(Eij) and φ(.) is a robust

non-convex M-estimator. Although there are many meth-

ods to solve (3), they often require that the functions in the

objective function are convex. Hence those methods can

not be directly used to solve (4). Facing this difficulty, we

harness the multiplicative form of the half-quadratic (HQ)

optimization2 to solve the nonconvex problem in Φ(E) such

that the problem can be iteratively solved by solving a num-

ber of unconstrained quadratic problems.

The robustness of the proposed method is guaranteed by

the M-estimator theory [15] and maximum correntropy cri-

terion (MCC) [25], which have shown that M-estimators

have potential to control large outliers and non-Gaussian

noise [25, 38, 13]. We show that by replacing the l1 norm

on corrupted items with nonconvex measures, exact recov-

ery of densely corrupted low-rank matrices is possible. If

MCC adaptation’s distribution has the maximum at the ori-

gin [25], our method will have potential to recover arbitrar-

ily corrupted low-rank matrix. Simulations on randomly

generated matrices are run to corroborate our claims and

demonstrate the efficiency of our proposed method under

tough conditions.

The remainder of this paper is organized as follows. In

Section 2, we briefly review maximum correntropy crite-

rion for robust learning. In Section 3, we propose a half-

quadratic algorithm to solve (4) and discuss its relationship

2Note that not all M-estimators have the additive form of the HQ, e.g.,

L1 M-estimator has no additive form. Since the additive form of corren-

tropy is still unknown, we only discuss our method by using the multiplica-

tive form.

with previous work. In Section 4, we compare the new al-

gorithm with other exiting algorithms for low-rank matrix

recovery. Finally, we conclude the paper in Section 5.

2. Maximum Correntropy Criterion (MCC)
Recently, the concept of correntropy is proposed in ITL

[25] to process non-Gaussian noise [25] and impulsive noise

[33]. Correntropy has shown its superiority in term of ro-

bustness in signal processing [25], feature extraction [38],

subspace learning [11] and face recognition [13][12]. It is

directly related to the Renyi’s quadratic entropy [34], and

is a local similarity measure between two arbitrary random

variables A and D, defined by [25]:

Vσ(A,D) = E[kσ(A,D)] = E[kσ(A − D)] (5)

where kσ(.) is a kernel function that satisfies Mercer theory

[36] and E[.] is the expectation operator. It takes advan-

tage of kernel trick that nonlinearly maps the input space to

a higher dimensional feature space. Different from conven-

tional kernel methods, it works independently with pairwise

samples. With a clear theoretic foundation, the correntropy

is symmetric, positive, and bounded.

Based on (5), Liu et al. [25][24] further extended the

sample based correntropy criterion for a general similar-

ity measurement between any two discrete vectors. That

is they introduced the correntropy induced metric (CIM)

[25][24] for any two vectors A = (a1, ..., am)T and D =
(d1, ..., dm)T as follows:

CIM(A,D) = (g(0) − 1
m

m∑
j=1

g(ej))
1
2 (6)

where g(.) is the Gaussian function, and error ej is defined

as ej = aj − dj . For adaptive systems, the below corren-

tropy of error ej :

max
θ

1
m

m∑
j=1

g(ej) = 1
m

m∑
j=1

g(aj − dj) (7)

is called the maximum correntropy criterion (MCC) [25],

where θ is the parameter in the criterion.

MCC has a probabilistic meaning of maximizing the er-

ror probability density at the origin [24], and MCC adapta-

tion is applicable in any noise environment when its distri-

bution has the maximum at the origin [25]. Compared with

the mean square error (MSE), a global metric, the corren-

tropy is local. That means the correntropy value is mainly

decided by the kernel function along the line A = B [25].

