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Abstract—In this paper, we present a sparse correntropy framework for computing robust sparse representations of face images for

recognition. Compared with the state-of-the-art l1norm-based sparse representation classifier (SRC), which assumes that noise also

has a sparse representation, our sparse algorithm is developed based on the maximum correntropy criterion, which is much more

insensitive to outliers. In order to develop a more tractable and practical approach, we in particular impose nonnegativity constraint on

the variables in the maximum correntropy criterion and develop a half-quadratic optimization technique to approximately maximize the

objective function in an alternating way so that the complex optimization problem is reduced to learning a sparse representation

through a weighted linear least squares problem with nonnegativity constraint at each iteration. Our extensive experiments

demonstrate that the proposed method is more robust and efficient in dealing with the occlusion and corruption problems in face

recognition as compared to the related state-of-the-art methods. In particular, it shows that the proposed method can improve both

recognition accuracy and receiver operator characteristic (ROC) curves, while the computational cost is much lower than the SRC

algorithms.

Index Terms—Information theoretical learning, correntropy, linear least squares, half-quadratic optimization, sparse representation,

M-estimator, face recognition, occlusion and corruption.

Ç

1 INTRODUCTION

LEARNING robust and discriminative face structure has
been recognized as an important issue for real-world

face recognition system. Well-known face recognition algo-
rithms such as Eigenface [1], Fisherface [2], and Independent
face [3] do not explicitly and effectively consider extracting
robust facial features, although they are very useful for
extracting descriptive or discriminative features.

To extract robust facial features, a number of algorithms,
such as modular Eigenspaces [4], modular linear regression
based classification (LRC) [5], eigenimages [6], [7], [8],
minimax probability machine [9], reconstructive and dis-
criminative subspace method [10], and associative mem-
ories [11], [12], were developed in order to achieve more
robust performance of face recognition. To address the
alignment problem of face images, De la Torre and Black
developed the robust parameterized component analysis
[13], which is also a modular Eigenspaces method, so that
the performance such as face image reconstruction [13],
Eigentracking [14], and active appearance models (AAM)

[15] can be improved. Although notable improvement has
been achieved by these methods, they can only deal with
either the occlusion or corruption problem, or cannot deal
with both of them very well. This is mostly because the
effect of severe occlusion or corruption is not considered in
these methods. In particular, some appearance models such
as [14], [13] lack consideration of discriminant issues, and
thus may be less discriminative for robust recognition
under tough condition [10]. To eliminate the effect of
occlusions, occlusion masks are incorporated to learn a
robust classifier in [16], [17]. However, it needs to first
properly determine the occlusion masks [16], [17], [10] and
the occlusion masks may discard useful redundant in-
formation [18], [19] and might not be suitable for dealing
with corruptions. Hence, learning a robust representation
for face recognition is still challenging as any part of a face
image could be corrupted in real-world scenarios and
sometimes the magnitude of noise may be arbitrarily large.

Recently, sparse signal representation has shown sig-
nificant potential in solving computer vision problems [20].
Typically, many sparse techniques are casted into an
l1 minimization problem, which is an approximately equal
optimization problem to the l0 minimization problem under
certain conditions [21], [22]. Learning theory shows that it is
enough to obtain good generalization if the number of
nonzero weights of training samples that are used to encode
a test sample is small as compared to the size of the training
set [23]. Along this line, Wright et al. [24] recently proposed
a sparse representation classifier (SRC) for robust face
recognition against occlusions and corruptions, and im-
pressive results were reported as compared to many well-
known face recognition methods [1], [2], [25]. Although
harnessing an “l1norm” will lead to a well-structured
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algorithm and can theoretically guarantee its strong
performance [26], the SRC algorithm is still not robust
enough to contiguous occlusion for face recognition, as
shown by Zhou et al. [18]. Furthermore, SRC would be
hampered due to its expensive computational cost [24].

In this work, we propose to learn a robust sparse
representation based on the correntropy [27] along with the
use of an l1 norm penalty. The correntropy has been shown
to obtain robust analysis [19], [28] in information theoretic
learning (ITL) [29], [30] and efficiently handle non-Gaussian
noise and large outliers [27]. Those works show the
connection between entropy and the Welsch M-estimator
[31], [27], [28].

However, it is not easy to solve the optimization problem
where the correntropy and l1 norm penalty are co-operated.
To address this computational problem, we propose a new
algorithm by first imposing nonnegativity constraint on the
variables in the correntropy. It not only greatly reduces the
complexity of the model but also achieves significantly
better performance as compared to the related state-of-the-
art sparse algorithms for face recognition. Second, the half-
quadratic (HQ) optimization technique is adopted to
optimize the maximum correntropy criterion in an approx-
imate way so that the optimization problem is further
reduced to learning a sparse representation through a
weighted linear least squares problem with nonnegativity
constraint. A new active-set technique is also developed for
fulfilling such an efficient method.

Our study of robustness and sparsity in the ITL frame-
work for face recognition makes our work novel in the
following aspects:

1. Robustness. Differently from SRC, which assumes
that the noise term has a sparse representation, our
correntropy-based sparse representation (CESR) is
based on correntropy, which can efficiently cope with
non-Gaussian noise and outliers [27]. To the best of
our knowledge, it has achieved much better results
than what has ever been reported for the challenging
scarf occlusion problem in face recognition.

2. Sparsity. CESR is a novel model to solve the problem
of recovering a nonnegative sparse signal. By
imposing the nonnegativity constraint in CESR, we
further find that the solution of CESR is effective and
sparse enough.

3. Efficiency. By developing a half-quadratic algorithm
for optimization, CSER is presented to be a much
more efficient algorithm for learning a sparse
representation of a face image for recognition as
compared to the SRC methods.

Fig. 1 presents an overview of the proposed robust
algorithm for face recognition. Fig. 1b gives a good
illustration of the robustness of the proposed method. If a
face is partially occluded, the pixels of the occluded parts
will be assigned small weights, and thus affect the
maximum correntropy objective function less. The learned
sparse representation in Fig. 1c is informative and the
reconstructed image in Fig. 1d is clear without occlusion.

The rest of this paper is structured as follows: We first
briefly review existing linear representation and sparse
representation methods for face recognition and discuss

their limitations. In Section 3, we propose the CESR model

and develop a half-quadratic based active set algorithm for

its optimization. In Section 4, we discuss the sparsity and

robustness of the proposed approach. In Section 5, the

proposed approach is validated by conducting extensive

experiments on the well-known and challenging face data

sets along with the comparison with other related state-of-

the-art techniques. Finally, we give the conclusion and

discuss some future work in Section 6.

2 RELATED WORKS

A fundamental task in pattern recognition is to correctly

classify a new test sample y 2 IRm�1 by using labeled

training samples from k distinct classes. Let Xc ¼:

½xc1; xc2; . . . ; xcnc � 2 IRm�nc be a data matrix which consists of

nc training samples (columns of Xc) from the cth class. Let

xcij and yj be the jth entry of xci and y, respectively. Given a

sufficiently expressive training set Xc, a test image y of

subject c can be approximated by a linear combination of

given training samples, i.e., y � Xc�
c for some coefficient

vector �c 2 IRnc . By concatenating the training samples of all

k classes, we get a new matrix X for the entire training set

as: X ¼: ½X1; X2; . . . ; Xk� ¼ ½x1
1; x

1
2; . . . ; xknk � 2 IRm�n, where

n ¼
Pk

c¼1 nc. Alternatively, a test sample y can also be

expressed as a linear combination of all training samples:

y � X�; ð1Þ

where the coefficient vector � 2 IRn. There are lots of works

on learning this coefficient vector for face recognition. In the

following we briefly review the major works.

