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Abstract— This paper proposes a novel nonnegative sparse
representation approach, called two-stage sparse representation
(TSR), for robust face recognition on a large-scale database.
Based on the divide and conquer strategy, TSR decomposes the
procedure of robust face recognition into outlier detection stage
and recognition stage. In the first stage, we propose a general
multisubspace framework to learn a robust metric in which noise
and outliers in image pixels are detected. Potential loss functions,
including L1, L2,1, and correntropy are studied. In the second
stage, based on the learned metric and collaborative representa-
tion, we propose an efficient nonnegative sparse representation
algorithm to find an approximation solution of sparse represen-
tation. According to the L1 ball theory in sparse representation,
the approximated solution is unique and can be optimized
efficiently. Then a filtering strategy is developed to avoid the
computation of the sparse representation on the whole large-scale
dataset. Moreover, theoretical analysis also gives the necessary
condition for nonnegative least squares technique to find a sparse
solution. Extensive experiments on several public databases have
demonstrated that the proposed TSR approach, in general,
achieves better classification accuracy than the state-of-the-art
sparse representation methods. More importantly, a significant
reduction of computational costs is reached in comparison with
sparse representation classifier; this enables the TSR to be more
suitable for robust face recognition on a large-scale dataset.

Index Terms— Correntropy, L1 regularization, large-scale,
nonnegative sparse representation, robust face recognition.

I. INTRODUCTION

AUTOMATIC face recognition has been a popular
research area in computer vision and machine learning.

It is also one of the most successful applications of image
analysis and understanding. A face recognition system identi-
fies one person by comparing a query facial image with the
registered images in a face database [1]. Two major concerns
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in designing a face recognition system are: 1) the query images
are subject to changes in illumination as well as occlusion
[2]–[4], and 2) the number of the recorded images is often
tens of thousands [5]. To address these concerns, we have to
focus on two issues: 1) how to yield a robust representation
for a query image, and 2) how to classify a query image as
fast as possible.

In recent decades, a considerable amount of research has
been reported on robust representations. To alleviate the
problem of occlusion, modular eigenspaces are developed
in [6]. In [7], the eigenwindow method is proposed to classify
partially occluded objects. In [8], the subspace coefficients
are computed by substituting the mean square errors with a
conventional robust M-estimator. In [9], a subsampling and
hypothesize-and-test approach is proposed to reject outliers
and learn the coefficients of subspace. In [10] and [11], robust
component analysis methods are developed to learn robust
components and coefficients. A main limitation of these
methods is that they detect the whole example as an outlier
and discard it from the learning process. In [3] and [12],
occlusion masks are incorporated to learn a robust classifier.
However, occlusion masks may discard useful redundant
information [13].

Recently, the sparse signal theory has shown that sparse
representation can be robust as well as discriminative, and thus
can play an important role in computer vision problems [14].
Wright et al. [14] proposed a sparse representation classifier
(SRC) for robust face recognition, which opens a new direction
to deal with occlusion and corruption in face recognition.
Impressive results were reported against many well-known
face recognition methods [15]. Many variations of SRC were
also developed. From the viewpoint of optimization, most of
those variations can be categorized into iterative shrinkage-
threshold and iteratively reweighted least squares (IRLS)-
based methods. Yang et al. [16] gave a review of iterative
shrinkage-threshold based sparse representation methods for
robust face recognition. Gabor features [17] and Markov
random fields [13] are used to further improve performance.
Based on robust M-estimators, the methods in [18]–[20]
compute robust sparse representation via IRLS. Other vari-
ations of SRC are nonnegative sparse representation methods
[18], [21], [22]. Although SRC and its variations significantly
improve the robustness of face recognition, they still need to
solve an L1 minimization problem on the whole dataset, which
makes the computation expensive for large-scale datasets.1

1As in [5], large-scale face recognition systems need to deal with recognition
on more than 10 000 images in a face database.
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In order to tackle the two basic issues above in a unified
framework, we propose a two-stage sparse representation
(TSR) framework based on the divide and conquer strategy.
Inspired by the iteratively reweighted procedure in [18], the
procedure of robust recognition is decomposed into the outlier
detection stage and recognition stage. In the first stage, to deal
with varying illumination as well as occlusion, we propose
a general multisubspace framework to learn a robust metric.
More specifically, we learn an appearance space on the training
set, and segment the space into several subspaces with the
same number of columns. The combined rows from their
subspaces constitute the original space (see an example of
the segmentation in Fig. 2). We first detect noise and outliers
in these subspaces and then learn a robust metric on the
appearance space. Potential loss functions, including L1, L2,1,
and correntropy [23] are studied. In the second stage, to reduce
computational costs, we propose an approximation algorithm
of the nonnegative sparse representation based on the L1 ball
theory [14]. Then, based on the learned metric, we filter
the large-scale dataset into a small subset according to the
nearest neighbor criterion such that we can compute a sparse
representation on the filtered subset. This nonnegative sparse
solution is unique and can be optimized efficiently. Extensive
experiments validate the proposed model in extracting sparse
and robust representations, and demonstrate that the proposed
model significantly reduces computational costs and even leads
to better recognition results as compared to SRCs.

Compared with previous work, the major contributions of
this paper lie in three-fold.

1) A divide and conquer strategy is developed for robust
face recognition, which makes the computation of robust
sparse representation on a large-scale face database
possible.

2) An effective and simple outlier detection framework
is proposed. Experimental results show that the outlier
detection framework can efficiently detect continuous
occlusion and corruption in face recognition. Compared
with robust sparse representation methods, it can also
efficiently deal with the large variations incurred by
glasses and mustache in the training set.

3) Based on the analysis of L1 regularization and L1 ball
theory [14], an approximation algorithm of the nonneg-
ative sparse representation and a filtering strategy are
developed. Finally, the necessary condition for nonneg-
ative least squares technique to find a sparse solution is
also given. Theoretical analysis and experimental results
show that the filtering step plays a similar role of L1
regularization in the nonnegative sparse representation.

This paper is a complete and systemic work of our pre-
vious conference papers [24] and [25], which focused on
robust recognition and discriminative semi-supervised learn-
ing, respectively. Both theory and algorithm are significantly
enhanced. From algorithmic viewpoint, we extend the outlier
detection stage of [24] to a general framework, in which
potential loss functions, such as L1, L2,1, and correntropy
are studied. We also extend the outlier detection in [24] to
a multisubspaces algorithm. Experimental results show that
the multisubspaces strategy can further improve accuracy

especially for L1, L2,1 loss functions. From the theoretic view-
point, we harness the theory in [25] to show that the proposed
TSR method actually finds an approximation solution of the
nonnegative sparse representation. The combination of [24]
and [25] makes the theory of TSR method solid and complete.
The further analysis based on [25] also gives the necessary
condition for the nonnegative least squares techniques in
[18], [21], and [24] to find a sparse solution. In addition,
more experiments on large-scale PEAL Database [26] and
comparisons with robust sparse representation methods [20],
[18] are conducted to evaluate the proposed model for large-
scale face recognition.