Correntropy has a close relationship with m-estimators

[15]. If we define ρ(x) Δ= 1 − exp(−x), (6) is a robust for-

mulation of Welsch m-estimator [25]. Furthermore, ρ(x)
satisfies lim|x|→∞ ρ′(x) = 0, and thus it also belongs to the
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so called redescending m-estimators [15], which has some

special robustness properties[28]. A main merit of corren-

tropy is that the kernel size controls all its properties. Due

to the close relationship between m-estimation and methods

of ITL, choose an appropriate kernel size [25] in the corren-

tropy criterion becomes practical.

3. Nonconvex Minimization
In this section, we firstly propose a half-quadratic opti-

mization based iterative regularization method to solve (4).

Then we investigate possible robust M-estimators, and dis-

cuss the relationship between proposed method and previ-

ous work.

3.1. The Half-quadratic Approach

Substituting the equation constraint in (4) into its objec-

tive function, we have the following unconstrained prob-

lem 3:

min
A,E

||A||∗ + λΦ(D − A) (8)

Generally, the robust M-estimator Φ(.) is often nonconvex

and hence is difficult to be directly optimized. Fortunately,

the half-quadratic technique [29][13] has been developed

to optimize those nonconvex cost-functions by alternately

minimizing their augmented (resultant) cost-functions. Ex-

periments show that half-quadratic methods are substan-

tially faster (in terms of computational times) than gradient

based methods [29].

According to conjugate function theory and HQ [29, 38,

13], we have that for a fixed eij , the following equation

holds,

φ(eij) = min
pij

Q(eij , pij) + ϕ(pij) (9)

where ϕ(.) is the conjugate function of φ(.), pij is the aux-

iliary variable of HQ, and Q(eij , pij) is the multiplicative

form of HQ. The variable pij is determinated by the mini-

mizer function δ(.) in HQ and is only relative to a specific

function φ(.) (See Table 1 for two specific functions and

their minimizer functions). Q(eij , pij) has the following

form [29],

Q(eij , pij) =
1
2
pije

2
ij (10)

Substituting (9) and (10) into (8) , we have the augmented

cost-function of (8), i.e.,

J(A,E, P ) = min
A,E,P

||A||∗ +
λ

2
||P ⊗ (D − A)||2F

+
m∑

i=1

n∑
j=1

ϕ(pij) (11)

3If we substitue Φ(.) with Welsch M-estimator, (8) is actually based on

MCC.

where P is the auxiliary variable matrix, Pij = √
pij , ϕ(.)

is the conjugate function of φ(.), and P ⊗ (D − A) .=
m∑

i=1

n∑
j=1

Pij(Dij − Aij).

The cost function in (11) can be optimized by the follow-

ing alternate minimization scheme:

P k
ij =

√
δ(Dij − Aij) (12)

Ak+1 = min
A

||A||∗ + λ||P k ⊗ (D − A)||2F (13)

where k is iteration number, and δ(.) is a minimizer func-

tion. The above alternate minimization scheme can be

viewed as the l1 iterative regularization scheme [37]. In the

first step, we compute the auxiliary variable matrix P ac-

cording to the conjugate function theory [3, 29]; then in the

second step, we solve a unconstrained minimization prob-

lem. As in [37], the solution of subproblem in (13) can be

iteratively computed by the singular value thresholding op-

erator [37]:

Sτ [t] =
{

0 |t| ≤ τ
t − τsign(t) |t| > τ

(14)

Many methods have been developed to iteratively com-

pute the unconstrained sub-problem in (13). We follow the

approach of Singular Value Thresholding (SVT) algorithm

[37] and summarize the optimal procedure in Algorithm 1.

Let Y = P ⊗(D−A), we compute Y step by step to obtain

a smooth and continuous updating instead of computing Yk

as D−Ak. The learning rate θ is used to control the updat-

ing of Yk. The θ and λ are set as suggested in [37].

Algorithm 1: Robust PCA via Half-quadratic Singular

Value Thresholding (HQ-SVT)

Input: Obervation matrix D, τ and θ.

Output: A ← Ak+1, E ← D − A
1: Y 0 ← 0, A0 ← 0, k ← 1, and λ ← 1.