2.1 Nonsparse Linear Classifier

To seek the best representation for the test sample y in class c,

the nearest neighbor (NN) classifier finds the nearest

training sample in that class. That is, it computes the

minimal distance between y and all training samples of

class c

rNNc ðyÞ ¼ min
xci

ky� xcik2; ð2Þ

where k:k2 denotes the l2 norm.
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Fig. 1. Overview of our approach for robust face recognition. (a) A test
face image with sunglasses occlusion. (b) The weight image learned by
our approach. The entry with blue color has a small value, while the
entry with red color has a large value. The larger the value of the entry,
the more it contributes to the correntropy-based objective function. Due
to the occlusion caused by the sunglasses, the pixels around the two
eyes are assigned small weights, which means that they are estimated
as noise. (c) The sparse coefficients computed by our approach. The
red coefficients correspond to the training images with the same class
label as the test image. Our algorithm finds the true identity from
952 training images of 119 individuals in the standard AR face database.
(d) The reconstructed image by a learned sparse linear combination of
all of the training images.



Compared with the NN algorithm, linear representation

methods seek the best representation by samples in each

class. Among them, the simplest one is the nearest feature

line (NFL) [32], which aims to extend the capacity of

prototype features by computing a linear function to

interpolate and extrapolating each sample pair belonging

to the same class. In NFL, the distance is defined as follows:

rNFLc ðyÞ ¼ min
xc

1
;xc

2
;�1

��y� �1x
c
1 þ ð1� �1Þxc2

��
2
; ð3Þ

where �1 2 IR. We can also rewrite (3) as follows:

rNFLc ðyÞ ¼ min
xc

1
;xc

2
;�1;�2

��y� ��1x
c
1 þ �2x

c
2

���
2

s:t: �1 þ �2 ¼ 1:

ð4Þ

If we extend (4) to a higher dimensional space, we get the

following optimization problem:

rNCLCc ðyÞ ¼ min
�c
ky�Xc�

ck2 s:t:
Xnc
i¼1

�ci ¼ 1; ð5Þ

A local subspace classifier [33] solves (5) by assuming Xc is

orthonormal. The nearest constrained linear combination

(NCLC) algorithm [34] and K-Local hyperplane (HKNN)

algorithm [35] solve (5) from a different geometric point of

view. Note that by removing the equality constraint, we get

rNLCc ðyÞ ¼ min
�c
ky�Xc�

ck2: ð6Þ

The analytical solution of (6) can be directly computed by

�c ¼ ðXT
c XcÞ�1XT

c y: ð7Þ

The nearest linear combination (NLC) [34] solves (6) by a

pseudo-inverse matrix and LRC [5] solves (6) by (7). LRC

simply makes use of the downsampled images for the LRC

to achieve the state-of-the-art results as compared to the

benchmark techniques [5]. The partial within-class match

(PWCM) method [16], [17] solves (6) based on partial

unterminated pixels. The PWCM further utilizes a robust

classification metric based on a M-estimator when all �c

have been computed, i.e.,

arg min
c
ky�Xc�

ckr; ð8Þ

where k:kr is a robust norm based on M-estimators.
The minimal residual of (6) can also be taken as the

distance from a query point to the space spanned by Xc.

Then, we get the nearest feature space (NFS) algorithm [36]

that computes the distance between a query point and its

projected point onto the feature space

rNFSc ðyÞ ¼ kyp � yk2; ð9Þ

where yp is the projection point of y onto the feature space

spanned by Xc. According to (7), (6) can also be rewritten as

rNFSc ðyÞ ¼
��y�XcðXT

c XcÞ�1XT
c y
��

2
: ð10Þ

If the columns of Xc are orthonormal, we have the nearest

subspace algorithm [37] that solves the following optimiza-

tion problem:

rNSc ðyÞ ¼
���I �XcX

T
c

�
y
��

2
: ð11Þ

After the residual or distance has been calculated, the

label of the test sample y will be assigned arg mincrcðyÞ.
Although those linear representation methods have indeed

obtained promising improvement on performance, they still

suffer two problems [24]:

1. The improvement of receiver operator characteristic
(ROC) curve is quite limited.

2. They could not efficiently deal with the error
incurred by severe occlusion and corruption.

2.2 Sparse Linear Classifier

Differently from traditional linear representation methods,

the sparse representation-based classifier (SRC) [24] makes

use of the discriminative nature of sparse representation to

perform classification. Also, all samples in the training set

are used in SRC to represent the test sample, which is

different from the other well-known face recognition

methods in the literatures. It aims to seek a sparse solution

to (1) as follows:

mink�k0 s:t: y ¼ X�; ð12Þ

where the l0 norm k:k0 counts the number of nonzero entries

in a vector. Originally inspired by the theoretical analysis [21],

[22] that the solution of the l0 minimization problem is equal

to the solution of the l1 minimization problem under some

conditions, SRC relaxes the above problem and seeks the

sparse and informative vector� by solving the problem below

mink�k1 s:t: y ¼ X�; ð13Þ

where k�k1 ¼
Pn

i¼ j�ij. Here, we denote the model (13) by

SRC0. In real-world face recognition applications, occlu-

sions and corruptions are always incurred. Hence, the

above linear model in (1) is modified as:

y ¼ X� þ e; ð14Þ

where e 2 IRm is the error (noise) vector. By assuming that

noise vector e also has a sparse representation, SRC seeks an

approximation of the sparsest solution to (14):

mink�k1 þ kek1 s:t: y ¼ X� þ e: ð15Þ

We denote the model (15) by SRC1.
Although SRC1 can effectively deal with the occlusion

and corruption problems sometimes, it is still not robust

enough to contiguous occlusion on facial images, as shown

in [18]. In addition, SRC1 would be hampered due to its

expensive computational cost [24]. For example, it will take

nearly hundreds of seconds for SRC1 to process a test image

represented by a 700D vector.

3 CORRENTROPY-BASED SPARSE

REPRESENTATION

In this section, we first introduce correntropy, and then we

propose a robust CESR for face recognition. A half-quadratic-

based active set algorithm is also developed for optimization.
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3.1 Correntropy

In real-world computer vision scenarios [7], [10], [24], face

recognition against noise and outliers is critically challenging,

mainly due to the unpredictable nature of the errors (bias)

caused by those noise and outliers. That means where these

errors exist in an image can differ for different test samples

and is hard for computer to predict in advance. The errors

may be arbitrarily large in magnitude, and therefore cannot

be ignored or treated as small noise.
Recently, the concept of correntropy was proposed in

ITL [27] to process non-Gaussian noise [27] and impulsive

noise [38]. The correntropy is directly related to the Renyi’s

quadratic entropy [29] in which the Parzen windowing

method is used to estimate the data distribution [39]. It is a

local similarity measure between two arbitrary random

variables A and B, defined by

V�ðA;BÞ ¼ E½k�ðA�BÞ�; ð16Þ

where k�ð:Þ is a kernel function that satisfies Mercer theory

[40] and E½:� is the expectation operator. It takes advantage

of a kernel trick that nonlinearly maps the input space to a

higher dimensional feature space. Differently from conven-

tional kernel methods, it works independently with pair-

wise samples. With a clear theoretic foundation, the

correntropy is symmetric, positive, and bounded.
In practice, the joint probability density function of A

and B is often unknown and only a finite number of data

fðAj;BjÞgmj¼1 are available. Hence, the sample estimator of

correntropy is estimated by

V̂m;�ðA;BÞ ¼
1

m

Xm
j¼1

k�ðAj �BjÞ; ð17Þ

where k� is Gaussian kernel gðxÞ ¼� expð� x2

2�2Þ.
Based on (17), Liu et al. [27], [41] further extended the

sample-based correntropy criterion for a general similarity

measurement between any two discrete vectors. That is,

they introduced the correntropy induced metric (CIM) [27],

[41] for any two vectors A ¼ ða1; . . . ; amÞT and B ¼
ðb1; . . . ; bmÞT as follows:

CIMðA;BÞ ¼ gð0Þ � 1

m

Xm
j¼1

gðejÞ
 !1

2

¼ ðgð0Þ � 1

m

Xm
j¼1

gðaj � bjÞÞ
1
2;

ð18Þ

where the error ej is defined as ej ¼ aj � bj. For adaptive

systems, the below correntropy of error ej,

max
�

1

m

Xm
j¼1

gðejÞ; ð19Þ

is called the maximum correntropy criterion (MCC) [27],
where � is the parameter in the criterion to be specified later.
MCC has a probabilistic meaning of maximizing the error
probability density at the origin [41], and MCC adaptation is
applicable in any noise environment when its distribution
has the maximum at the origin [27]. Compared with the
mean square error (MSE), a global metric, the correntropy is
local. That means the correntropy value is mainly decided by
the kernel function along the line A ¼ B [27].

Correntropy has a close relationship with M-estimators
[42]. If we define �ðxÞ ¼� 1� expð�xÞ, (18) is a robust
formulation of Welsch M-estimator [27]. Furthermore, �ðxÞ
satisfies limjxj!1 �

0ðxÞ ¼ 0, and thus it also belongs to the so-
called redescending M-estimators [42], which have some
special robustness properties [43]. A main merit of corren-
tropy is that the kernel size controls all its properties. Due to
the close relationship between m-estimation and methods of
ITL, choosing an appropriate kernel size [27] in the
correntropy criterion becomes practical.

Considering the relationship between correntropy and
M-estimators, we further list several commonly used
M-estimators (�ðxÞ) and their corresponding weight func-
tions wðxÞ in Table 1 for further analysis.1 We also introduce
the kernel size into other M-estimators by substituting the x
with x=� and setting c ¼ 1. We denote the modified weight
function by ŵðxÞ. Our experimental results show that the
kernel size for ŵðxÞ is also as effective as for correntropy.

3.2 The Proposed Model

For face recognition, let vector A ¼ ðy1; . . . ; ymÞT be a facial
image vector, and vector B ¼ ð

P
i xi1�i; . . . ;

P
i xim�iÞ

T be a
linear representation of data set X. We wish to find a sparse
coding vector � ¼ ð�1; . . . ; �nÞT such that B becomes as
correlated to A as possible under the maximum correntropy
criterion (19). Then, we have the following correntropy-
based sparse model:

JCESR ¼ max
�

Xm
j¼1

g yj �
Xn
i¼1

xij�i

 !
� �k�k1; ð20Þ

where gðxÞ ¼ expð� x2

2�2Þ is a Gaussian kernel function.
Methods based on correntropy treat individual pixels of the
representation differently and give more emphasis on those
pixels corresponding to pixels of the same class as test
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TABLE 1
Commonly Used M-Estimators and Their Corresponding Weight Functions

1. Although Huber’s estimator can also be optimized by using the half-
quadratic optimization, we do not discuss this estimator due to its threshold
parameter. When there are noise and outliers, it is difficult to determine an
appropriate value of the threshold.



sample y. This means if there are occlusions and corruptions
in a test sample y, those pixels corresponding to outliers will
have small contributions to the correntropy. Hence, the noise
can be handled uniformly within the correntropy framework.

Efficient minimization of the l1-norm based and related
convex functions is an active area of research [44].2

Generally, it is possible to optimize the correntropy
criterion using the gradient descend technique if the
l1 penalty is not involved, albeit its usefulness is significant
for pursuing sparsity. In view of this difficulty, we relax the
above l1 correntropy model by imposing a nonnegativity
constraint on the coding vector �. We then get the following
maximum correntropy problem:

JCESR ¼ max
�

Xm
j¼1

g yj �
Xn
i¼1

xij�i

 !
� �

Xn
i¼1

�i s:t: �i � 0:

ð21Þ

We note the optimization problem in (21) as CESR.
Note that in SRC1, both two l1-norm terms are approx-

imations of l0norm. The kek1 ¼ ky�X�k1 is an approxima-
tion of ky�X�k0. Hence, the SRC1 assumes that the noise
also has a sparse representation and tries to estimate and
correct the error incurred by noise [24], [26]. However, the
first part in (21) of CESR is actually a robust M-estimator.
As analyzed later and illustrated in Fig. 1, CESR aims to
detect the noise and utilize the unterminated data to yield a
robust sparse representation.

In particular, we consider a special case when � is set
zero. The rationale of this special model is that the positive
vector � is actually playing as a clustering indicator because
each entry �i reflects the importance of sample xi in
reconstructing pattern y. Hence, it should be expected that
more weights would be assigned to the samples of the same
class label of y, while weights of the others should be small
and zero in the optimal case. Therefore, � can also be sparse
in this case. When � > 0, CESR can yield a sparser solution
and further improve the recognition accuracy. We will
further verify this scenario in experiment 5.7.

3.3 Algorithm of CESR

Since the objective function of CESR in (21) is nonlinear,
CESR is difficult to directly optimize. Fortunately, we
recognize that the half-quadratic technique [28] and
expectation maximization (EM) method [45] can be utilized
to solve this ITL based optimization problem. According to
the property of convex conjugate function [46], we have:

Proposition 1. There exists a convex conjugate function ’ of
gðxÞ3 such that

gðxÞ ¼ max
p0

p0
kxk2

�2
� ’ðp0Þ

 !
; ð22Þ

and for a fixed x, the maximum is reached at p0 ¼ �gðxÞ [28].

Substituting (22) into (21), we have the augmented
objective function in an enlarged parameter space

ĴCESR ¼ max
�;p

Xm
j¼1

pj yj �
Xn
i¼1

xij�i

 !2

�’ðpjÞ

0
@

1
A� �Xn

i¼1

�i

s:t: �i � 0;

ð23Þ

where p ¼ ½p1; . . . ; pm�T are the auxiliary variables intro-
duced by half-quadratic optimization. According to Propo-
sition 1, for a fixed �, the following equation holds

JCESRð�Þ ¼ max
p
ĴCESRð�; pÞ: ð24Þ

It follows that

max
�

JCESRð�Þ ¼ max
�;p

ĴCESRð�; pÞ: ð25Þ

Then, we can conclude that maximizing JCESRð�Þ is
identical to maximizing the augmented function
ĴCESRð�; pÞ. Obviously, a local maximizer ð�; pÞ can be
calculated in an alternating maximization way

ptþ1
j ¼ �g yj �

Xn
i¼1

xij�
t
i

 !
; ð26Þ

�tþ1 ¼ arg max
�
ðy�X�ÞTdiagðpÞðy�X�Þ � �

X
i

�i;

s:t: �i � 0; ð27Þ

where t means the tth iteration and diagð:Þ is an operator to
convert the vector p to a diagonal matrix. It is clear that the
optimization problem in (27) is a weighted linear least
squares problem with nonnegativity constraint.4 The
auxiliary variables �p can be viewed as weights in (27).