The remainder of this paper is organized as follows.
In Section II, we begin with a brief review of sparse rep-
resentation and nonnegative sparse representation for face
recognition. Then we discuss the L1-norm technique and
nonnegative least squares technique, and present an efficient
algorithm in Section III. In Section IV, we detail the outlier
detection framework and the TSR method for face recognition.
A comparison between the proposed method and the state-of-
the-art methods is conducted in Section V. Finally, we draw
conclusions in Section VI.

II. SPARSE REPRESENTATION FOR FACE RECOGNITION

A. Sparse Representation-Based Methods

In machine learning and computer vision, one aims to seek
a suitable sparse solution from the whole training set X =
[X1, X2, . . . , Xk] ∈ R

d×n for k classes

min ||β||0 s.t. y = Xβ (1)

where ||.||0 denotes the L0-norm, which counts the number of
nonzero entries in a vector, and y ∈ R

d×1 is an input sample.
However, the problem of finding the sparse solution of (1) is
NP-hard, and is thus difficult to solve.

The theory of compressive sensing [27], [28] reveals that if
the solution β is sparse enough, we can solve the following
convex relaxed optimization problem to obtain an approximate
solution:

min ||β||1 s.t. y = Xβ (2)

where ||.||1 denotes the L1-norm.
To deal with occlusions and corruptions, Wright et al. [14]

further proposed a robust linear model as y = Xβ + e where
e ∈ R

d is an error item. Assuming that the noise item e has
also a sparse representation, one can compute a robust sparse
representation as follows:

min ||β||1 + ||e||1 s.t. ||y − (Xβ + e)||2 ≤ ε. (3)

We denote the algorithm using (3) by SRC1.
However, in many applications, the noise level ε is unknown

beforehand. In such cases, the Lasso optimization algorithm
[29] can be used to recover the sparse solution from

min ||y − (Xβ + e)||22 + λ(||β||1 + ||e||1) (4)

where λ can be viewed as an inverse of the Lagrange multiplier
in (3). It has been shown in [14] that ε can be interpreted as a
pixel level noise whereas λ cannot be. We denote the algorithm
using (4) for face recognition by SRC2.
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Many methods have been developed to solve (3) and
(4). From the viewpoint of optimization, those variations
are either iterative shrinkage-threshold based or IRLS based.
Reference [16] gives a review of iterative shrinkage-threshold
based sparse representation methods. Although SRCs indeed
improve the classification rate of robust face recognition
against the traditional methods in most cases [14], [16], their
computational cost is still high.

B. Nonnegative Sparse Representation-Based Methods

In face recognition, one also aims to seek the sparsest
nonnegative solution from the whole training set X

min ||β||0 s.t. y = Xβ and β ≥ 0. (5)

The problem of finding the sparse solution of (5) is NP-hard
[30], [31], and very difficult to solve in general. Fortunately,
we can replace the L0-norm by an L1-norm [30], [31] if the
solution β is sparse enough. Then we can solve the following
linear problem to obtain an approximation solution:

min ||β||1 s.t. y = Xβ and β ≥ 0. (6)

Orthogonal matching pursuit algorithm [31], second-order
cone programming [22], and nonnegative least squares [21],
[24] were proposed to solve the model in (6). He et al. [18]
further combined nonnegative sparse coding and maximum
correntropy criterion to deal with occlusion and corruption
problems in robust face recognition. Guan et al. [32] adopted
robust stochastic approximation for online nonnegative factor-
ization.

Recently, Slawski and Hein [33] showed that nonnegative
least squares technique with thresholding was resistant to
overfitting and experimentally outperformed L1 minimization.
And extensive experimental observations [18], [21], [24] also
showed that, without harnessing the L1-norm technique, the
nonnegative least squares technique can also learn a sparse
representation for image-based object recognition. However,
a theoretical investigation is still needed for supporting the
sparse idea and discussing its relationship with the L1 mini-
mization technique [21], [24]. Moreover, finding sparse repre-
sentation and nonnegative sparse representation remains as a
difficult problem, and is an open research topic [14].

III. NONNEGATIVE SPARSE CODING ALGORITHMS

In this section, we first propose an L1 regularized nonnega-
tive sparse coding algorithm based on the L0-L1 equivalence
theory [30], [31]. Then we analyze the effectiveness of the
L1 regularized item, and discuss the necessary condition for
nonnegative least squares technique to find a sparse solution.
Finally, based on collaborative representation, we propose an
efficient nonnegative sparse coding algorithm, which computes
an approximate sparse coding on the nearest subset instead of
the whole dataset.

A. L1 Regularized Nonnegative Sparse Coding Algorithm

The nonnegative sparse coding algorithm aims to find the
sparsest solution of an underdetermined and nonnegative linear

Algorithm 1 L1 Regularized Nonnegative Sparse Coding
Algorithm
1: Input: data matrix X , test sample y, F = φ, G =

{1, . . . , n}, β = 0, and α = −X T y.
2: Output: sparse code β.
3: Normalize the columns of X and y to have unit l2-norm.
4: Compute r = arg min{αi : i ∈ G}. If αr < 0, set F =

F ∪ r , G = G − r .
Otherwise stop: β∗ = β is the optimal solution.

5: Compute β∗
F by solving (10). If β∗

F ≥ 0, set β t = (β∗
F , 0)

and go to Step 4. Otherwise let r satisfy

θ = −βr

β∗
r − βr

= min
i

{ −βi

β∗
i − βi

: i ∈ F and β∗
i < 0

}

and set β t = ((1 − θ)βF + θβ∗
F , 0), F = F − r ,

G = G ∪ r . Return to Step 5.
6: Compute α according to (11) and return to Step 4.

system. Based on the L0-L1 equivalence theory and Lagrange
multiplier method, we can rewrite (6) as

min
β

||y − Xβ||22 + λ||β||1 s.t. β ≥ 0. (7)

We denote the method to solve (7) as nonnegative sparse
representation (NSR). The optimal problem in (7) can be
re-formulated as the following quadratic program:

min
β

(
λ

2
− X T y

)T

β + 1

2
βT X T Xβ s.t. β ≥ 0. (8)

Since X T X is a positive semidefinite matrix, this quadratic
program in (8) is convex. Based on the Karush–Kuhn–Tucker
optimal conditions, the following linear complementary prob-
lem (LCP) is derived2 [34]:

α = X T Xβ − X T y + λ

2
, α ≥ 0, β ≥ 0, βT α = 0 (9)

where (α, β) is often said to be a complementary solution
of (8). If the matrix X has full column rank (rank(X) = n),
the convex program in (8), and the LCP in (9) have unique
solutions for each vector y.