2: while ”not converged” do
3: (U, S, V ) ← svd(Y k−1).
4: Ak ← USτ [S]V T .

5: Update P k according to (12).

6: Yk = Yk−1 + θ(D − Ak).
7: Yk = Yk ⊗ P k.

8: end while

Since the M-estimator φ(.) is often non-convex, Algo-

rithm 1 can only find a local minimal solution of (8). The

stopping criterion for the sequence of iterations of Algo-

rithm 1 is that the variation of Ak between two iterations

is smaller than a predefined precision. During each itera-

tion, Algorithm 1 alternately minimizes the objective until

it converges [29].
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Table 1. Minimizer function δ relevant to multiplicative form of

HQ for potential M-estimator φ. The dashline in the figures in

the first row is drawn by l1-norm. α in L1-L2 M-estimator is a

constant.

M-estimator L1-L2 [29] Welsch [38, 13]

Potential

function

φ(t)

√
α + t2 − 1
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0.5
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Multiplicative

form

δ(t)

1/
√

α + t2
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0.9

1

exp(− t2

0.5
)
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0.4

0.6

0.8

1

3.2. M-estimators

In statistics, one popular robust technique is the so-called

M-estimators [15], which are obtained as the minima of

sums of functions of the data and have more than 30 years

of history. They have been widely used in machine learn-

ing and computer vision for robust learning. In regression

models, IRLS approach is often used to solve M-estimators

by iteratively solving a number of weighted least square

problems. Another common used technique to solve M-

estimators is the half-quadratic optimization [29]. By the

multiplicative and the additive half-quadratic reformulation

of M-estimator cost-function, the original problem is solved

by the alternate minimization of augmented cost-function.

Table 1 shows two selected M-estimators and their cor-

responding minimizer functions of multiplicative HQ form.

It has been known that l1 norm also belongs to Huber’s M-

estimators. We can observe form Table 1 that L1-L2 M-

estimator and Welsch M-estimator seem to give less pun-

ishment to large outliers than l1 M-estimator. The curves of

L1-L2 and Welsch M-estimator are always lower than that

of l1 M-estimator. It is interesting to observe that the curve

of Welsch M-estimator is close to that of l1 M-estimator

between 0 and 1. That is, when the magnitude of outlier is

small, l1 M-estimator and Welsch M-estimator may obtain

similar robustness.

In information theoretic learning (ITL), Welsch M-

estimator induced cost function is also called Maximum

Correntropy Criterion (MCC) [25]. The MCC further gives

an information theoretic foundation of robustness of adap-

tive systems. It has a probabilistic meaning of maximizing

the error probability density at the origin [24], and MCC

adaptation is applicable in any noise environment when its

distribution has the maximum at the origin [25]. When

outliers are different from the uncorrupted data in a low-

rank matrix, MCC adaptation only focuses on those ej that

are close to zero, and will detect outliers. Hence, differ-

ent from previous theory that M-estimators very low break-

down points, MCC has potential to make recovery of arbi-

trarily corrupted low-rank matrix possible [25][13][14].

3.3. Relation to previous work

Robust subspace learning [18] for linear models has been

widely used for shape representation, tracking, etc. Dif-

ferent approaches have been explored in the literature to

make the learning more robust. To alleviate the problem

of occlusion, modular eigenspaces are proposed in [32]. In

[30], eigenwindow method is presented to recognize par-

tially occluded objects. These methods based on ”eigen-

window” partially alleviate the problems of occlusion but

cannot solve them entirely [20]. In [2], a conventional

robust M-estimator is used for computing the coefficients

of subspace by substituting the MSE by a robust one. In

[18, 8, 17], M-estimators based robust principal component

analysis methods are developed to learn robust components

and coefficients.