The optimal problem in (27) can be reformulated as the
following quadratic program:

min
�

�

2
� X̂T

ŷ

� �T
� þ 1

2
�T X̂

T
X̂� s:t: �i � 0; ð28Þ

where X̂ ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffi
�ptþ1

p
ÞX and ŷ ¼ diagð

ffiffiffiffiffiffiffiffiffiffiffiffi
�ptþ1

p
Þy. Since

X̂T X̂ is a positive semidefinite matrix, this quadratic
program in (28) is convex. Based on the Karush-Kuhn-
Tucker optimal conditions, the following monotone linear
complementary problem (LCP) is derived [47]:

� ¼ X̂T X̂� � X̂T ŷþ �
2
; � � 0; � � 0; �T� ¼ 0; ð29Þ

If the matrix X̂ has full column rank (rankðX̂Þ ¼ n), the
convex program in (28) and the LCP in (29) have unique
solutions for each vector ŷ [47].

LetF andG be two subsets of f1; . . . ; ng such thatF [G ¼
f1; . . . ; ng andF \G ¼ �. And letF andG be the working set
and inactive set in the active set algorithm, respectively.
Consider the following column partition of the matrix X̂:

X̂ ¼ ½X̂F ; X̂G�; ð30Þ
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2. In [44], the sparse solution of (13) is computed via solving the
unconstrained optimization problem Jð�Þ þ hðX� � yÞ, where Jð:Þ is
convex and hð:Þ has to be convex and differentiable.

3. Strictly speaking, ’ is the conjugate function of expð�xÞ. Here, we
harness the variable substitution method (substitute x with x2=�2), which is
commonly used in HQ.

4. According to Proposition 1, we can learn that p � 0. By replacing the p
with �p, we can get the equivalent minimal problem.



where X̂F 2 IRm�jF j, X̂G 2 IRm�jGj, and jF j, jGj are the

number of F and G, respectively. We then can rewrite

(29) as:

�F
�G

� 	
¼ X̂T

F X̂F X̂T
F X̂G

X̂T
GX̂F X̂T

GX̂G

� 	
�F
�G

� 	
� X̂T

F ŷ

X̂T
Gŷ

� 	
þ �

2
;

where �F ; �F 2 IRjF j, �G; �G 2 IRjGj, � ¼ ð�F ; �GÞ, and

� ¼ ð�F ; �GÞ. Then, we can compute the values of variables

�F and �G by the following iterative procedure [47]:

min
�F2RjF j

kX̂F�F � ŷk2
2 þ �

X
i2F

�i; ð31Þ

�G ¼ X̂T
GðX̂F�F � ŷÞ þ

�

2
: ð32Þ

And the optimal solution is given by � ¼ ð�F ; 0Þ and

� ¼ ð0; �GÞ. At each alternating maximum step in (27),

instead of finding the optimal solution of the optimization

problem, we simply learn a � in the feasible region to

increase the objective. Combining (26), (31), and (32), we

have the Half-Quadratic-based active-set algorithm for the

proposed CESR model.
Algorithm 1 summarizes the optimization procedure.

From Step 1 to Step 4, Algorithm 1 finds a feasible � to

maximize the objective function for current pt. In Step 5,

Algorithm 1 computes the auxiliary variables of the Half-

Quadratic optimization. It alternately maximizes the aug-

mented objective function in (23) until it converges

(Proposition 2). Note that Algorithm 1 may not reach the

maximum value of the correntropy objective in (21) because

it will return to Step 2 when a feasible solution occurs.

Experimental results illustrate that this solution is good

enough to achieve significant improvements over the

related state-of-the-art methods.
Algorithm 1. Algorithm of CESR

Like any kernel method, the selection of kernel size will

affect the performance of the proposed technique, and

kernel size is often determined empirically. In this study,

the kernel size (bandwidth) is computed by

�2 ¼ �

2m
ðXF�F � yÞT ðXF�F � yÞ; ð33Þ

where � is a constant to control the noise. We set � to 1

throughout the paper.

Proposition 2. The sequence fĴCESRð�t; ptÞ; t ¼ 1; 2; . . .g gen-

erated by CESR converges.

Proof. According to (27) and Proposition 1, we have

ĴCESRð�t; ptÞ � ĴCESRð�t; ptþ1Þ � ĴCESRð�tþ1; ptþ1Þ:

The cost function increases at each alternating maximi-

zation step. Therefore, the sequence fĴCESRð�t; ptÞ; t ¼
1; 2; . . .g is nondecreasing. We can verify that JCESRð�Þ is

bounded (property of correntropy [27]) and, by (25),

ĴCESRð�t; ptÞ is also bounded. Consequently, CESR

converges. tu

3.4 Classifier of CESR

We aim to classify an unseen sample y which comes from

existing classes. Note that our criterion in (21) aims to

reconstruct a test sample y using existing training samples as

well as possible. Ideally, training samples from the same class

of y should give the best reconstruction performance. This

gives us the motivation to design a class specific reconstruc-

tion classifier similar to the sparse classifier proposed by [24],

but the major difference is that the classifier introduced here

is based on the correntropy criterion.
Therefore, we classify y as follows: For each class c, let

	c : IRn ! IRnc be a function which selects the coefficients

belonging to class c, i.e., 	cð�Þ 2 IRnc is a vector whose

entries are the entries in � corresponding to class c. Utilizing

only the coefficients associated with class c, the given

sample y is reconstructed as ŷc ¼ Xc	cð�Þ. Then, y can be

classified by assigning it to the class c corresponding to the

maximal nonlinear difference between y and ŷc, i.e.,

max
c
rcðyÞ ¼

:
gðy�Xc	cð�ÞÞ; ð34Þ

where the kernel size � in gðxÞ is calculated by

�2 ¼ �r
2k

Xk
c¼1

ky�Xc	cð�Þk2
2: ð35Þ

We set �r to 1 throughout the paper. Algorithm 2,

summarizes the classification procedure.
Algorithm 2. Classifier of CESR
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4 SPARSITY AND ROBUSTNESS OF CESR

In this section, we demonstrate the visual results of CESR for
robust face recognition along with the comparison with SRC
[24]. More results will be reported in the experiment section.

4.1 Sparsity of CESR

It has been shown that sparse representation is more
efficient than the nonsparse one in many challenging cases
for pattern analysis, as it is able to select the most

representative training samples for representation of each
test sample [23]. To show the strength of learning sparse

features by CESR for face recognition, we compare it with
SRC and show that the coefficients computed by CESR are

more sparse and more effective. Results of LRC are also
presented for reference.

We randomly selected half of the 2,414 images in the

Extended Yale B database as the training set and the rest for
testing, where the database will be introduced in the

experiment section. The images are downsampled from
the original size 192� 168 to size 24� 23.5 As in [24], each
image vector will have unit norm by normalization.6

The middle column in Fig. 2 shows the coefficients
computed by different algorithms for a test image from the
second subject in Yale database. The nonzero coefficients

associated with subject 2 are highlighted by deep color. The
numbers of nonzero coefficients (l0 norm) computed by

CESR, SRC0, and LRC are 28, 39, and 1,205, respectively.
For CESR and LRC, we directly compute the number of

nonzero coefficients. Since the coefficients of SRC0 solved
by primal-dual algorithm have many small nonzero entries,

we compute the number of nonzero coefficients of SRC0 by:

k�kSRC0
0 ¼

Xn
i¼1

Ið�iÞ; ð36Þ

where IðxÞ is an indicator function:

IðxÞ ¼ 1 jxj � "
0 otherwise


 �
; ð37Þ

where j:j is the absolute value operator. Here, we set " ¼
0:001 to fairly compare different sparse methods. If we
reduce the value of " to a smaller value such as 0.0001, the
number of nonzero entries computed by SRC0 will be larger
than 100.

Fig. 5 further shows the average number of nonzero
coefficients in the case of random corruption. (See experi-
ment 5.32 for details of the setting.) We varied the
percentage of corruption from 10 percent to 80 percent
and computed the average numbers of nonzero coefficients.
We find that CESR can also obtain sparse representations in
this case and achieve much sparser representation than the
one obtained by the l1 norm based SRC1.