In order to solve the above criterion, we are now introducing
an active set-based optimization technique. The KKT tells us
that not all coefficients in α are active. Hence, we divide them
into two sets. Let F and G be two subsets of {1, . . . , n} such
that F ∪ G = {1, . . . , n} and F ∩ G = φ. Let F and G
be the working set and inactive set in the active set algorithm,
respectively. Considering the following column partition of the
matrix X = [X F , XG ] where X F ∈ R

m×|F |, XG ∈ R
m×|G|,

and |F |, |G| are the numbers of F and G, respectively, we
can rewrite (9) as:[

αF

αG

]
=

[
X T

F X F X T
F XG

X T
G X F X T

G XG

] [
βF

βG

]
−

[
X T

F y
X T

G y

]
+ λ

2

where βF , αF ∈ R
|F |, βG , αG ∈ R

|G|, β = (βF , βG), and
α = (αF , αG ). Then we can compute values of the variables

2Since the solution β is assumed to be sparse, we can use LCP to efficiently
find a sparse active set.
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TABLE I

RELATIONSHIP BETWEEN THE VALUE OF αi AND THE DISTANCE FROM xi TO y

−xT
i y xT

i ŷ (ŷ
.= X F βF ) αi = xT

i ŷ − xT
i y

Case 1 ||xi − y||2 ≤ ||x j − y||2 ||xi − ŷ||2 ≥ ||x j − ŷ||2 αi ≤ α j

Case 2 ||xi − y||2 ≤ ||x j − y||2 ||xi − ŷ||2 ≤ ||x j − ŷ||2 αi ≤ α j or αi ≥ α j

Case 3 ||xi − y||2 ≥ ||x j − y||2 ||xi − ŷ||2 ≥ ||x j − ŷ||2 αi ≤ α j or αi ≥ α j

Case 4 ||xi − y||2 ≥ ||x j − y||2 ||xi − ŷ||2 ≤ ||x j − ŷ||2 αi ≥ α j

βF and αG by the following iterative procedure:
min

βF ∈R|F |
||X FβF − y||22 + λ

∑
i∈F

βi (10)

αG = X T
G(X FβF − y) + λ

2 . (11)

And the optimal solution is given by β = (βF , 0) and α =
(0, αG ). Algorithm 1 summarizes the optimal procedure.

B. Efficient Nonnegative Sparse Coding Algorithm

In sparse code algorithms for computer vision and pattern
recognition [14], one often normalizes each column of the
dataset X to have unit l2-norm, which forms an L1 ball to make
the recovery of arbitrary corruption possible [14]. Another
merit of this normalization step is to easily determine the L1
regularization item λ. In this section, we study Algorithm 1
under the L1 ball and develop an efficient algorithm.

In Algorithm 1, αi controls the working set F . In each
iteration, the index r corresponding to the minimum αr is
added to the working set F . Looking at (11), there are three
parts in αi . The first two parts of αi are x T

i X FβF and x T
i y,

respectively. Here, we denote X FβF by ŷ. Proposition 1 shows
the relationship between the value of xT

i y and the value of
the l2 distance ||xi − y||2. If ||xi ||22 = 1, ||x j ||22 = 1, and
xT

i y ≥ x T
j y, x j will be far away from y than xi (i.e., ||xi −

y||2 ≤ ||x j − y||2). Based on Proposition 1, we categorize the
relationship between the value of αi and the distance from xi

to y into four cases in Table I.
Proposition 1: For ∀ xi , x j , and y, if ||xi ||22 = 1, ||x j ||22 =1,

and x T
i y ≥ x T

j y, then the inequality ||xi − y||2 ≤ ||x j − y||2
holds true.

Proof Sketch: Given that ||xi ||22 = 1, ||x j ||22 = 1, and
xT

i y ≥ x T
j y, we have (xT

i xi −2x T
i y+ yT y) ≤ (x T

j x j −2x T
j y+

yT y). Hence, ||xi − y||22 ≤ ||x j − y||22.
For Cases 1 and 4 in Table I, the λ in Algorithm 1 plays

a role of a truncation function. Considering the inequality
αr < 0 in Step 4 of algorithm and λ > 0, the inequality
x T

r (X FβF −y)+(λ/2) < 0 can be written as xT
r (X FβF −y) <

−(λ/2). This means that there may be a sample xi that
corresponds to a large αi value (αi < 0) and can further reduce
the objective. But the nonnegative regularization item λ will
restrict this sample from the working set F . In Cases 1 and 4,
we learn if xi is nearer to y than x j , αi will be smaller than α j .
Hence, λ plays a role of a truncation function and always
removes faraway samples (−(λ/2) ≤ αi < 0).

For Cases 2 and 3 in Table I, λ in Algorithm 1 plays the
role of a discrimination function. In (11), there are two items
that decide the value of αi . The sample xi that is near to the

test sample y may have a large value αi so that it does not
satisfy the inequality in Step 4. However, α j with respect to a
faraway sample x j can also have a small value. If a sample is
redundant in the dataset X , it will be potentially restricted from
the working set F . Hence, λ potentially makes Algorithm 1
compute a discriminate code.

Based on the above four cases, we learn that the L1
regularizer λ plays an important role in finding a nonnegative
sparse solution, and also plays a role of hard thresholding in
[33]. If a dataset tends to be large, the solution computed
by the nonnegative least squares technique in [18] and [21]
without harnessing the L1 regularization may not be sparse.
However, according to Cases 1 and 4, we observe that the L1
regularization item λ plays the role of a truncation function to
remove faraway samples. This indicates that if the nonnegative
least squares technique is used to compute a solution on the
nearest dataset, the solution will be an approximation of non-
negative sparse solution. Since the datasets used in [18] and
[21] are not very large and the dimension of dataset is often
larger than the size of dataset, the nonnegative least squares
techniques in [18] and [21] can find a nonnegative sparse
solution. Hence, the necessary condition for nonnegative least
squares technique to find a sparse solution is that the nearest
dataset is used. Experimental results in Section V-G1 also
confirm this finding.

If we directly make use of a truncation function to remove
faraway samples, we will lose useful information in Cases 2
and 3. Fortunately, we aim to perform classification in which
the data from one class are often assumed to be clustered.
Hence, we can develop an efficient nonnegative sparse coding
algorithm. First, we consider Cases 1 and 2 and compute
a nonnegative sparse code from the nearest dataset. The
nearest neighbor parameter nknn is used to substitute the
regularization λ. Second, based on the collaborative character
[35] in sparse representation classification (i.e., sparse coding
is performed collaboratively over relative datasets), we assume
that only a test sample can be expressed by the datum from
its relative and collaborative classes. Hence, we compute an
informative and sparse code only from its relative classes.