The similarity of our HQ-SVT and previous robust sub-

space learning methods is that they are all based on robust

M-estimators. However, HQ-SVT more focuses on accu-

rately recovering a corrupted low-rank matrix. It combines

the nuclear norm of a matrix into original M-estimators

based objectives and uses an iterative regularization way to

automatically determine an appropriate matrix rank.

Another variation of robust PCA is also called the exact

recovery of arbitrarily corrupted low-rank matrix. Based

on the l0-l1 equivalence theory [4], many methods [37, 9,

21, 22, 26] have been developed to efficiently estimate the

sparse error matrix E. Wright et al. [37] shows that if the

error matrix E is sufficiently sparse (relative to the rank of

A), one can exactly recover the corrupted matrix A.

The similarity of our HQ-SVT and those low-rank matrix

recovery methods is that they all harness iterative regular-

ization and shrink operation to estimate eigenvalues. How-

ever, different from those methods, HQ-SVT is based on the

M-estimator theory and hence there is no special assump-

tion on error matrix E. Simulation results show that HQ-

SVT can exactly recover a corrupted low-rank matrix even

if the noise is non-sparse.

4. Experiment
In this section, numerical simulations are run to evalu-

ate the recovery ability of the proposed method and to com-

pare it with the singular value thresholding (SVT) algorithm

[37], the accelerated proximal gradient (APG) algorithm

[35], and the augmented Lagrange multipliers (ALM) al-

gorithm [21] under different levels of corruptions. All algo-

rithms were implemented in MATLAB on an AMD Quad-
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rank(A0) HQ-SVT1 HQ-SVT2 SVT APG ALM

5 2.1 × 10−4 3.7 × 10−4 4.6 × 10−5 1.9 × 10−5 2.3 × 10−7

10 2.3 × 10−4 4.0 × 10−4 4.1 × 10−5 1.7 × 10−5 3.6 × 10−7

15 2.5 × 10−4 4.3 × 10−4 5.3 × 10−5 1.5 × 10−5 2.5 × 10−7

20 2.5 × 10−4 4.1 × 10−4 5.2 × 10−5 1.3 × 10−5 3.5 × 10−7

Table 2. Average reconstruction errors (
||A−A0||F
||A0||F ) of the four algorithms on low rank matrices (m = 400 and

||E0||0
m2 = 0.05). For all

algorithms, the rank is correctly estimated.
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R
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(b) Variation of reconstruction error

Figure 1. Convergence of singular value thresholding algorithms.

Core 1.80GHz Windows XP machine with 2GB memory.

The SVT, APG and ALM matlab codes are from [26] and

their parameters are default as suggested in [26].

4.1. Simulation Conditions

To fairly and quantitively evaluate different methods, we

randomly generated matrices as suggested in [37][35][21].

Without loss of generality, we suppose to simplify that the

unknown matrix A ∈ Rm×m is square [37]. The ordered

pair (A0, E0) ∈ Rm×m ×Rm×m denotes the true solution.

And the observation matrix D = A0 +E0 is the input to all

algorithms, and the ordered pair (A,E) denotes the output.

The matrix A0 is generated as a product UV T according to

the random orthogonal model of rank r [37]. The matrix

U and V are independent m × r matrices whose elements

are i.i.d. Gaussian random variables with zero mean and

unit variance. The error matrix E0 is generated as a ma-

trix whose zero elements are chosen uniformly at random

and non-zero elements are i.i.d. uniformly in the interval

[−500, 500]. The distributions of A0 and E0 are identical

to those used in [37][35][21]. All of these simulations are

averaged over 20 runs.

We set threshold τ = 10, 000, step size θ = 0.9, and the

maximum number of iterations to 3000 for both SVT and

HQ-SVT. The singular value decomposition (SVD) is im-

plemented by PROPACK 4, which uses the iterative Lanc-

zos algorithm to compute the SVD directly. We denote the

HQ-SVT based on Welsch M-estimator by HQ-SVT1 and

denote the HQ-SVT based on L1-L2 M-estimator by HQ-

4http://sun.stanford.edu/˜rmunk/PROPACK/

SVT2.