The right part of Fig. 2 shows the residuals r0cðyÞ ¼
ky�Xc	cð�Þk2 with respect to the corresponding projected
coefficients 	cð�Þ, c ¼ 1; . . . ; 38. Like SRC0, CESR can
correctly classify the test sample, where the dominant
coefficients correspond to the second subject, which is of the
same class as the test image. The ratios between the two
smallest residuals of CESR, SRC0, and LRC are about 1:5.4,
1:5.3, and 1:2.2, respectively. The higher the ratio value, the
more discriminative the algorithm can be. As we will show
later in the experiment section, that higher ratio value also
always implies a higher ROC curve.

The left part of Fig. 2 shows the reconstructed images in
the original image space (top) and downsampled image
space (bottom) using the coefficients learned by three
different algorithms, respectively. For LRC, the coefficients
associated with subject 2 are used to reconstruct the test
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5. In [24], [5], face recognition methods make use of downsampled
images as features to achieve impressive results.

6. In SRC [24], normalization is a necessary preprocessing step. Hence,
we normalized the facial images to fairly compare different methods.

Fig. 2. Recognition using a 24� 23 downsampled image as features. The image y belongs to subject 2 of Yale B. Left: The reconstructed images in
original 192� 168D feature space and downsampled 24� 23D feature space, respectively. Middle: The coefficients computed by different
algorithms. Nonzero coefficients associated with subject 2 are highlighted by deep color. Right: The residual (r0cðyÞ ¼ ky�Xc	cð�Þk2) of the input
image from subject 2. (a) The sparse representation of the CESR classifier. The ratio between the two smallest residuals in the right figure is about
1:5.4. (b) The sparse representation of SRC0. The ratio between the two smallest residuals in the right figure is about 1:5.3. (c) The linear
representation of LRC. The ratio between the two smallest residuals in the right figure is about 1:2.2.



image. Since the dominant coefficients of CESR and SRC0
are associated with subject 2, the reconstructed images are
quite similar to the original images.

4.2 Robustness of CESR

In real-world applications, facial images always incur
occlusions and corruptions. SRC1 presents a novel approach
to deal with the errors caused by occlusions and corruptions
by assuming that they also have sparse representations [24].
Although “sparse” may not mean “very few” [24], this
assumption may make SRC1 fail when there are severe
occlusions and corruptions. Fig. 3 shows such an example.
As demonstrated in Fig. 3b, obvious shadows around the
eyes can be found in the image reconstructed by SRC1. This
is due to the inaccurate estimation of the noise. In Fig. 3a, the
occlusion of sunglasses is roughly 20 percent. Fig. 3c further
shows the noise item e in (15) when SRC1 converges (the e is
reshaped to an image for visual illustration). Note that large
entry value is marked in red color in the image. We can
observe that only the two red regions in Fig. 3c correspond-
ing to the two highlighted regions of sunglasses in Fig. 3a are
estimated as noise. This inaccurate estimation makes the
coefficients estimated by SRC1 less sparse and also less
informative, so that the largest coefficients in Fig. 3d still
contain much noisy information. This makes SRC1 fail to
identify the correct subject in some cases.

However, CESR can correctly detect the occlusion in this
scenario. As shown in Fig. 4b, the whole facial image is
reconstructed much better by using CESR. The occluded
regions around two eyes are also much clearer. Fig. 4c
further shows the auxiliary variables �p (we also reshape it
to an image) in the Half-Quadratic optimization when CESR
algorithm converges. We can find that the weights near two
eyes have the lowest values, whereas others have large
values, which makes CESR learn a robust sparse represen-
tation mainly from the nonoccluded region of facial images.
Fig. 4d and 4e show the coefficients and residuals computed
by CESR, respectively. Although the sunglasses occlude the
area of two eyes, CESR classifier can still find the true

identities (the 60th individual) from 952 training images of
119 individuals.

5 EXPERIMENT

To evaluate the proposed CESR algorithm, we compared it
with two related state-of-the-art methods for robust face
recognition: LRC and sparse representation-based classifi-
cation (SRC). Experiments were performed on three public
face recognition databases, namely, the AR [48], CMU [49],
and FRGC [50] databases. The recognition rate, ROC
curves, and computational cost of the compared methods
will be reported. All algorithms were implemented in
MATLAB on an AMD Quad-Core 1.80 GHz Windows XP
machine with 2 GB memory.

5.1 Experimental Setting and Face Databases

Database. All gray-scale images of the three public face
databases are aligned by the eyes’ locations, which are
manually located. Descriptions of the three databases are as
follows:

1. AR Database [48]: The AR database consists of over
4,000 facial images from 126 subjects (70 men and
56 women). For each subject, 26 facial images are
taken in two separate sessions. These images suffer
different facial variations, including various facial
expressions (neutral, smile, anger, and scream),
illumination variations (left light on, right light on,
and all side lights on), and occlusion by sunglasses
or scarf. This database is always used for evaluating
robust face recognition algorithm. In the experiment,
we selected a subset of the data set that consists of 65
male subjects and 54 female subjects. The gray-scale
images were resized to resolution 112� 92.

2. Extended Yale B Database [49], [51]: The Extended
Yale B database consists of 2,414 frontal face images
from 38 subjects [49] under various lighting condi-
tions. The cropped and normalized 192� 168 face
images were captured under various controlled

1568 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 8, AUGUST 2011

Fig. 3. Sparse representation computed by SRC1. (a) A test face image from the 60th subject in the AR database with sunglasses occlusion.
(b) Reconstructed image as a sparse linear combination of all the training images. (c) The error image (by reshaping error vector e). The entry with
red color has a large value, which means that this entry is estimated as noise by SRC1. (d) The sparse coefficients learned by SRC1. The red
coefficients correspond to the training images with the same class label of the test image. (e) The residuals r0cðyÞ with respect to the coefficients for
different classes. The minimal residual does not correspond to the same class of this test subject.
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Fig. 4. Sparse representation computed by CESR. (a) The same occluded image as the one in Fig. 3. (b) The reconstructed image via a sparse
linear combination of all of the training images. (c) The weight image (by reshaping auxiliary variable �p). The entry with blue color receives a small
weight, which means that this entry is estimated as noise by CESR. (d) The sparse coefficients computed by CESR. The red coefficients correspond
to the training images with the same class label of the test image and are the largest coefficients. (e) The residuals r0cðyÞ with respect to the
coefficients for different classes.



lighting conditions [51], [24]. Fig. 7 shows some face
images of the first subject in the Yale B database. For
each subject, half of the images were randomly
selected for training (i.e., about 32 images for each
subject) and the rest were for testing.

3. FRGC Database [50]: The FRGC version two face
database is a challenging benchmark face recognition
database. There are 8,014 images from 466 subjects in
the query set for FRGC experiment 4. These
uncontrolled still images suffer variations of illu-
mination, expression, time, and blurring. In our
experiment, we only selected the objects which
have over 10 facial images in the database, then got
3,160 facial images from 316 subjects. Each facial
image was in gray scale and cropped into 32 pixel
resolution by fixing the positions of two eyes. For
each selected subject, eight images were randomly
selected for training and the rest were for testing.
Fig. 8 shows some images in the FRGC database.

Algorithm Setting. For SRC, we conducted its three

models, which are different in the aspects of formulation

and computational strategy. As suggested by [24], we

implemented models of SRC by normalizing the facial

image with unit norm. In our experiments, the details of

these three models are:

1. SRC0: It minimizes the standard SRC in (12) via an
active set algorithm based on [52].7

2. SRC1: It minimizes the l1 norm in (38) via a primal-
dual algorithm for linear programming based on
[46], [53]8

mink�k1 þ kek1 s:t: ky�X� þ ek2 � "; ð38Þ

where " is a given nonnegative error tolerance.