IV. TSR

Motivated by the efficient nonnegative sparse coding
algorithm, we present a TSR algorithm for robust face recog-
nition in this section.

A. Learning a Robust Metric

In real-world face recognition, facial images are often
corrupted by noise or outliers, that is, some pixels do not
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TABLE II

POTENTIAL LOSS FUNCTIONS AND WEIGHTING FUNCTIONS

Name Loss Function φ() Weighting Function δ()

φ1 L2,1

√
ε + x2 1/

√
ε + x2

φ2 L1 |x| 1/|x|
φ3 MCC 1 − exp(−(x2/ε)) exp(−(x2/ε))

φ4 L̂1

⎧⎨
⎩

x2/2 |x| ≤ ε

ε|x| − ε2

2 |x| > ε

⎧⎨
⎩

1 |x| ≤ ε

ε/|x| |x| > ε

belong to facial images. One expects to learn a metric M
through which outliers are efficiently detected and rejected
so that classification algorithms can work on the uncorrupted
subsets of pixels in facial images. Generally, M is assumed to
be a diagonal matrix [36].

To deal with outliers and for the following recognition, we
define the metric M as a function of a test sample y, a subspace
U ∈ R

d×m that models variation of the dataset X ,3 and a
projection coefficient vector ξ ∈ R

m×1, i.e., M

= M(U, y, ξ)

where M j j

= φ(y j − ∑m

i=1 Uij ξi ) and φ(x) is a robust
function listed in Table II. One expects to find a metric that
has the minimum matrix norm

M∗ = arg min
M(y,U,ξ )

||M(y, U, ξ)||1 (12)

where ||M||1 
= ∑d
i=1

∑d
j=1 |Mij |. Then we obtain the

following optimization problem:

M∗ = arg min
M(y,U,ξ )

d∑
j=1

φ

(
y j −

m∑
i=1

Uij ξi

)
. (13)

The problem in (13) can be optimized in an alternative
minimum way [23]

Mt
j j = δ

(
y j −

m∑
i=1

Uij ξ
t−1
i

)
(14)

ξ t = arg minξ (y − Uξ)T (
Mt ) (y − Uξ) (15)

where δ(.) is the weighting function corresponding to a
specific loss function φ(.). The optimization problem in (15) is
a weighted linear regression problem, and its analytical solu-
tion can be directly computed by ξ t = (U T Mt U)−1U T Mt y.

Table II lists some potential loss functions (φ(.)) and their
corresponding weighting functions (δ(.)). When substituting
φ2(.) into (13), the objective function of (13) is L1-norm. Since
the weighting function of L1-norm is unpredictable around
the origin, φ1(.) and φ4(.) are often used to replace L1-norm.
When ε tends to be zero, φ1(.) and φ4(.) become φ2(.). When
substituting φ3(.) into (13), the optimization problem in (13)
is actually a maximum correntropy (MCC) problem [23]. It
has been shown in [23] that MCC can efficiently deal with
nonGaussian noise and large outliers.

Fig. 1 further shows the shapes of different loss functions.
The robust function φ3(.) in MCC lies in the functions of

3In this paper, the subspace U is composed of the eigenvectors computed
by principal component analysis [3].

Algorithm 2 Learning a Robust Metric
1: Function: L RM(Subspace U , test data y, small positive

value ε).
2: Output: M and ξ .
3: repeat
4: Initialize converged = FALSE.
5: Update M according to (14).
6: Update ξ according to (15).
7: if the variation of entropy is smaller than ε then
8: converged = TRUE.
9: end if

10: until converged == TRUE

−2 −1 0 1 2
0

0.5

1

1.5

2

x
φ(

x)

φ1(x)
φ2(x)
φ3(x)
φ4(x)

(a)

−2 −1 0 1 2
0

1

2

3

4

x

δ(
x)

δ1(x)
δ2(x)
δ3(x)
δ4(x)

(b)

Fig. 1. Robust loss functions and their corresponding weighting functions.
The analytic functions of φ(x) and δ(x) are listed in Table II. In φ1(x),
ε = 0.1. In φ3(x), ε = 0.5. In φ4(x), ε = 1. (a) Robust loss functions.
(b) Weighting functions.

L2,1 and L1 within the range [−1, 1]. Moreover, φ3(.) gives
outliers the same loss value (=1) regardless of whether where
outliers are arbitrarily far away from the origin. In Fig. 1(b),
we observe that the weighting function δ3(.) corresponding to
φ3(.) assigns the outliers zero weight whereas other weighting
functions do not. Hence, the robust function φ3(.) in MCC can
efficiently deal with outliers in the alternated minimization
procedure.

Algorithm 2 outlines the optimal procedure. According to
the half-quadratic optimization [37], Algorithm 2 alternately
minimizes the objective by (14) and (15) until Algorithm 2
converges. Since outliers are significantly far away from
uncorrupted pixels, the M-estimator will punish the outliers
during alternative minimum procedure. When the algorithm
converges, we obtain a robust metric in which the diagonal
entries corresponding to outliers will have small values.

1) Multisubspace Approach: In real-world face recognition,
the errors incurred by face disguise are often not random. Face
images are hardly occluded by a monkey image or corrupted
by random noise. The errors are often due to the corruption of
a large region of the human face, e.g., by a scarf. To deal with
this real-world scenario, we develop a multisubspace approach
in this section.

Fig. 2(e) shows an example of the robust metric learned by
Algorithm 2. We observe that although Algorithm 2 accurately
detects scarf occlusion, it also treats other important areas
around two eyes as outliers. As a result, those areas have
smaller values (darker pixels) in the learned metric. Looking
at the iterative procedure in (14) and (15), we find that Mt

j j is
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(a) (b) (c) (d) (e) (f)

Fig. 2. Example of multisubspace when the number of subspaces is two.
(a) 1-D of the subspace U learning by PCA. (The vector is reshaped to an
image for show.) (b) and (c) Subspaces from U , and ∪Ul = U . (d) Input face
with scarf occlusion. (e) Robust metric learned by Algorithm 2. (Darker pixels
correspond to lower weights.) (f) Robust metric learned by Algorithm 3.

determined by the reconstructed data ŷ = ∑
Uij ξ

t−1
i . If ŷ is

well reconstructed without the affection of outliers, outliers
can be accurately detected. However, since ŷ is iteratively
computed, it will be potentially affected by outliers especially
when there are large corruptions.