4.2. Recovery of Low Rank Matrix

In this subsection, we evaluate the recovery scalability of

HQ-SVT algorithm on corrupted low-rank matrix. We set

m = 400 and
||E0||0

m2 = 0.05. Table 2 shows the simulation

results on different values of rank(A0). All five algorithms

can accurately find the true rank of low rank matrix, and

hence we do not list rank(A) of different algorithms in Table

2. We can observe that ALM algorithm achieves the lowest

reconstruction errors. The reconstruction errors of HQ-SVT

are larger than those of three other compared algorithms.

That is, HQ-SVT seems to need more iterations to achieve

higher accuracy.

Fig. 1 further shows the convergence of three singu-

lar value thresholding algorithms. We can observe that the

three algorithms can find the true rank of low rank matrix

less than 40 iterations. The variation of reconstruction er-

ror of HQ-SVT is continuous and small after 100 iterations.

Algorithm based on Welsch M-estimator can converge more

quickly than that based on L1-L2 M-estimator.

Although the convergence speed of HQ-SVT is slower

than other methods, those simulations demonstrate that in-

stead of using l1-norm to model noise, algorithms based on

traditional M-estimators can also accurately recovery a cor-

rupted low-rank matrix when error matrix E0 is sparse. In

robust statistics, outliers are those data points that are far

away from other data points. If outliers are sparse as com-

pared with other data points, M-estimator based algorithms

can naturally obtain a sparse solution in terms of outliers.
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Figure 2. Comparison of the four algorithms on different levels of corruptions. All of these results on each level of corruption are

averaged over 20 runs. (a) The average rank of recovered low-rank matrix A. (b) The average reconstruction error. (c) The average l0 norm

of E estimated by different methods.

(a) (b) (c) (a) (b) (c)
Figure 3. Removing shadows from face images. (a) Original images of a face under different illuminations from the Extended Yale B

database. (b) Reconstructed images by our algorithm. (c) The auxiliary variable matrix P returned by our algorithm. The white-value

denotes large weight and black-value denotes small weight.

4.3. Different Level of Corruptions

In practical application scenarios, corruptions of a low-

rank matrix are often unknown. Hence we varied the per-

centage of non-zero elements in E0 from 5% to 45% to eval-

uate robustness of different algorithms. We set m = 200
and r = 10. Fig. 2 shows the average simulation results.

From Fig. 2(a), we can observe that SVT, ALM, and

APG algorithms can accurately estimate the true rank r =
10 under 10%, 15%, and 20% corruptions respectively.

When the error matrix E0 is non-sparse, the rank of out-

put matrix A trends to be larger as the level of corruption

is increased. That is, SVT, ALM, and APG algorithms fail

to find the true rank of a large corrupted matrix. From Fig.

2(b), we can further learn that the average reconstruction er-

rors of the three methods increase rapidly when the level of

corruption is larger than 15%. Fig. 2(c) further shows the

results of ||E0||0 of SVT and APG. When the level of cor-

ruption is larger than 20%, the two algorithms begin to fail

to correctly estimate the true errors in E. More elements of

E are non-zero and estimated as noise. This may be due to

the fact that both two algorithms assume that noise matrix

is sparse.

Compared with three other algorithms, HQ-SVT algo-

rithms obtain more stable results on rank(A) and reconstruc-

tion error. When the low-rank matrix is 40% corrupted, HQ-

SVT1 can also find the true rank r = 10 and the variation

of its reconstruction error is small. When the level of cor-

ruption is larger than 35%, HQ-SVT achieves the lowest re-

construction errors. For L1-L2 M-estimator, HQ-SVT2 can

still work under 25% corruption. This stability may bene-

fit from the robustness of Welsch M-estimator and L1-L2

M-estimator.