3. SRC2: In many cases, since the noise level " in SRC1 is
unknown beforehand [54], we can use the Lasso
optimization algorithm to recover the sparse solution
by9

minky�X� þ ek2
2 þ �ðk�k1 þ kek1Þ; ð39Þ

where � is a given regularization parameter which

can be viewed as an inverse of the Lagrange

multiplier associated with the constraint in (38).

The " can be interpreted as a pixel noise level,

whereas � cannot [24]. Since the noise level is also

unknown in the testing set, the experimental results

of SRC1 and SRC2 are not always the same due to

different values of " and �.

In order to estimate the parameters " and � automatically,

five-fold cross-validation on each dimension for each

training set was used, where the candidate value set for

both " and � is f1; 0:5; 0:25; 0:1; 0:075; 0:05; 0:025; 0:01; 0:005;

0:001; 0:0005; 0:0001g. Note that due to the large computa-

tional cost of SRC1 and SRC2, an exhaustive search of the

parameter value is not feasible. Also, for the same reason,

we can only report the experimental results of SRCs in the

lower dimensional feature space.
For CESR, we mainly evaluated the proposed algorithm

using the nonnegativity constraint with � ¼ 0. Discussion of

� will be given at the end of experiment section. More

experimental results on parameter selection in CESR will be

shown in Section 5.7 later.

5.2 Real-World Malicious Occlusion

We applied CESR to real face recognition scenarios against

malicious occlusion.

5.2.1 Sunglasses Occlusion

For training, we used 952 nonoccluded frontal view images

(about 8 for each subject) with varying facial expression.

Fig. 6 shows an example of eight selected images of the

first subject. For testing, we used images occluded by
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Fig. 5. Average numbers of nonzero coefficients with respect to different

levels of random corruptions.

Fig. 6. Cropped facial images of the first subject in AR database.

The images in the first row are from the first session and the images in

the second row are from the second session.

Fig. 7. Cropped facial images of one subject in the YALE B database.

Fig. 8. Cropped facial images of one subject in the FRGC database.

7. The MATLAB source code: http://redwood.berkeley.edu/bruno/
sparsenet/.

8. The MATLAB source code: http://www.acm.caltech.edu/l1magic/.
9. The MATLAB source code: http://redwood.berkeley.edu/bruno/

sparsenet/.



sunglasses. Fig. 3a shows a facial image of the 60th
individual from this testing set.

Fig. 9a shows the recognition performance of different
methods using different downsampled images of dimen-
sions 161, 644, 2,576, and 10,304. Those numbers correspond
to downsampling ratios of 1/8, 1/4, 1/2, and 1, respec-
tively. We see that if occlusions exist, it is unlikely that the
test image will be very close to any single training image of
the same class, so that the NN classifier performs poorly.
Although SRC0 and LRC can improve the recognition rates
compared to 1NN, their improvements are limited because
they are based on the MSE criterion, which is sensitive to
outliers. As illustrated in Fig. 4, CESR can model the noise
more accurately, and therefore, perform significantly better.

The ROC curve is also illustrated in Fig. 9. ROC is
important for evaluating different methods for face recogni-
tion in order to measure the accuracy of outlier rejection. A
good algorithm should achieve a high-verification rate (VR)
at a very low false acceptance rate (FAR). In a face
recognition system, users often care about the VR when
the FAR are 0.001 and 0.01 [55]. Fig. 9b and 9c show the VR
when FAR ¼ 0:001 and FAR ¼ 0:01, respectively. The VR of
1NN and LRC are quite low. Although LRC has better
recognition performance than 1NN, LRC cannot get better
ROC curves and the VR of LRC is even lower than that of
1NN. Still the VR of CESR is the highest among the
compared methods as shown.

5.2.2 Scarf Occlusion

For training, we used 952 nonoccluded frontal view images
(about eight for each subject) with varying facial expression.
Fig. 6 shows an example of eight selected images of the first
subject. For testing, we used images with a scarf (one image
for each person), which makes the facial image roughly
45 percent occluded. Fig. 10a shows a facial image of the first
subject from this testing set.

In the case of scarf occlusion, we can treat the region

occluded by the scarf as missing pixels. Fig. 10b, 10c, and

10d show different levels of missing pixels. In real-world

face recognition systems, we often need to manually crop

the facial image when there is severe and continuous

occlusion. For example, the mouth in a face image is

occluded by a scarf [5]. It is convenient for users to simply

locate the continuous occlusion as a rectangle region during

manual alignment. In view of this, during the optimization

of CESR, the entries of the auxiliary variable p correspond-

ing to the missing pixels would be set zero.
Table 2 tabulates the recognition rates of our approach

using various feature spaces (downsampled images) at

different levels of missing values. To the best of our

knowledge, the recognition accuracy 98.3 percent obtained

by the proposed approach is probably the best result that

has ever been reported against scarf occlusion. Note that for

100 subjects, the previous best results were 95.5 percent and

93.5 percent obtained by the SRC approach [24] and modular

LRC approach in [5], respectively, and for 50 subjects, it was

93 percent reported in [10].
Fig. 11 further shows the recognition rates with respect to

different levels of missing pixels when the size of image is

54� 46. Our proposed maximum correntropy framework

shows a quite stable performance against scarf occlusion

and achieves the highest performance as well.

1570 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 8, AUGUST 2011

Fig. 9. Recognition rates and VR against sunglasses occlusion in the AR database. (a) Recognition rates. (b) FAR ¼ 0:001. (c) FAR ¼ 0:01.

Fig. 10. Samples of cropped faces with scarf occlusion from the AR
database. (a) Cropped images of the first subject. (b) 40 percent pixels
(white region) are treated as missing pixels. (c) 50 percent pixels are
treated as missing pixels. (d) 60 percent pixels are treated as missing
pixels.

Fig. 11. Recognition rates against scarf occlusion under different levels

of missing pixels. The size of the image is 54� 46.

TABLE 2
Recognition Rates (Percent) for

Various Feature Spaces and Different Levels of Missing Values



5.3 Contiguous Occlusion and Corruption

5.3.1 Contiguous Occlusion of Random Block

In this section, we simulated various types of contiguous

occlusion by replacing a randomly selected local region in

each test image with an unrelated image [24]. Two images

(top and bottom) in Fig. 14a show two occluded images

with 20 percent and 40 percent occlusions by monkey

images, respectively. Since the pixels of the unrelated

monkey image are similar to the pixels of human face

image, this contiguous occlusion is more challenging than

the occlusion caused by random black or white dots.
We extensively evaluated different methods on the

Extended Yale B Face Database against such a kind of

contiguous occlusion. For each subject, half of the images
were randomly selected for training (i.e., about 32 images

for each subject), and the remaining half were for testing,
and the training set and the testing set contained 1,205 and

1,209 images, respectively. We computed recognition rates
with respect to five feature (downsampled image) spaces of

dimensions 56, 120, 504, 2,016, and 8,064. Those numbers
correspond to the downsampling rates of 1/24, 1/16, 1/8,
1/4, and 1/2, respectively.