To alleviate this problem, we extend Algorithm 2 to a
multisubspace algorithm. The simple idea is to segment U into
nu subspaces with the same number of columns (∪ Ul = U )
where nu is the number of subspaces. Finally, we find a confi-
dence subspace in which outliers only corrupt a small part and
can be easily detected. Then an optimal linear coefficient ξ∗ is
learned on the confidence subset Ul , and used to reconstruct
ŷ. The final robust metric can be calculated as follows:

M∗
j j = φ

(
y j −

m∑
i=1

Uij ξ
∗
i

)
(16)

where M j j denotes the j th diagonal element of subspace M .
Assuming that Ml corresponds to Ul and is a subset of M
that is computed on U , the confidence subset is determined
as follows:

l∗ = arg maxl

∑
j

Ml
j j (17)

where Ml
j j denotes the j th diagonal element of the lth

subspace M . In other words, if a subset is less corrupted, it
will receive larger weights than other subsets.

Algorithm 3 summarizes the procedure of the proposed
multisubspace algorithm. In Step 3, we learn a metric M on
the whole subspace and compute Ml for each Ul . In Step 4, we
find the confidence subspace Ul according to (17). In Step 5,
a confidence coefficient ξ∗ is computed on the confidence
subspace Ul . In Step 6, we obtain the robust learning metric
according to (16). An intuitive way to determine the partition
of the whole space U is based on the face structure. It is
suggested to partition different facial organs into different
subspaces. Fig. 2 shows an example of multisubspace when
the number of partition nu = 2. Fig. 2 (f) shows an example
of the robust metric learned by Algorithm 3. Compared with
Algorithms 2 and 3 can detect the occlusion on the whole face
more accurately.

B. Algorithm of Two-Stage Sparse Representation

Based on the analysis of the role of regularizer in
Section III-B, we first filter the database into a small subset
according to the nearest neighbor criterion in the learned
robust metric. We denote the number of the nearest neighbors
by nknn and let nknn < min(n, d) (The nknn is the k in KNN.).
The motivation of this filtering step lies on three folds: 1) it

Algorithm 3 Learning a Robust Metric via Multisubspaces

1: Input: Subspace U and Ul(∪
l

Ul = U), a test visual data

y, and a small positive value ε.
2: Output: M .
3: Set M = L RM(U, y, ε).
4: Find the subspace Ul according to (17).
5: Set ξ∗ = L RM(Ul , y, ε).
6: Compute M according to (16).

ensures that the following optimization problem in (18) has
a unique solution; 2) it plays a similar role as λ in Lasso to
remove some samples corresponding to small coefficients4;
and 3) it significantly reduces computational costs so that
TSR can deal with large-scale problems. The efficiency of
this filtering step will be further corroborated in experiment
Sections V-E and V-G1. Unless otherwise stated, we set nknn
to 300 throughout this paper.

Second, a nonnegative representation is computed on the
subset by solving (7). For convenience, we set λ = 0 [21].
Then we have

min ||y − Xβ||2 s.t. β ≥ 0. (18)

If the matrix X has full column rank (rank(X) = n), the
matrix X T X is positive definite so that the strictly convex
program in (18) has unique solutions for each vector y [38].
Our implementation of (18) is based on an active set algorithm
for linear programming [34], [38].

Inspired by the sparse classifier proposed in [14], we
classify y as follows. For each class c, let δc : R

n → R
nc

be a function, which selects the coefficients belonging to
class c, i.e., δc(β) ∈ R

nc is a vector whose entries are
the entries in β corresponding to class c. Utilizing only
the coefficients associated to class c, the given sample y is
reconstructed as ŷc = Xcδc(β). Then y is classified based on
these reconstructions by assigning it to the class that minimizes
the residual between y and ŷc

min
c

rc(y)
.= ||y − ŷc||M (19)

where ||.||M is the correntropy induced diagonal metric in (13).
Algorithm 4 summarizes the procedure of the TSR. In

Step 3, we make use of Algorithm 2 (or Algorithm 3) to
learn a robust metric M . And then we set X̂ = √

M X and
ŷ = √

M y so that we can perform classification under M in
the following steps. In Step 4, to reduce computational costs,
the large-scale dataset X̂ is filtered into a small subset X̂1. In
Step 5, a sparse representation is computed by NSR on the X̂1.
In Step 6, considering that each object class often has several
instances, i.e., nc ≥ 1, we select all the instances in the class
corresponding to the nonzero coefficients in Step 6 so that we
select the most competitive class. In Step 7, the query image
y is classified according to the residuals.

4The active set algorithm [3], [8] to solve (21) selects the sample that can
significantly reduce the objective step by step. The last selected samples often
correspond to smallest coefficients and are far away from the query y.
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Algorithm 4 TSR
1: Input: data matrix X , a test sample y, the number of the

nearest neighbor nknn.
2: Output: identity(y).
3: Compute a robust diagonal metric M according to

Algorithm 2 (or Algorithm 3), and set X̂ = √
M X and

ŷ = √
M y.

4: Compute a nearest subset I 1 in X̂ to ŷ according to the
nearest neighbor criterion, and set X̂1 = {xi |i ∈ I 1}.

5: Solve the nonnegative least squares problem

β∗ = arg minβ ||X̂1β − ŷ|| s.t. β ≥ 0. (20)

6: Set I 2 = {i |βi > 0 and i ∈ I 1} and X̂2 = {X̂c| x̂i ∈
X̂c and i ∈ I 2}, solve the nonnegative problem

β∗ = arg minβ ||X̂2β − ŷ|| s.t. β ≥ 0. (21)

7: Compute the residuals rc(ŷ) = ||ŷ − X̂2δc(β
∗)||2, for

c = 1, . . . , k.
8: identity(y) = arg minc rc(ŷ).

Fig. 3. Samples of cropped faces in the AR database.

V. EXPERIMENTAL VERIFICATION

In this section, the proposed method is systematically
compared with the state-of-the-art methods: reconstructive
and discriminative subspace method (LDAonK) [3], linear
regression classification (LRC) [39], sparse representation-
based classification (SRC) [14], correntropy-based sparse rep-
resentation (CESR) [18], and robust sparse coding (RSC) [20].
Experiments were performed on an AMD Quad-Core
1.80-GHz Windows XP machines with 2-GB memory.

A. Experimental Setting and Databases

Database: Two face databases and one large-scale database
are selected to evaluate different methods. All the images are
converted to grayscale and the facial image are aligned by
fixing the locations of two eyes. The descriptions of four
databases are as follows.