4.4. Removing Shadows

In past decades, face recognition have received a lot of

attention in computer vision and pattern recognition. It

has been demonstrated that variation of many face images

under variable lighting can be effectively modeled by low

dimensional linear spaces [1, 19]. Under certain ideal-
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Table 3. Comparison of different algorithms for face recognition.

A lower average error rate means a better reconstruction ability.

Method Error rate Std Min Max

PCA 13.8% 1.7% 11.2% 15.8%

APG 12.5% 1.9% 9.2% 15.1%

HQ-SVT1 12.0% 1.7% 8.9% 14.5%

HQ-SVT2 12.1% 1.8% 9.1% 14.2%

ized circumstances, aligned facial images of the same sub-

ject approximately exist in a nine dimensional linear sub-

space [37]. However, face images would suffer from self-

shadowing or saturations in brightness under directional il-

lumination [37].

In this subsection, we validate the reconstruction abil-

ity of HQ-SVT on the Extended Yale B database [19]. The

Welsch M-estimator is used. A total of 31 different illu-

minations are used for each person. All facial images are

cropped and aligned to 96×84 pixels according to two eyes’

positions. The matrix D contains well-aligned training im-

ages of a person’s face under various illumination condi-

tions. Fig. 3 shows the results of our algorithm on images

from subsets 1-5. We can observe that the proposed method

can remove the shadows around the nose and eye region.

The axillary variable pij corresponding to the shadows and

saturations receives a small value in Fig.3 (c).

From Fig. 3, we also obverse that our method can re-

cover a facial image even under large corruption. Although

the corruption occupies nearly 90%, HQ-SVT can still uti-

lize the left 10% pixels to perform learning. According to

MCC, HQ-SVT only focuses on those pixels corresponding

to white-value in Fig.3 (c). As a result, it can recover the

corrupted image.

To quantitively evaluate the reconstruction ability of dif-

ferent methods, we make use of them as a preprocessing

step and then perform classification in the subspaces com-

puted by learned projection matrix Û . We randomly divided

31 different face images of one subject into two subset. The

one for training contains 27 face images per subject, and the

one for testing contains 4 face images per subject. We per-

formed low-rank matrix recovery algorithms on the training

set and projected all data into a subspace by projection ma-

trix Û . Then nearest-neighbor classifier is used as classifier,

and average error rates of different methods are averaged

over 20 runs. A lower average error rate means a better re-

construction ability.

Table 3 shows the statistical results of the compared

fourth methods. In face recognition, the PCA based face

recognition method is also called Eigenfaces. Although

PCA can deal with small Gaussian noise in face images, it

fails to deal with the errors incurred by shadows and specu-

larities. Hence it obtains the highest average error rate. The

error rates of the three low-rank methods are 90%, 87%, and

88% of that of the PCA method respectively. That is the

three methods can efficiently deal with shadows and spec-

ularities. These experimental results suggest that low-rank

matrix recovery algorithms are efficient preprocessing tools

for face recognition.

5. Conclusion and Future work
This paper investigates the recovery of corrupted low-

rank matrix via non-convex minimization, and introduces a

novel algorithm, namely, the half-quadratic based singular

value thresholding algorithm. Different from those meth-

ods that assume error matrix E has a sparse representation,

the proposed method is based on robust M-estimator. Sim-

ulation results demonstrate that instead of using l1-norm to

model noise, singular value thresholding algorithms based

on traditional M-estimators can also accurately recovery

a corrupted low-rank matrix when the minimum nuclear-

norm solution is also the lowest-rank solution. Moreover,

they seem to have the ability to accurately recover a matrix

even under 40% corruption. The maximum correntropy cri-

terion gives a theoretical guaranty of this robustness under

large corruption.

A half-quadratic based alternate minimization scheme

is also investigated for low-rank matrix recovery. Future

work is to investigate more M-estimators (such as Huber M-

estimator) for accurate low-rank matrix recovery and to de-

velop more efficient approaches to accelerate convergence

under HQ optimization.
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