Fig. 12a and Fig. 13a show the recognition accuracy with
respect to different feature spaces. CESR achieves the highest
recognition rates (88.6 percent and 74.6 percent) on the
dimension of 8,064 where face images are with 20 percent and
40 percent occlusions. We note that SRC1 can slightly
outperform CESR on the 56D space. This may be due to the
nonoptimality of the kernel size in the correntropy. As will be
demonstrated in Section 5.7, a well-tuned kernel size can
further improve the recognition rate. Though SRC0 and LRC
can also improve the recognition rates, their improvements
are not good enough as compared with the other three robust
methods. The verification results are also shown in Fig. 12
and Fig. 13. CESR is still overall better than the compared
methods, especially when the occlusion is 40 percent.

Moreover, CESR can obtain much sparser coding. Fig. 14
shows two representative results of CESR and SRC1 against
contiguous occlusions. In both examples (with 20 percent and
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Fig. 12. Recognition rates and VR using various feature spaces and classifiers against 20 percent of contiguous occlusions. (a) Recognition rates.

(b) FAR ¼ 0:001. (c) FAR ¼ 0:01.
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Fig. 13. Recognition rates and VR using various feature spaces and classifiers against 40 percent contiguous occlusions. (a) Recognition rates.

(b) FAR ¼ 0:001. (c) FAR ¼ 0:01.

Fig. 14. Sparse representations by CESR and SRC against contiguous occlusion. The top row is with 20 percent occlusion and the bottom row is with
40 percent occlusion. The red entries of coefficients correspond to training images of the same person as the test image. (a) Sparse representation
by CESR. Pictures from left to right are occluded images, the reconstructed images by using CESR, the difference image between original image
and the reconstructed image, and the coefficients computed by CESR, respectively. (b) Sparse representation by SRC1. Pictures from left to right
are occluded images, the reconstructed images by using SRC1, the difference image between original image and the reconstructed image, and the
coefficients computed by SRC1, respectively.



40 percent occlusions, respectively), the estimated coeffi-
cients of CESR are sparser than the ones estimated by SRC1.
Also, CESR is more efficient than SRC1. When the dimension
is 2;016-D (48� 42), SRC1 takes nearly 800 seconds for
computation of each test image on Matlab, while CESR only
takes about 11 seconds.

5.3.2 Corruption

In practical face recognition scenarios, the test image y
could be partially corrupted. We tested the robustness of
CESR on the Extended Yale B Face Database. For each
subject, half of the images were randomly selected for
training and the remaining half were for testing. The
training and testing set contained 1,205 and 1,209 images,
respectively. Since the images in the testing set have large
variations due to different lighting conditions or facial
expressions, it is a difficult recognition task. For CESR,
SRC2, SRC0, LRC, and 1NN, all of the images were resized
to 48� 42; for SRC1, we had to resize each image to 24� 21
and stacked it into a 504D vector because running SRC1 on
high-dimensional space is extremely expensive (if not
impossible). Each test image was corrupted by replacing a
set of randomly selected pixels with random pixel value,
which follows a uniform distribution over ½0; 255�. We
varied the percentage of entire image pixels that will suffer
corruption from 10 percent to 80 percent.

Fig. 15a shows the recognition accuracies of CESR and its
five competitors with respect to different levels of corruption.
CESR dramatically outperforms the others when the corrup-
tion is beyond 50 percent. With 80 percent corruption, the
recognition rate of CESR is still 67.7 percent, whereas none of
the other compared methods achieves higher than 25 percent
recognition rate. If the parameter of CESR is well tuned, its
recognition rate can reach 80.3 percent (see Fig. 19c) against
80 percent corruption. Note that compared with the two
robust SRCs, the improvement in terms of recognition rate by
CESR is nearly 45 percent.

Fig. 15b and 15c further show the VR with respect to
various corruptions when FAR ¼ 0:001 and FAR ¼ 0:01.
Although LRC can obtain 90 percent recognition rate when
the corruption is smaller than 30 percent, its VR are
extremely low (smaller than 30 percent). In contrast, CESR,
SRC1, and SRC2 can significantly improve the ROC curves
as they all seek sparse representation. When the corruption
is larger than 50 percent, the VR of CESR are significantly
higher than the others. Thus, CESR could be an effective
method to deal with severe corruption for face recognition.

5.4 Results on the FRGC Database

In this section, we evaluated different methods on real facial

images collected from uncontrolled conditions. We made

use of a subset of the query set for FRGC experiment 4. The

FRGC version 2 face database is a challenging benchmark
face recognition database. Two scenarios have been

considered: 1) In the first scenario, for each selected subject,

eight images were randomly selected for training and the

rest were for testing. 2) In the second scenario, we

considered a real occlusion problem incurred in automatic
face recognition system, especially in a surveillance or

infrared face recognition system. Note that when a person’s

face is close to the border of the camera [56], a face

alignment program may only crop part of the face, and

therefore the missing part needs to be fixed. To simulate
this kind of cropping error, we randomly blocked each

testing image by a rectangle near the image border.
For the first scenario, the recognition rates of the five

compared methods are shown in Fig. 16a as the functions of

the number of feature dimensions. We see that the

compared methods can be ranked in terms of ascending

recognition rates by LRC, SRC1, SRC2, SRC0, and CESR.
Although the improvement of CESR is limited, it can

achieve a higher recognition rate with a small computation

cost as compared to the SRC methods.
For the second scenario, we compared recognition rates

against different levels of cropping error. Results are shown

in Fig. 16b. We see that the recognition rates of both LRC
and SRC0 drop fast as the level of cropping error increases.

However, the three robust sparse methods can still obtain

high-recognition rates. As expected, CESR can detect the

cropping occlusion well so that it achieves the highest

recognition rates.
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Fig. 15. Recognition rates and VR against random corruption using various classifiers. CESR significantly outperforms the others when there are

severe corruptions. (a) Recognition rates. (b) VR when FAR ¼ 0:001. (c) VR when FAR ¼ 0:01.

Fig. 16. Recognition rates of various classifiers on the FRGC database.

(a) Original images. (b) Cropping occlusion.



5.5 M-Estimators

Considering that the weight functions of “l1 � l2” and
“Fair” in Table 1 are exactly the minimizer functions
relevant to the multiplicative form of the HQ [57], we can
directly substitute the objective in (21) with “l1 � l2” and
“Fair” M-estimators. The simple modification of Algorithm
1 is to substitute the minimizer function in (26) with other
minimizer functions. Note that not all M-estimators can be
optimized by half-quadratic technique. An estimator should
satisfy some conditions as detailed in [57], and then can be
optimized by the multiplicative form of the HQ. In order to
evaluate different M-estimators, we still substituted the
minimizer function in (26) with other weight functions of
the “l1,” “Cauchy,” and “German-McClure” M-estimators.
For each M-estimator, the results reported here are with the
best tuned � in set {2, 1.5, 1, 1/2, 1/5, 1/10, 1/20, 1/30, 1/40,
1/50}. The best values of � for correntropy, “Cauchy,”
“German-McClure,” “Fair,” and “l1 � l2” are 0.5, 0.05, 1, 0.2,
and 0.025, respectively.

Figs. 17a and 17b show the recognition rates on AR
database and FRGC database, respectively. We see that the
recognition rates of correntropy, “Cauchy,” and “German-
McClure” are higher than those of “Fair,” “l1,” and “l1 � l2”
on the two databases. Furthermore, the recognition rates of
correntropy, “Cauchy,” and “German-McClure” are very
close. To further investigate the relationship among different
M-estimators, we show the weight functions (or minimizer
functions) of different M-estimators using the best tuned
parameter in Fig. 17c. We see that the weight function of
“German-McClure” is similar to that of correntropy. The
reason that correntropy can outperform “German-McClure”
may be because the weight function of “German-McClure”
assigns outliers larger weights. By comparing with “Cauchy”

and “Fair,” we see that the weight function of “Fair” also
gives outliers larger weights so that the algorithm based on
“Fair” could not achieve a higher recognition rate. Therefore,
according to the recognition rate and parameter selection, the
correntropy is preferred, at least for our problem compared
to other M-estimators.