1) AR Database [40]: The AR database consists of over
4000 facial images of 126 subjects (70 men and
56 women). For each subject, 26 facial images are taken
in two separate sessions. We select a subset of the dataset
consisting of 65 male subjects and 54 female subjects.
The images are cropped with dimension 112×92. Fig. 3
shows some cropped images in this dataset.

2) Extended Yale B Database [41]: The Extended Yale
B database consists of 2414 frontal-face images
of 38 subjects. The cropped 192 × 168 face images
are captured under various laboratory-controlled lighting
conditions and different facial expressions. For each
subject, half of the images are randomly selected for
training (i.e., about 32 images per subject), and the left

Fig. 4. Samples of cropped faces in the extended Yale B database.

(a)

(b)

Fig. 5. Samples of cropped faces in the CAS-PEAL database. (a) Cropped
facial images in the training set. (b) Occluded facial images in the testing set.

half for testing. Fig. 4 shows some cropped images in
this database.

3) PEAL Database [26]: The CAS-PEAL database is a
large-scale Chinese face database. For the training set,
we select all frontal facial images that have under-
gone expression and lighting variations, where the pose
degrees of all frontal facial images are less than or
equal to 22°. Then the training set contains 7448 images
of 1038 individuals. For the first testing set, we select
261 images of 261 individuals occluded by sunglasses
in the accessory dataset. For the second testing set, we
select 784 images of 262 individuals occluded by hat
in the accessory dataset. The images are cropped with
dimension 32 × 32. Fig. 5 shows some cropped images
in this database.

Algorithm Setting: The details of compared techniques are
as follows.

1) SRC: we compare its two robust models, which are
different in the aspects of robustness and computational
strategy [14].
SRC1: the implementation minimizes the L1-norm in (22)
via a primal-dual algorithm for linear programming based
on [27]5

min ||β||1 + ||e||1 s.t. ||y − Xβ + e||2 ≤ ε (22)

where ε is a given nonnegative error tolerance.
SRC2: the implementation minimizes the L1-norm in (23)
via an active set algorithm based on [42]6

min ||y − Xβ + e||2 + λ(||β||1 + ||e||1) (23)

where λ is a given sparsity penalty.
2) TSR7: The nknn in Step 2 is set to 300. The subspace U

in Algorithm 2 is composed of the eigenvectors corre-
sponding to the five largest eigenvalues as suggested in
[3] and [8]. Algorithm 2 is used to learn a robust metric.

3) MTSR: Algorithm 3 is used to learn a robust metric.
4) TSR1: TSR1 denotes the TSR without the filtering steps

(Steps 4 and 5), i.e., the TSR1 directly computes a
nonnegative sparse representation on the whole dataset

5The source code. Available at: http://www.acm.caltech.edu/l1magic/.
6The source code. Available at: http://redwood.berkeley.edu/bruno/sparsenet/.
7The source code. Available at: http://www.openpr.org.cn/index.php/All/

63-Two-stage-Sparse-Representation/View-details.html.
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Fig. 6. Recognition rates for the AR dataset. (a) Recognition rates of different methods under sunglasses occlusion. (b) Recognition rates of different loss
functions under sunglasses occlusion. (c) Recognition rates of different methods under scarf occlusion.

X̂ via nonnegative least squares technique. Algorithm 2
is used to learn a robust metric.

5) CESR: Setting of the parameters of CESR follows the
suggestion in [18].8

6) RSC: Setting of the parameters of RSC follows the
suggestion in [20].9

7) LDAonK: Setting of the parameters of LDAonK follows
the suggestion in [3].

In order to estimate the parameter ε of SRC1 and λ of
SRC2, five-fold cross-validation on each dimension of data
for each training set was used, where the candidate value set
for both ε and λ is {1, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025,
0.01, 0.005, 0.001, 0.0005, and 0.0001}. Note that due to
large computational cost of SRC1, SRC2, and RSC, exhaustive
search of the parameter value is not applicable. Also for the
same reason, we can only report the experimental results
of SRCs in the lower dimensional feature space. Since the
multisubspace strategy in Algorithm 3 is developed only for
real-world occlusion, we only report its results on real-world
occlusion experiments.

B. Recognition Under Sunglasses Disguise

In this section, we evaluate the robustness of different
methods and performance of different loss functions under
sunglasses disguise. For training, we use 952 images (about
eight for each subject) of un-occluded frontal views with
varying facial expression. And for testing, we use images with
sunglasses. Fig. 6(a) shows the recognition performance of
different methods based on different downsampled images of
dimensions 154, 644, and 2576 [14]. Those numbers corre-
spond to downsampling ratios of 1/8, 1/4, and 1/2, respectively.

We observe from the numerical simulations that the
methods can be ranked in descending recognition accuracy as
MTSR, TSR, RSC, CESR, SRC1, SRC2, LDAonK, and LRC.
The sparse representation-based methods outperform two
nonsparse ones. If occlusions exist, it is unlikely that the test
image will be very similar to the subspace of the same class,
so that LRC performs poorly. In this case, TSR and RSC,
CESR significantly perform better than two SRC methods.
As in [20], iteratively reweighted methods seem to deal with
outliers better than other methods. MTSR achieves the highest

8The source code. Available at: http://www.openpr.org.cn/index.php/All/
69-CESR/View-details.html.

9The source code. Available at: http://www4.comp.polyu.edu.hk/~cslzhang.

recognition rates. This is because the outlier detection stage
of MTSR can efficiently detect the sunglasses occlusion. The
MCC in MTSR is robust to nonGaussian noise [18].

Although TSR, CESR, and RSC are all based on
M-estimators, they deal with outliers in different ways. Both
CESR and RSC find robust weights and solve an L1 min-
imization subproblem. Since RSC uses complexity strategy
with a large computational cost to detect outliers, it may be
more robust than CESR in some cases. Although both TSR
and CESR are based on correntropy to detect outliers, TSR
can deal with outliers better due to its independent outlier
detection step. As a result, TSR outperforms CESR.

Fig. 6(b) further shows the recognition rates of TSR and
MTSR based on different loss functions. We observe that the
loss function will significantly affect the recognition accuracy.
When L̂1 and L2,1 loss functions are used, the recognition
rates of TSR are close to those of SRC1 and SRC2, and
are lower than those of RSC. These experimental results
indicate that the accuracy of outlier detection depends on loss
functions. Since MCC is robust to nonGaussian noise and large
outliers, TSR based on MCC can accurately detect outliers and
hence achieve highest recognition rates.