In the partial within-class match (PWCM) method [16],
[17], the l1 norm and 0.5-quasi norm were used in (8) as robust
estimator of classifier to further improve the classification
performance after the coefficient has been computed. For
further investigation, we implemented the classifiers of LRC
and CESR by utilizing the “Welsch” M-estimator, l1 norm,
and 0.5-quasi norm as the robust norm in (8). Fig. 17d shows
comparison results of the recognition rates between LRC and
CESR. We see that the recognition rates of LRC increase when
the robust estimators are used in the classifier. However, the
recognition rates of CESR are nearly the same. This may be
due to the fact that the robust estimator of classifiers do not
change the sparse coefficients computed by CESR dramati-
cally and also the nonnegative sparse representation is
informative enough for classification.

5.6 Comparison of the Computation Expense

The computational complexity of an algorithm is an
important issue for face recognition. Fig. 18a shows the
overall computation time using various features on the AR
database with the same experiment setting as in Section 5.2.1.
And Fig. 18b shows the overall computation time using
various features on FRGC database, with the same experi-
ment setting in Section 5.4. On the AR database, SRC1,
SRC2, and CESR take 56, 6.9, and 0.40 seconds for each test
image, respectively, when the feature dimension is 644D.
(In [24], SRC1 requires about 75 seconds per test image on a
PowerMac G5.) Hence, the computation time of two SRC
methods is extremely large as compared to CESR. Although
there are n linear variables and m auxiliary variables in
CESR, CESR can efficiently estimate the m auxiliary
variables in half-quadratic optimization. At each iteration,
all of the m auxiliary variables are updated by (26)
according to Proposition 1. However, the SRC models treat
mþ n variables equally. When the dimension m is large, the
computation cost of SRCs will increase rapidly and become
extremely expensive.10 Hence, CESR is more suitable for
robust and real-time pattern recognition tasks.
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10. Although, SRC methods may be used on down-sampled images to
reduce its computation cost, both its recognition and verification perfor-
mances will decrease significantly if the resolution of down-sampled
images is too small.

Fig. 17. Recognition rates of Algorithm 1 based on different M-estimators. (a) The recognition rates on the AR database. The experimental setting is

the same as that in section 5.2.1. (b) The recognition rates on the FRGC database. The experimental setting is the same as that of the cropping

occlusion in Section 5.4. (c) Weight functions of different M-estimators using the best-tuned parameter. (d) The recognition rates of CESR and LRC

based on (8) on the AR database.

Fig. 18. Computational cost on various feature spaces and classifiers.

(a) There are 952 images (eight images per subject) in the training set

on AR database. (b) There are 2,528 images (eight images per subject)

in the training set on FRGC database.



5.7 Parameter Selection

5.7.1 Kernel Size �

The kernel size � is an important parameter, which controls
all robust properties of correntropy [27]. A well-tuned
kernel size value can eliminate the effect of outliers and
noise much more effectively.

In this paper, we set the Gaussian kernel size as a single
function of the average reconstruction error (defined in
(33)). When the half-quadratic optimization is used to solve
the correntropy, the correntropy will give outliers much
smaller weights during iterations. The values of auxiliary
variables (weights) are also computed by the Gaussian
kernel function. A graphical description of this mechanism
is given by plotting the Gaussian function as a function of
the � (see Fig. 19a). When the value of � is small, such as 0.5,
the outliers will receive much smaller weights. When the
value of � is large, such as 3, the outliers will receive
relatively larger weights.

The simulations (see Fig. 19b and Fig. 19c) were run to
show how the kernel size affects the performance of CESR
under various corruptions. The experimental setting is the
same as that in Section 5.3.2. On 10 percent corruption, the
larger the �, the higher the recognition rate that CESR
obtains. The margin between the maximum recognition rate
and the minimum is 6 percent. On 80 percent corruption,
CESR achieves the highest recognition rate when � ¼ 0:5.
The margin between the maximum recognition rate and the
minimum is 46 percent. When the percentage of corruption
or occlusion is smaller than 50 percent, the average
reconstruction error in (33) is mainly dominated by
uncorrupted pixels, and therefore � can be set to a larger
value to give most of the uncorrupted pixels larger weights;
when the corruption or occlusion is larger than 50 percent,
the average reconstruction error is mainly dominated by
corrupted pixels, and therefore � can be set to a smaller
value to punish outliers significantly.

Fig. 19d shows the ROC curves with different values of
�r in (35). It seems that the verification performance of CESR
is robust to different �r. Furthermore, the nonlinear scores
learned by (34) can significantly improve the ROC curves
compared with the scores (residuals) based on L2 distance.

5.7.2 Regularization Parameter �

The regularization parameter � in (21) is an important
parameter to control the sparseness of sparse representa-
tion. We study how the � affects recognition rates in the
case of sunglasses occlusion on the AR database and
cropping occlusion on the FRGC database. We specially

normalized the columns of X to have unit l2 norm so that
we can easily tune the regularization parameter � of CESR.

Table 3 reports the recognition rates (percent) and average
number of nonzero entries of the learned sparse representa-
tion (in terms of l0 norm) when different values of � are set.
When we vary the value of � from 0 to 0.05 on the AR
database, the average number of nonzero entries decreases
on both downsampling rates. This means that a larger value
of � will lead a more sparse solution. However, the sparsest
solution may not yield the highest recognition rate. When �
is 0.05, the recognition rates under the two downsampling
rates are only 26.05 percent and 25.21 percent on the AR
database, respectively.

On the FRGC database, we also observe that recognition
rates can be further improved if � in CESR is well tuned.
This is because � controls the sparsity of coefficient �. When
the data is redundant, an appropriate value of � makes the
sparse representation more informative.

6 CONCLUSION AND FUTURE WORKS

An effective sparse representation algorithm based on the
maximum correntropy criterion is proposed for robust face
recognition. The half-quadratic optimization technique is
adopted to maximize the correntropy objective function, so
that the difficult nonlinear optimization problem is reduced
to learning a nonnegative representation through a
weighted linear least squares problem with nonnegativity
constraint at each iteration. Then a new active-set algorithm
is developed to efficiently solve CESR. The sparse repre-
sentation computed by CESR is robust to noise and can be
computed more efficiently as compared to an l1 norm-based
sparse algorithm. A classifier based on the sparse repre-
sentation is proposed for robust face recognition. Experi-
mental results show that CESR is able to provide new
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Fig. 19. Recognition performance versus � in Gaussian kernel size �. (a) Gaussian function y ¼ expð�x2=�Þ as a function of �. (b) On 10 percent

corruption, the recognition rate under various values of �. (c) On 80 percent corruption, the recognition rate under various values of �. (d) On 10

percent corruption, the ROC curves under various values of �r. The L2 represents that the scores are computed by L2 distance.

TABLE 3
Recognition Rates (Percent) and Average Number
of Nonzeros (l0 norm ) under Different Values of �



advanced ability to deal with errors caused by occlusions,
corruptions and, etc., and can achieve striking recognition
performance in tough conditions.

The correntropy-based sparse framework is presented to
be a novel way to learn robust and informative presentations
in this paper. This could suggest that improvement could be
made if it is applied to learn an informative graph [28] for
graph-based machine learning tasks such as data clustering,
subspace learning, and semi-supervised learning, where the
MSE criterion is still widely used in these algorithms. As
robustness is an important issue for signal classification [58],
image classification [59], and real-time object detection [24],
we expect to investigate more use of the (maximum)
correntropy criterion for these applications in future.
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