Fig. 6(b) also shows that the multisubspace strategy in
MTSR can further improve recognition accuracy especially
when using L̂1 and L2,1 loss functions. We observe that the
recognition rate of MTSR-L̂1 is close to those of TSR-MCC
and MTSR-MCC. They all achieve their highest recognition
rates when the dimension is 2576. It is due to that the
weighting function of L̂1 is based on a threshold ε as shown in
Fig. 1(b). If a given value is smaller than ε, its corresponding
weight will be 1. The confidence subset makes multisubspaces
algorithm find an accurate reconstruction of ŷ and an appro-
priate value of ε such that the algorithm can accurately detect
outliers. Hence, the recognition rate of MTSR-L̂1 is signifi-
cantly higher than that of TSR-L̂1. In robust statistics, MCC
can efficiently deal with large corruptions and nonGaussian
noise such that both TSR-MCC and MTSR can accurately
detect sunglasses occlusions and learn similar robust metrics in
this experiment. Hence, it is possible for TSR-MCC to achieve
higher recognition rates than MTSR-L̂1.

C. Recognition Under Scarf Occlusion

Face recognition under scarf occlusion can be used to
evaluate the robustness of different methods. For sparse
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Fig. 7. Sparse representation learned by SRC1 under scarf occlusion.

representation methods, partition scheme is often used to
tackle scarf occlusion [14], [18], [39]. In real-world problems,
occlusion and corruption are often known such that we cannot
make use of partition scheme in all scenarios. In this section,
we evaluate the robustness of different methods under scarf
occlusion on facial images. For training, we select 952 images
(about eight for each subject) of un-occluded frontal views
with varying facial expressions. For testing, we use images
with scarf as shown in Fig. 2(d). Note that our purpose is
to fairly evaluate different methods rather than achieve the
highest recognition rate on this dataset.

Fig. 6(c) shows the recognition rates of eight compared
methods. We observe that MTSR significantly outperforms
other methods. Although RSC and CESR perform better than
two SRC methods, they still fail to detect the errors incurred
by scarf occlusion. The reason for the low recognition rates
is that there is mustache on some facial images. Since the
pixels in the mustache area are similar to the pixels corrupted
by scarf occlusion, SRCs fail to detect the occluded area and
always select the facial images with mustache as the most
similar images. Fig. 7 shows such an example. As a result,
the recognition rates of SRCs, RSC, and CESR are quite low.
As discussed in Section V-G2, MTSR and TSR make use of
PCA subspace in the outlier detection stage instead of using
the whole training samples. This subspace can model facial
variations and alleviate the affection of individual sample.
Hence, MTSR and TSR accurately detect the corrupted region
and achieve the highest recognition rates. This experiment
also confirms that accurate outlier detection is important for
robust learning methods.

D. Recognition Under Random Pixel Corruption

In some scenarios, the query image y can be partially
corrupted [14], [18]. We testify the robustness of TSR on the
extended Yale B face database. For each subject, half of the
images are randomly selected for training, and the left half
are for testing. The training and testing sets contain 1205 and
1209 images, respectively. All the images are downsampled
to 48×42. Each test image is corrupted by replacing a
percentage of randomly selected pixels with random pixel
value, which follows a uniform distribution over [0, 255].
The percentage of corruption is from 10% to 80%. Since the
recognition rates of different sparse representation methods
are similar under random corruptions, we only report the
results of SRC1 and SRC2 here.

Fig. 8 plots the recognition accuracy of five methods
under different levels of corruptions. When the level of
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Fig. 8. Recognition rates under random pixel corruption.

TABLE III

RECOGNITION RATES (%) ON LARGE-SCALE PEAL DATASET

Algorithm LRC MTSR TSR TSR1

Glasses Occlusion 30.3 44.0 40.2 35.3

Hat Occlusion 23.1 54.2 53.8 45.2

corruptions tends to be high, the three sparse methods begin to
significantly outperform the two nonsparse ones. Recognition
rates of the two SRC methods are very close. Finally, TSR
performs slightly worse than the SRC methods when the level
of corruptions is small. Although TSR only obtains similar
recognition rates as compared with the SRC methods, it can
significantly reduce computational cost.

E. Recognition on Large-Scale Dataset

In this section, we further evaluate the performance of
TSR on a large-scale face database. We selected the large-
scale PEAL dataset where there are 7448 facial images in
the training set. Table III shows experimental results for the
two testing sets. Since there are large variations of facial
images in the training set and occlusions in the testing set,
the recognition task is difficult. Hence, recognition rates of
different methods are low.

For the first testing set of glasses occlusion, both MTSR and
TSR perform better than LRC and TSR1. Although the robust
metric in TSR1 is the same as that in TSR, TSR learns an
approximation solution of nonnegative sparse representation.
The coefficients learned by TSR are more informative than
those learned by TSR1. As a result, there is a significant
improvement in terms of recognition rate.

For the second testing set of hat occlusion, the proposed
methods significantly outperform LRC. As expected, MTSR
achieves the highest recognition rate. Looking at samples of
images occluded by hat in Fig. 5, we observe that the hat
occlusion incurs large variations of the pixels beyond two
eyes. Although the occluded pixels are significantly different
from those unconcluded pixels, they only corrupt small parts
of one cropped face image. LRC fails to deal with these
small occlusions such that it obtains a low recognition rate.
However, TSR can accurately detect these occlusions and
hence significantly outperforms LRC. Since the errors incurred
by hat occlusion only occupy a small area of the whole face
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Fig. 9. Computation time (S) on various feature spaces on the AR dataset.

image, both MTSR and TSR can accurately detect the errors.
As a result, the recognition rates of the two methods are
similar.

F. Computational Costs

Computational complexity is an important issue for sparse
representation methods. In this section, we compare the com-
putation costs of different methods. The computational com-
plexity of Algorithm 4 mainly depends on the KNN filtering
step. Since the computational complexity of quick sort is
O(nlog(n)), the computational complexity of Algorithm 4 is
O(nlog(n)).

Fig. 9 shows the overall computation time for various
features on AR database, with the same experiment setting
as that in Section V-B. When the feature dimension is 644,
RSC, SRC1, SRC2, CESR, TSR1, and TSR take 170, 56,
6.9, 0.40, 0.37, and 0.13 s for each test image, respectively.
(In [14], SRC1 takes about 75 s per test image on a PowerMac
G5.) All these compared methods can be ranked in terms of
computational cost from large to small as follows. RSC, SRC1,
SRC2, CESR, TSR1, TSR, and LRC. It is clear that TSR is
better than SRC1, SRC2, and RSC due to less computational
cost and better performance. Note that the computational
cost is significantly reduced by over 50 times using TSR as
compared with the SRC2. In addition, since RSC must solve an
L1 minimization problem in each reweighting iteration, RSC
takes nearly k times longer than other SRC methods (k is the
number of iterations).

It is interesting to observe that the computational cost
of TSR1 and CESR is similar. This is because they both
compute a nonnegative sparse representation on the whole
dataset although they deal with outliers in different ways.
This also indicates that the computational cost of solving an
L1 minimization is too large. Since TSR makes use of an
approximation solution and works on a collaborative subset,
TSR can further reduce computation time.

G. Parameter Selection

1) Parameter nknn and Sparsity: The number of the nearest
neighbor nknn is a key parameter to control computational
cost, recognition rates, and the number of nonzero coefficients
(L0 norm). In this section, we study how the nknn affects

TABLE IV

RECOGNITION RATES (%) AND THE TOTAL NUMBER OF NONZERO

COEFFICIENTS (L0 NORM) FOR VARIOUS NUMBER OF nknn OF TSR ON

THE AR DATASET

nknn 100 200 300 400 500 952
Recognition Rate 84.0 84.0 86.6 87.4 88.2 86.6

L0 Norm 19 22 23 24 25 28

TABLE V

RECOGNITION RATES (%) AND THE TOTAL NUMBER OF NONZERO

COEFFICIENTS (L0 NORM) FOR VARIOUS NUMBER OF nknn OF TSR ON

GLASSES OCCLUSION ON THE PEAL DATASET

nknn 100 200 300 400 500 7448
Recognition Rate 39.1 39.5 40.2 39.5 39.1 35.3

L0 Norm 29 31 33 34 35 87

the performance of TSR. The first experimental setting is the
same as that of the AR dataset in Section V-B and the feature
dimension is 644. The second experimental setting is the same
as that on glasses occlusion in Section V-E.

Table IV shows recognition rates and the number of nonzero
coefficients for various number of the nearest neighbors on
the AR dataset. The total number of coefficients of SRC1 and
SRC2 is 40 and 25, respectively. We observe from the numer-
ical simulations that TSR can yield a sparse representation,
and both recognition rates and the total number of nonzero
coefficients increase as the number of the nearest neighbor
increases. It is also interesting to observe that the recognition
rate at 500 is even higher than that at 952. This coincides with
the results in Section V-E.

Table V further shows recognition rates and the number of
nonzero coefficients for different numbers of nearest neighbors
on the PEAL glasses occlusion dataset. The highest recog-
nition rate is achieved when nknn is 300. We observe that
only using part of the facial images to compute a sparse
representation can yield a higher recognition rate. This means
that nknn plays a key role of L1-regularization and affects both
recognition rates and sparsity. Experimental results corroborate
that the filtering large-scale database in TSR is reasonable.

Moreover, the experimental results demonstrate that even if
a robust metric has been learned, a test image may not be very
close to the same class in the training set. The filtering step
(or L1-regularization) is important for sparse representation-
based methods to learn an informative and discriminative
representation for robust face recognition.

2) Subspace Selection: In real-world face recognition, there
are often glasses or mustache on registered facial images.
Since those images cannot be treated as outliers, they poten-
tially affect the recognition accuracy of sparse representation
methods as discussed in Section V-C. Hence, the subspace
selection is also an important issue for the outlier detection
in TSR, which alleviates the affection of individual sample in
training set. In this section, simulations are run to show how to
determine an appropriate subspace for TSR. The setting is the
same as that in Section V-B. The dimension of facial images is
644. The eigenvectors learned by principal component analysis
(PCA) are used as the subspace U in TSR.



HE et al.: TWO-STAGE NONNEGATIVE SPARSE REPRESENTATION 45

5 10 15 20 25 30 35
0
2
4
6
8
10
12

E
ig

en
va

lu
e

Eigenvalue number
(a)

0 5 10 15
50
60
70
80
90

The Number of Used Eigenvectors

R
ec

og
ni

tio
n 

R
at

e 
(%

)

(b)

(c)

Fig. 10. Relationship between subspace selection and robustness. (a) Eigen-
values of the data matrix X calculated using the AR dataset. (b) Recognition
rates as a function of the number of eigenvectors. (c) Reconstructed images
by using different numbers of eigenvectors. The leftmost facial image is the
input occluded image. The number of eigenvectors ranges from 1 to 41 at
each five interval.

We plot the eigenvalues of the training data matrix X from
the AR dataset in Fig. 10(a). We can see that the first few
eigenvalues are significantly larger than the remainder. Given
an occluded face image, we show the reconstructed images by
using different numbers of eigenvectors in Fig. 10(c). The left
facial image is the input occluded image and the number of
eigenvectors ranges from 1 to 41 with interval 5. We observe
that when the number of eigenvectors is larger than 16, there
are obvious shadows around two eyes in the reconstructed face
images. This means that although using more eigenvectors can
achieve smaller reconstruction errors, the reconstructed images
will be dominated by outliers (occluded pixels). Fig. 10(a)
and (c) indicates that the first several eigenvectors dominate the
major variations of training set and the remaining eigenvectors
often affect local details.

Fig. 10(b) further shows recognition accuracy as a function
of the number of eigenvectors used. The subspace U in learned
robust metric is composed of different numbers of eigenvec-
tors. The “0” indicates that we use mean vector as the input
1-D subspace U . We observe that recognition rates decrease
significantly as more eigenvectors are used. This means that
the outlier detection stage cannot accurately detect outliers.
Hence, selection of an appropriate subspace to detect outliers
is important for robust face recognition. From Fig. 10(a)–(c),
it is suggested that the first several eigenvectors of a given
training dataset is good enough for the outlier detection stage
of TSR.

VI. CONCLUSION

In order to alleviate the high computational cost of sparse
representation for large-scale face recognition, this paper
decomposed the computation of a robust sparse representation
into two stages. In the first stage, a general multisubspace
framework was proposed to learn a robust metric in which
noise and outliers (image pixels) were detected. In the sec-
ond stage, based on the learned metric and collaborative
representation, we proposed an efficient nonnegative sparse
code algorithm to find an approximation solution of sparse
representation. Then a filtering strategy was developed to

avoid the computation of the sparse representation on the
whole large-scale dataset. According to the L1 ball theory, the
approximated solution is unique and can be optimized effi-
ciently. Theoretical analysis also showed that the nonnegative
least squares technique only finds an approximate solution of
nonnegative sparse representation technique. Extensive exper-
iments demonstrated that the proposed framework not only
significantly reduces computational costs but also can yield
better results as compared to the state-of-the-art methods.

Experimental results also showed that robust algorithms will
fail to detect the occluded region if the variations in the train-
ing set are partially similar to occlusions. Potential future work
includes studying a robust model that can deal with errors in
both training set and testing set. In addition, the analysis in
Section IV-A showed that correntropy has similar prop-
erties with L2,1-norm around the origin. Another future
work is to make use of correntropy as an approximation
of L2,1-norm [43] to solve the unpredictable problem of
L2,1-norm in Fig. 1(b), and to study feature grouping [44].
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